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Preface

Preface

This book is the first monograph where the problem of strong (mean-
square) approximation of multiple Ito and Stratonovich stochastic inte-
grals is sistematically analyzed in the context of numerical integration of
stochastic differential Ito equations.

This monograph for the first time successfully use the tool of multiple
and iterative Fourier series, built in the space Ly and poitwise, for the
strong approximation of multiple stochastic integrals. The aforesaid means
were not used in this academic field before.

We obtained a general result connected with expansion of multiple
stochastic Ito integrals with any fixed multiplicity k£, based on general-
ized multiple Fourier series converging in the space Lo([t, T]*). This result
is adapted for multiple Stratonovich stochastic integrals of 1 — 4 multiplic-
ity for Legendre polynomial system and system of trigonometric functions,
as well as for other types of multiple stochastic integrals. The theorem
on expansion of multiple Stratonovich stochastic integrals with any fixed
multiplicity k£, based on generalized Fourier series converging pointwise
is verified. We obtained exact expressions for mean-square errors of ap-
proximation of multiple stochastic Ito integrals of 1 — 4 multiplicity. We
provided a significant practical material devoted to expansion and approx-
imation of specific multiple Ito and Stratonovich stochastic integrals of 1
— 5 multiplicity using the system of Legendre polynomials and the system
of trigonometric functions. We compared the methods formulated in this
book with existing methods of strong approximation of multiple stochastic
integrals.

This monograph open a new direction in researching of multiple Ito and
Stratonovich stochastic integrals. This book will be interesting for spe-
cialists dealing with the theory of stochastic processes, applied and com-
putational mathematics, senior students and postgraduates of technical
institutes and universities, as well as for computer experts.

The basis of this book is composed on chapters 5 and 6 of the mono-
graph: Kuznetsov D.F. Stochastic Differential Equations: Theory and Prac-
tice of Numerical Solution. SPb: Publishing house of the Polytechnical
University 2010, 816 p. 4th edition (in Russian).

It is well known, that Ito stochastic differential equations are adequate
mathematical models of dynamic systems of various physical nature which
are under the influence of random disturbances. We can meet the math-
ematical models built on the basis of Ito stochastic differential equations
or systems of such equations in finances, medicine, geophysics, electrotech-
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nics, seismology, chemical kinetics and other areas [7] - [21]. Importance
of computational solution of Ito stochastic differential equations is arisen
from this circumstance.

It is well known, that one of effective and perspective approaches to nu-
merical integration of Ito stochastic differential equations is an approach
based on stochastic analogues of Taylor formula for solution of this equa-
tions [24], [25], [48]. This approach uses finite discretization of temporary
variable and performs numerical modeling of solution of Ito stochastic dif-
ferential equation in discrete moments of time using stochastic analogue of
Taylor formula.

The most important difference of such stochastic analogues of Taylor
formula for solution of Ito stochastic differential equations is presence
of so called multiple stochastic integrals in them in the forms of Ito or
Stratonovich which are the complex functionals in relation to the compo-
nents of vector Wiener process. These multiple stochastic integrals are sub-
jects for study in this book. In one of the most common forms of record used
in this monograph the mentioned multiple stochastic Ito and Stratonovich
integrals are detected using the following formulas:

T [2) . )
J[iﬁ(k)}:r,t — /¢k(tk) .. ./¢1(t1)dw,§i1) . dw,gff) (Ito integrals),
y t

*tQ

J*[ Tt = / Ui (tr,) - / 1t dwt1 ). thk (Stratonovich integrals),

where ¢;(7); l = 1,...,k — are continuous functions at the interval [¢,T]
(as a rule, in the applications they are identically equal to 1 or have poly—
nomial shape; w, — is a random vector Wlth m+ 1 component: W f
Whenizl,...,mandwp =T;%,...,4. =0, 1,...,m; fT(), z—l,...,
— are independent standard Wiener processes.

The given multiple stochastic integrals are the specific objects of the
theory of stochastic processes. From one side, nonrandomness of weight
functions ¢;(7); [ = 1,..., k is the factor simplifying their structure. From
the other side, nonscalarity of Wiener process f; with independent com-
ponents f); i = 1,...,m, and the fact, that functions ¢(7); I = 1,...,k
are different for various [; [ = 1,..., k are essential complicating factors of
structure of multiple stochastic integrals. Considering features mentioned
above, the systems of multiple stochastic Ito and Stratonovich integrals
play the extraordinary and perhaps the key role for solving the problems
of numerical integration of stochastic Ito differential equations. We want
to mention in short, that there are two main criteria of numerical methods
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convergence for stochastic Ito differential equations: a strong or mean-
square criterion and a weak criterion where the subject of approximation
is not the solution of stochastic Ito differential equation, simply stated,
but the distribution of stochastic Ito differential equation solution. Both
mentioned criteria are independent, i.e. in general it is impossible to state,
that from execution of strong criterion follows execution of weak criterion
and vice versa. Each of two convergence criteria is oriented on solution of
specific classes of mathematical problems connected with stochastic differ-
ential equations.

Using the strong numerical methods, we may build sample pathes of
stochastic Ito differential equation numerically. These methods require the
combined mean-square approximation for collections of multiple stochastic
Ito and Stratonovich integrals. Effective solution of this task composes the
subject of this monograph. The strong numerical methods are using when
building new mathematical models on the basis of stochastic Ito differential
equations, when solving the task of numerical solution of filtering problem
of signal under the influence of random disturbance in various arrange-
ments, when solving the task connected with stochastic optimal control,
and the task connected with testing procedures of evaluating parameters
of stochastic systems and other tasks.

The problem of effective jointly numerical modeling (in terms of
the mean-square convergence criterion) of multiple stochastic Ito or
Stratonovich integrals is very important and difficult from theoretical and
computing point of view.

Seems, that multiple stochastic integrals may be approximated by mul-
tiple integral sums. However, this approach implies partition of the interval
of integration of multiple stochastic integrals (this interval is a small value,
because it is a step of integration of numerical methods for stochastic dif-
ferential equations, and according to numerical experiments this additional
partition leads to significant calculating costs.

The problem of effective decreasing of mentioned costs (in several times
or even in several orders) is very difficult and requires new complex inves-
tigations (the only exception is connected with a narrow particular case,
when 41 = ... = i # 0 and ¢1(s),...,¥r(s) = ¥(s). This case allows
the investigation with using of Ito formula. In more general case, when
not all numbers 74, ..., 4 are equal, the mentioned problem turns out to
be more complex (it can’t be solved using Ito formula and requires more
deep and complex investigation). Note, that even for mentioned coinci-
dence (i1 = ... = i # 0), but for different functions ¥1(s),...,¥x(s)
the mentioned difficulties persist, and relatively simple families of multiple
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stochastic Ito integrals, which can be often met in the applications, cannot
be expressed effectively in a finite form (for mean-square approximation)
using the system of standard Gaussian random values. The Ito formula is
also useless in this case and as a result we need to use more complex but
effective expansions.

Why the problem of mean-square approximation of multiple stochastic
integrals is so complex?

Firstly, the mentioned stochastic integrals (in case of fixed limits of inte-
gration) are the random values, whose density functions are unknown in the
general case. Even the knowledge of these density functions would hardly
be useful for mean-square approximation of multiple stochastic integrals.

Secondly, we need to approximate not only one stochastic integral, but
several multiple stochastic integrals which are complexly depended in a
probability meaning.

Often, the problem of combined mean-square approximation of multiple
stochastic Ito and Stratonovich integrals occurs even in cases when the
exact solution of stochastic differential Ito equation is known. It means,
that even if you know the solution of stochastic differential Ito equation,
you can’t model it without enganging combained numerical modelling of
multiple stochastic integrals.

Note, that for a number of special types of stochastic Ito differential
equations the problem of approximation of multiple stochastic integrals
may be simplified but can’t be solved. The equation with additive vector
noise, with scalar non-additive noise, scalar additive noise, equation with
a small parameter is related to such types of equation. For the mentioned
types of equations, simplifications are connected with the fact, that either
some coeflicient functions from stochastic analogues of Taylor formula iden-
tically equal to zero, or scalar noise has a strong effect, or due to presence of
a small parameter we may neglect some members form the stochastic ana-
logues of Taylor formula, which include difficult for approximation multiple
stochastic integrals.

Furthermore, the problem of combined numerical modeling (proceeding
from the mean-square convergence criterion) of multiple stochastic Ito and
Stratonovich integrals is rather new.

One of the main and unexpected achievements of this book is successful
usage of functional analysis methods (repeated and multiple generalized
Fourier series (converging in Lo([t,T]*) and pointwise) through various
systems of basis functions in this academic field.

The problem of combined numerical modeling (proceeding from the
mean-square convergence criterion) of multiple stochastic Ito and Stra-
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tonovich integral systems was analyzed in the context of problem of nu-
merical integration of stochastic differential Ito equations in the following
monographs:

[I] Milstein G.N. Numerical integration of stochastic differential equa-
tions. Kluwer, 1995, 228 p. (translation from edition to Russian language,
1988);

[I1] Kloeden P.E., Platen E. Numerical solution of stochastic differen-
tial equations. Berlin: Springer-Verlag, 1992. 632 p. (2nd edition 1995, 3rd
edition 1999);

[ITI] Milstein G.N., Tretyakov M. V. Stochastic numerics for mathemat-
ical physics. Berlin: Springer-Verlag, 2004. 596 p.;

[IV] Kuznetsov D.F. Stochastic Differential Equations: Theory and
Practice of Numerical Solution. SPb: Publishing house of the Polytechni-
cal University, 2007. 777 c. (2nd edition 2007, 3rd edition 2009, 4th edition
2010; in Russian).

Books [I] and [III] analyze the problem of mean-square approximation
only for two elementary multiple stochastic Ito integrals of first and second
multiplicities (k = 1 and 2; ¢1(s) and 12(s) = 1) for the multivariable case:
11, 12 =0, 1,...,m. In addition, the main idea is based on the expansion
of so called process of Brownian bridge into the Fourier series. This method
is called in [I] and [III] as the method of Fourier.

In [II] using the method of Fourier, the attempt was made to perform
mean-square approximation of elementary stochastic integrals of 1 — 3 mul-
tiplicity (kK = 1,...,3; ¥1(s),...,9¥3(s) = 1) for the multivariate case:
11,...,23 = 0, 1,...,m. However, as we can see in chapter 6, the results
of monograph [II], related to the mean-square approximation of multiple
stochastic integral of 3 multiplicity, cause a number of critical remarks.

The main purpose of this monograph is to detect, validate and adapt
newer and more effective for applications methods (than presented in books
[I] - [III]) of combined mean-square approximation of multiple stochastic
Ito and Stratonovich integrals.

Talking about the history of solving the problem of combined mean-
square approximation of multiple stochastic integrals, the idea to find bases
of random values using which we may represent multiple stochastic inte-
grals turned out to be useful. This idea was transformed several times in
the course of time.

Attempts to approximate multiple stochastic integrals using various in-
tegral sums were made until 1980s, i.e. the interval of integration of stochas-
tic integral was divided into n parts and the multiple stochastic integral
was represented approximately by the multiple integral sum, included the
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system of independent standard Gaussian random variables, whose numer-
ical modeling is not a problem.

However, as we noted before, it is obvious, that the interval of integration
of multiple stochastic integrals is a step of numerical method of integration
for the stochastic Ito differential equation which is already a rather small
value even without additional splitting. Numerical experiments demon-
strate, that such approach results in abrupt increasing of computational
costs accompanied by the growth of multiplicity of stochastic integrals (be-
ginning from 2nd and 3rd multiplicity), that is necessary for building more
accurate numerical methods for stochastic Ito differential equations or in
case of decrease of the numerical method integration step, and thereby it
is almost useless for practice.

The new step for solution of the problem of combined mean-square
approximation of stochastic integrals was made by G.N. Milstein in his
monograph [I] (1988), who proposed to use converging in the mean-square
sense trigonometric Fourier expansion of Wiener process, using which we
may expand a multiple stochastic integral. In [I] using this method, the
expansions of two simplest stochastic integrals of 1st and 2nd multiplicities
into the products of standard Gaussian random values was obtained and
their mean-square convergence was proved.

As we noted, the attempt to develop this idea was made in monograph
[IT] (1992), where it is obtained expansions of simplest multiple stochastic
integrals of 1 — 3 multiplicity. However, due to the number of limitations
and technical difficulties which are typical for method [I], in [II] and follow-
ing publications this problem was not solved more completely. In addition,
the author has reasonable doubts about handling of the method of series
summation, given in [II], related to integrals of 3rd multiplicity (see section
6.1.4).

It is necessary to note, that the method [I] excelled in times or even in
orders the method of integral sums considering computational costs in the
sense of their diminishing.

Regardless of the method [I] positive features, the number of its limita-
tion is also outlined: absence of obvious formula for calculation of expan-
sion coeflicients of the multiple stochastic integral; practical impossibility
to make exact calculation of the mean-square error of approximation of
stochastic integrals with the exception of simplest integrals of 1st and 2nd
multiplicity (as a result, it is necessary to consider redundant terms of
expansion and it results to the growth of computational costs and compli-
cation of numerical methods for stochastic Ito differential equations); there
is a hard limit for a system of basis functions in the course of approxima-
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tion — it may be only trigonometric functions; there are some technical
problems if we use this method for stochastic integrals whose multiplicity
is higher than 2nd (see 6.1.4). It is necessary to note, that the analyzed
method is a concrete forward step in this academic field.

The author thinks, that the method presented by him in chapter 1
(hereafter, the method based on multiple Fourier series) is a breakthrough
in solution of problem of combined mean-square approximation of multiple
stochastic integrals.

The idea of this method is as follows: multiple stochastic Ito integral of
multiplicity £ is represented as a multiple stochastic integral from the cer-
tain non-random discontinuous function of k variables, detected on the
hypercube [t,T]¥ , where [t,T] — is an interval of integration of mul-
tiple stochastic Ito integral. Then, the indicated nonrandom function is
expanded in the hypercube into the generalized multiple Fourier series
converging at the mean-square in the space Ls([t, T]¥). After a number of
nontrivial transformations we come (theorem 1) to the mean-square con-
vergening expansion of multiple stochastic Ito integral into the multiple
series of products of standard Gaussian random values. The coefficients of
this series are the coefficients of multiple Fourier series for the mentioned
nonrandom function of several variables, which can be calculated using the
explicit formula regardless of the multiplicity & of the multiple stochastic
Ito integral.

As a result we obtain the following new possibilities and advantages in
comparison with the method of Fourier [I].

1. There is an obvious formula for calculation of expansion coeflicients
of multiple stochastic Ito integral with any fixed multiplicity k. In other
words, we can calculate (without any preliminary and additional work)
the expansion coefficient with any fixed number in the expansion of mul-
tiple stochastic Ito integral of preset fixed multiplicity. At that, we don’t
need any knowledge about coefficients with other numbers or about other
multiple stochastic Ito integrals, included in the analyzed collection.

2. We have new possibilities for explicit calculations of mean-square er-
ror of approximation of multiple stochastic Ito integrals. These possibilities
are realized using exact formulas (see chapter 4) for mean-square errors of
approximations of multiple stochastic Ito integrals. As a result, we won’t
need to consider redundant terms of expansion, that may complicate ap-
proximations of multiple stochastic integrals.

3. Since the used multiple Fourier series is a generalized in the sense,
that it is built using various full orthonormal systems of functions in the
space Ly([t, T]), we have new possibilities for approximation — we may use
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not only trigonometric functions as in [I] but Legendre polynomials as well
as function systems of Haar and Rademacher-Uolsh (see chapters 2 and 5).

4. As it turned out (see chapter 5), it is more convenient to work with
Legendre polynomials for building approximations of multiple stochastic
integrals — it is enough just to calculate coefficients of the multiple Fourier
series, and approximations themselves appear to be simpler than for the
case of the system of trigonometric functions. For the systems of Haar and
Rademacher-Uolsh functions the expansions of multiple stochastic integrals
become extremely complex and ineffective for practice (see chapter 2).

5. The question about what kind of functions (polynomial or trigono-
metric) is more convenient in the context of computational costs of approx-
imation turns out to be nontrivial, since it is necessary to compare approxi-
mations made not for one integral but for several stochastic integrals at the
same time. At the same time there is a possibility, that computational costs
for some integrals will be smaller for the system of Legendre polynomials
and for others — for the system of trigonometric functions. The author
thinks, that (see bottom lines in tables 6.2 and 6.3) computational costs
are 3 times less for the system of Legendre polynomials at least in case
of approximation of special family of multiple stochastic integrals of 1 — 3
multiplicity. In addition, the author supposes, that this effect will be more
impressive when analyzing more complex families of multiple stochastic in-
tegrals. This supposition is based on the fact, that the polynomial system
of functions has a significant advantage (in comparison with the trigono-
metric system) for approximation of multiple stochastic integrals for which
not all weight functions are equal to 1 (compare formulas (5.4), (5.5), (5.7),
(5.8) with formulas (5.43), (5.48), (5.47), (5.46) correspondently).

6. The Milstein method leads to repeated series (in contrast with multi-
ple series taken from theorem 1 in this book) starting at least from the third
multiplicity of multiple stochastic integral (we mean at least triple integra-
tion on Wiener processes). Multiple series are more preferential in terms of
approximation than the repeated ones, since partial sums of multiple series
converge in any possible case of joint converging to infinity of their upper
limits of summation (lets define them as py, ..., px). For example, for more
simple and convenient for practice case when p; = ... = p = p — 0. For
repeated series it is obviously not the case. However, in [II] the authors
unreasonably use the condition p; = po = p3 = p — oo — within the
frames of the Milstein method.

7. The convergence (see chapters 1 and 5) in the mean of degree 2n,
n € N of approximations from theorem 1 and convergence with probability
1 for some of these approximations is proven.
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Let’s deal with the content of this monograph according to chapters.

Chapter 1 is devoted to expansions of multiple Ito stochastic integrals.
The new method of expansion of multiple stochastic Ito integrals based
on the generalized multiple Fourier series and converging in the mean-
square sense is formulated and proven. This method is generalized for the
case of discontinuous full orthonormal systems of functions in the space
Ly([t, T]). Using the example of multiple stochastic Ito integrals of 2nd
and 3rd multiplicity it is demonstrated, that expansions from theorems 1
and 2 are similar for a particular case: ¥1(s), ¥a(s), ¥3(s) = ¥(s); i1 = 19 =
13 = 1,...,m with well-known representations of multiple Ito stochastic
integrals based on Hermit polynomials. The convergence in the mean of
degree 2n, n € N of expansions from theorems 1 and 2 is proven.

Chapter 2 is devoted to expansions of multiple Stratonovich stochastic
integrals. We adapt the results of theorems 1 and 2 for expansions of mul-
tiple Stratonovich stochastic integrals in the first part of this chapter. The
theorem about expansion of multiple Stratonovich stochastic integrals of
2nd multiplicity (theorem 3) is proven for the case of twice continuously
differentiated functions 11 (s) u ¥9(s) (41,79 = 1,...,m). We obtained simi-
lar expansions for multiple Stratonovich stochastic integrals of 3rd and 4th
multiplicity (theorems 4, 6, 7) for the cases of system of Legendre polyno-
mials and the system of trigonometric functions when ¥;(s), ..., 9¥4(s) =1
(41,...,94 =0, 1,...,m). The generalization of some of these results (the-
orem 4) for the system of Legendre polynomials and binomial expressions
Yi(s) = (t—s)l (j =1, 2, 3) are given in the following cases:

1. ?;1 7£i2, 7:2752'3, ?;1 7523 and ll, lQ, l3:0, 1, 2,...;
2. i1:i27é’i3; 1121275[3 andll, 12, 1320, 1, 2,...;
3. ’i17£’5'2:’i3; ll#lgzlg, andll, l2, l3:0, 1, 2,...;
4. il,ig,’ig: 1,...,m; ll :lg :lgzlandl:0, 1, 2,

Also we got even more general modification of theorem 4 (theorem 5) in
the following cases (¢1(s), ¥2(s), 13(s) — are continuously differentiated
functions):

1. 7;1 75 ig, ?;2 75 ig, 7:1 75 ig;

2. 7:1 = ig # 7:3 and ’Lpl(S) = ’ng(S),

3. 11 # 1y = i3 and (s) = ¥3(s);

4. ’il,ig,ig = 1, NN and ¢1(8) = ¢2(8) = ¢3(S)

In the second part of chapter 2 we analyze another approach to expan-
sion of multiple Stratonovich stochastic integrals of any fixed multiplicity
k, based on the generalized repeated Fourier series converging pointwise.
We analyze in detail the cases when £ = 1, 2, 3 and propose generalization
for the case of fixed k (theorems 9, 12).
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In chapter 3 we analyze versions of the theorem 1 for other types of
multiple stochastic integrals. We formulated and proved analogues of the-
orem 1 for multiple stochastic integrals according to martingale Poisson
measures (theorem 13) and for multiple stochastic integrals according to
martingales (theorem 14).

Chapter 4 is devoted to obtainment of exact expressions for mean-square
errors of approximation of multiple stochastic Ito integrals, created us-
ing theorem 1. We analyzed the case of any fixed k& and pairwise various

1, - - = 1,...,m, as well as the cases when £k = 1, 2, 3, 4 and any
Uy, zk =1,...,m. Here k — is a multiplicity of multlple stochastlc Ito
integral.

In chapter 5 we provide a significant practical material, based on the
results of chapters 1 and 2. We got approximations of specific multiple
stochastic Ito and Stratonovich integrals with multiplicities 1 — 5 using
theorems 1 — 7 and the system of Legendre polynomials. For the case
of trigonometric system of functions using theorem 1 and the results of
chapter 2 we obtained approximations for specific multiple stochastic Ito
and Stratonovich integrals with multiplicities 1 — 3. We obtained a big
number of formulas for mean-square errors for developed approximations.

Chapter 6 is devoted to other methods of mean-square approximation
of multiple stochastic Ito and Stratonovich integrals. We analyzed Milstein
method and compared it with the method based on theorem 1. We also
analyzed a combined method and a method of integral sums of mean-square
approximation of multiple stochastic integrals. We represented multiple
stochastic Ito integrals based on Hermit polynomials.

In chapter 7 we gathered a support material which may be used while
reading this book. We provided concepts of stochastic Ito and Stratonovich
integrals, of Ito formula, of stochastic Ito differential equation, of stochastic
integrals according to Poisson random measures and martingales, of various
variants of Taylor—Ito and Taylor—Stratonovich expansions for solution of
stochastic Ito differential equation.

Dmitriy F. Kuznetsov September, 2011

The 1st edition of this book was publushed in Russian:
http://www.math.spbu.ru/diffjournal/RU/numbers/2010.3/article.121.html

in June 2010 in Journal of Differential Equations and Control Processes, N 3, 2010. 257
p. (ISSN 1817-2172, reg. E1l. N ®C77-39410):

http://www.math.spbu.ru/diffjournal/
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Polytechnicheskaya ul., 29
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Chapter 1

Expansions of multiple Ito stochastic
integrals based on generalized
multiple Fourier series, converging in
the mean

This chapter is devoted to expansions of multiple Ito stochastic inte-
grals, based on generalized multiple Fourier series converging in the mean.
The method of generalized multiple Fourier series for expansions and mean-
square approximations of multiple Ito stochastic integrals is derived here.
In this chapter it is also obtained generalization of this method for discon-
tinuous basis functions. And here is given a comparison of derived method
with well-known expansions of multiple Ito stochastic integrals based on
Ito formula and Hermit polynomials. As well as the proof of convergence
in the mean of degree 2n, n € N of considered method is obtained.

1.1 Introduction

The results of this chapter are fundamental for following chapters of this
monograph and perhaps for the book in whole. For the first time we use
power tool of generalized multiple Fourier series converging in the mean in
order to derive expansions of stochastic integrals.

The idea of representing of multiple Ito and Stratonovich stochastic in-
tegrals in the form of multiple stochastic integrals from specific nonrandom
functions of several variables and following expansion of these functions us-
ing Fourier series in order to get effective mean-square approximations of
mentioned stochastic integrals was represented in several works of the au-
thor. Specifically, this approach appeared for the first time in [49] (1994).
In that work the mentioned idea is formulated more likely at the level of
guess (without any satisfactory grounding), and as a result the work [49]
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Chapter 1. Expansions of multiple Ito stochastic integrals

contains rather fuzzy formulations and a number of incorrect conclusions.
Nevertheless, even in [49] we can find, for example formulas (4.3), (4.21),
(4.22). Note, that in [49] we used multiple Fourier series according to the
trigonometric system of functions converging in the mean. It should be
noted, that the results of work [49] are true for a sufficiently narrow partic-
ular case when numbers i1, ..., i} are pairwise different; ¢1,...,7: = 1,...,m
(see formula (1.1)).

Usage of Fourier series according to the system of Legendre polynomials
for approximation of multiple stochastic integrals took place for the first
time in [32] (1998), [34], [35], [37] (1999), as well as in [36] (2000). In par-
ticular, you can find formulas (5.3) — (5.8), (5.18) in this works. Note, that
the approach taken from work [49] was formulated, proved and generalized
in its final variant by the author in [42] (2006) (theorem 1 in this book).

The question about what integrals (Ito or Stratonovich) are more suit-
able for expansions within the frames of distinguished direction of re-
searches has turned out to be rather interesting and difficult.

On the one side, theorem 1 conclusively demonstrates, that the struc-
ture of multiple Ito stochastic integrals is rather convenient for expansions
into multiple series according to the system of standard Gaussian random
variables regardless of their multiplicity k.

On the other side, the results of chapter 2 convincingly testify, that

there is a doubtless relation between multiplier factor 1, which is typical

for stochastic Stratonovich integral and included into th26 sum, connecting
stochastic Stratonovich and Ito integrals, and the fact, that in point of
finite discontinuity of sectionally smooth function f(z) its Fourier series
converges to the value (f(z — 0) + f(z +0)). In addition, as it is demon-
strated in chapter 2, final formulas for expansions of multiple stochastic
Stratonovich integrals (of second multiplicity in the common case and of
third and fourth multiplicity in some particular cases) are more compact
than their analogues for stochastic Ito integrals. The expansion of multi-
ple stochastic Stratonovich integrals of any fixed multiplicity & based on
repeated Fourier series and obtained in chapter 2 [35] is also seems inter-
esting.

And still, estimating the results of chapter 1 and 2 of this monograph,
the author adhered to the judgment, that the structure of multiple stochas-
tic Ito integrals is more suitable for expansion in multiple series according
to the system of Gaussian random variables.

Actually, when proving theorem 1 for the case of any fixed multiplicity k
of multiple stochastic Ito integral we used multiple Fourier series converg-
ing in the mean. The deduction of theorems 3 -8 for multiple Stratonovich
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1.2 Theorem on expansion of multiple Ito stochastic integrals

stochastic integrals of 2nd, 3rd and 4th multiplicity in addition to the
results of theorem 1 required also usage of the theory of repeated or mul-
tiple Fourier series converging pointwise, and resulted to more complex
researches than those that were performed for proving of theorem 1, which
nevertheless didn’t provide common results (we analyzed the cases of mul-
tiple Stratonovich stochastic integrals of 2nd, 3rd and 4th multiplicity,
where the results related to integrals of 3rd and 4th multiplicity have an
individual pattern, although they are of vital importance for practice).

Expansions of multiple Stratonovich stochastic integrals of any fixed
multiplicity k obtained at the end of chapter 2 are rather interesting but
include repeated series, approximation of which is less convenient than
approximation of multiple series.

1.2 Theorem on expansion of multiple Ito stochastic
integrals of any fixed multiplicity &

In this section we will get the expansion of multiple Ito stochastic in-
tegrals of any fixed multiplicity & based on generalized multiple Fourier
series converging in the mean in the space Ly([t, T]).

Assume, that (2, F, P) — is a fixed probability space and {F}, t € [0, T}

— is a non-decreasing collection of o-algebras, defined at (2, F, P).

Assume, that f(¢,w) def ft, t € [0,T] — is a standard Wiener process,

which is Fy—measurable for all ¢ € [0,T], and process fia — fa for all
A >0, t > 0 is independent with the events of o-algebra Fa.

Hereafter we call stochastic process & : [0,7] x Q@ — %! as non-
anticipative when it is measurable according to the family of variables
(t,w) and function £(t,w) % & is Fr-measurable for all ¢ € [0,7] and &,
independent with increments fi an — fa for A > 7, ¢ > 0.

Let’s examine the following multiple Ito and Stratonovich stochastic
integrals:

ta

T
TP, = /¢k(tk) : .-/¢1(t1)dw,§jl) ..dwi!) (Ito integral),  (1.1)
t t

T *t2
J*p®]r, :/ Ui (tr) - . / wl(tl)dwt(fl) . .dw,gff) (Stratonovich integral),
t t
(1.2)
where ;(7); I =1,...,k — are continuous functions at the interval [¢, T;
w = £9 when i = 1,...,m; w\” = ¢, iy,...,5g = 0, 1,...,m; £
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(¢=1,...,m) — are independent standard Wiener processes.

The problem of effective jointly numerical modeling (in terms of the
mean-square convergence criterion) of multiple stochastic Ito integrals, as
we mentioned before, is very important and complex from theoretical and
computing point of view. The exception is a very marrow particular case,
when i1 = ... =i # 0 and ¥1(s),...,¥r(s) = ¢¥(s) (see this chapter and
chapter 6). We can analyze this case using the Ito formula.

This problem, as we will see in this chapter, cannot be solved using
the Ito formula and it requires deeper and more complex investigation for
the case when not all numbers 71, ..., %; coincide among themselves. Note,
that even in case of such coincidence (i; = ... = 7 # 0), but with vari-
ous Y1(S), ..., ¥x(s) the mentioned problem persists, and relatively simple
families of multiple stochastic Ito integrals, which can be often met in the
applications, cannot be expressed effectively in a finite form (for mean-
square approximation) using the system of standard Gaussian random val-
ues. The Ito formula is useless in this case, and as a result we need to use
more complex but effective expansions.

Assume, that {¢;(z)}32, — is a full orthonormal system of functions
in the space Lo([t, T]); ¥1(7), ..., ¥r(7) — are continuous functions at the
interval [¢, T7].

Let’s analyze the following function

K(tyoste) = {00 Ol B <oy e, 7

The function K (ti,...,%x) is sectionally continuous in the hypercube
[t, T]F, i.e. the hypercube may be cut in finite number of parts using the sec-
tionally continuous surfaces in such manner, that the function K (¢y, ..., )
is continuous in each part and has limits at the border of part, and it may
have gaps along these cuts.

At this situation it is well known, that the multiple Fourier series of
function K (t1,...,t;) € Lo([t,T]*) is converging to this function in the
hypercube in the mean-square sense, i.e.

1 k k
lim HK(tl, <y tk) — pz . pz Cjk---j1 ll:Il gbjl(tl) = 0, (13)

P1;---;Pr—200

J71=0 Jr=0

where || f]| = < (... ty)dt ..dtk> " and we have Parseval equality
[t.T]*

D1

Pk
: = i 2
[t !] A tdh = T2 e 2 Ciegs o (1)
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1.2 Theorem on expansion of multiple Ito stochastic integrals

k
Cioi = [ K1, t) I ¢j(t0)dty ... dty.
[t,T]* =1

Let’s formulate the basic theorem:
Theorem 1. Assume, that the following conditions are met:

L. ¢i(7); i =1, 2,...,k — are continuous functions at the interval
£, T].
2. {¢j(z)};29 — 15 a full orthonormal system of continuous functions

in the space Lo([t,T1).
Then the multiple stochastic Ito integral J[y™]r; of the form (1.1) is
expanded in the multiple series converging in the mean-square sense

(k) : - LI
J['gb ]T,t = llm ZO P z Cjk---jl (ll:ll le —

D1, Pg— 00 ji= ]kZO

—Lim. > ¢; (Tll)Angl) - (le)Ang’:)>, (1.5)
N=oo (1, . 1)€eGy

where Gy = Hi\Ly; He = {(l1,.. ., lg) - L,..., [, =0, 1,..., N — 1},
Lk:{(ll,...,lk)I ll,...,lk:(), 1,...,N—1;
lg#lT(g#r)a g,Tzl,...,k};

, T .
J(l”) = [ ¢;,(s)dw® — are independent standard Gaussian random vari-
i

ables for various i; or j; (if 4, # 0);

k
Cioi= [ K(tr,--te) I 65 (t)dts ... dti; (1.6)
[t.T* =1

t) . k(te), ti < ... <t
K(ti,...,t) = {gl(otierw‘f:é k), t ket te €[, TY.

Proof. At first, let’s prove preparatory lemmas.
Let’s analyze the partition {7;};_ of interval [t, T] for which

t=mn<...<tw=T, Ay= max Ar; - 0with N =00, (1.7)
0<j<N-1

where A7 = 741 — 75.
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Chapter 1. Expansions of multiple Ito stochastic integrals

Lemma 1. Assume, that condition 1 of theorem 1 is met. Then

— Jo—1 k )
J ™)z, = Lim. b5l - X TT(m)A wi wop. 1, (18)
=00 =0 =01=1
where AW W%ill — W%'_i); =0, 1,...,m; {le}j.:f:_ol — partition of in-

terval [t, T] satzsfyz'ng the condition (1.7); hereinafter "w.p.1” means “with
probability 17.

Proof. Proving it is easy to notice, that using the property of stochastic
integral additivity, we can write down:

N-1 Jo—1 k

I (k )} = . Z 11 J[lpl}ﬁl-i-lﬂ']l +en wp.l, (1.9)
jr=0 —01=1
where
N-1 Tjp+1 K} . )
en=3 [ () [ Yra(r) I pdwl dwl 4
ijO Tjk Tjk
k-3 (k)
+ Z—:l G[¢k—r+l]Nx
]k—r+1_1 Th—rt1 S
x> Urr(s) [ Prora(r) T[] edwlitor) dw )4
Jk—r=0 Tik—r Tik—r
Js—1
[¢3 }N Z J[ ]T]2+1>Tj27
J2=0
N-1 jr—1 Jmy1—1

Gl In =2 Z > H T ams

J[i]s0 = /@[Jl(T)dW(”)
0
B s P, ) O ® = (g, ).

Using standard evaluations (7.3) and (7.4) for the moments of stochastic
integrals, we obtain
Lim. ey = 0. (1.10)

N—oo

Comparing (1.9) and (1.10) we get

N-1 jo—1 k

Jp®re =3 . Z I (il 0.5, w-p-1. (1.11)

=0 =01=1

22



1.2 Theorem on expansion of multiple Ito stochastic integrals

Let’s rewrite J[y] in the form

Tj+15T5;
. le+1 .
J[d)l]leH,le = d)l(sz)AW%;) + / (wl(’r) - d)l(le))dwgl)
le
and put it in (1.11).

Then, due to moment properties of stochastic integrals, continuity (as a
result uniform continuity) of functions ¢;(s) (I =1,...,k) it is easy to see,
that the prelimit expression in the right part of (1.11) is a sum of prelimit
expression in the right part of (1.8) and of the value which goes to zero in
the mean-square sense if N — co. The lemma is proven. O

Remark 1. The result of lemma 1 may be generalized, i.e. the function
Pi(s) in (1.8) may be replaced with a stochastic process ¢s from the class
Ms([0,T1]) (see sect. 7.1)

Remark 2. It is easy to see, that if AW%) in (1.8) for some | €

{1,...,k} is replaced with (Awgi))p; p = 2; iy # 0, then the differential

dw,gl”) in the integral JW(k)]T,t will be replaced with dt;. If p = 3, 4, ..., then
the right part of the formula (1.8) with probubility 1 will become zero. If we
replace AW%) in (1.8) for somel € {1,...,k} with (Am;,)*, p=2, 3,...,
then the right part of the formula (1.8) also with probubility 1 will be equal
to zero.

Let’s define the following stochastic integral:

N-1 k _
lim. Y ®(r,...,7,) ] Aw® < jie)F). (1.12)
N=0o i . jk=0 I=1 o ’

Assume, that Dy = {(t1,...,t5) : t <t; <...<tp <T}. We will write
®(t1,...,tx) € C(Dy), if ®(t1,...,1x) is a continuous in the closed domain
D;. nonrandom function of k variables.

Let’s analyze the multiple stochastic integral of Ito type:

ts
kj d:d‘ / tl,... th . th ),

t %
where ®(t4,...,1x) is a nonrandom function of k variables.

It is easy to check, that this stochastic integral exists in the mean-square
sense, if the following condition is met:

/ /<I>2t1,... Rty ... dty < co.
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Chapter 1. Expansions of multiple Ito stochastic integrals

Using the arguments which similar to the arguments used for proving

of lemma 1 it is easy to demonstrate, that if ®(¢1,...,t;) € C(Dy), then
the following equality is fulfilled:

Ie] k,?:d=ef/ /<I>t1,... B dwi . dw)
N-1 J2—1 k .
=Llim. Y ... Y ®(r,...,7,) [ AW wp.1. (1.13)
N=o0 Jx=0 71=0 I—1 Ji

In order to explain, let’s check rightness of the equality (1.13) when
k = 3. For definiteness we will suggest, that 7,190,173 = 1,.

yee ey ML
We have
E')dth3t2
1o ] ot intanl vl -
t t t
N-1 T T2 (i) 7o (i2) A <o (is)
—1i B(t1, ta, 73, )dwydwi? Awlid) =
NI—{& J3Z()t/t/ (t1, 2,7']3) Wi, GWi, AW

N-1j3— 1 Tiz+1 to )
=Lim. Y > // (tl,tQ,Tm)dW,g )dw,ﬁ 2) Awlis) =

Tj
N=00 j3=0 =0 7, } ?

N—1j3—1 T2+t

7—]2
= l.im. Z Z / (/ + /) tl,tz,TJ3 dW,E1 )dW,g )Awgi) =
T]2
—1j3—1jp—1 Ti2H1 Ti1 1 (ia)
= Lim. D(t1, 1o, i, )dw' M dw!? AWTZ,3+
N—oo 332:0 _72203120 TZ T{ ( b JS) " : "
N-1j3—1 Tio+1 to '
Him. XY [ [ @t by, ) dwy dwi? Awl) (1.14)

Tjg *
N=00 j5=0j,=0 75, 7j, ’

Let’s demonstrate, that the second limit in the right part of (1.14) equals
to zero.

Actually, the second moment of its prelimit expression equals to

N—1j3—1 Tzl T2 N-1j3—11

Z Z / /@ tl,tQ,TJ3)dt1dt2ATJ3 S M2 Z Z

2
9 (ATJ’Z) ATjg — 0,
J3=0j2=0 7}, 75, J3=0j2=0

when N — oo. Here M is a constant, which restricts the module of function
®(t1,t9,t3), because of its continuity; A1 = 741 — 7;.
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1.2 Theorem on expansion of multiple Ito stochastic integrals

Considering the obtained conclusions we have

t3 to

T
Q]C(Z?zf éf///@ tlatQat3 dW§ )dwi(f )dwg ):
t tt

[N

)

—1j3—1ja—1 T2 Tir 1

= Lim. Z > > / /(I)(h,tz,Tj3)dwgl)dw§22)Aw(i3):

Tj
N=00 jo=0 jp=0 ji= =0 75, 7 °

—1j3—1 jo—1 Ti2H1 Ti 1

= Lim. Z Z Z / / ((I)(tht?’Tjs) - @(thTJé’TJé)) X

N—o00 jg 032 0]1 07‘j2 le

Xth dwt Awgz)

N ].,73 1]2_1 Tj2+1 Tj1+1

+1.i.m. Z Z Z / /((I)(tlaTjgaTjg)_(I)(TjUTJ'z’TJB))X

N=00 j3=0jo=01=0 7, 7},

X dw,g )dW,S )Aw(i3)

Tj3
N (1) Ay i2) A 59
+lim. >0 > 3 O(7, T, T ) AWV AW Aw . (1.15)

N—o0 j3=0 j2=0 j1=0

In order to get the sought result, we just have to demonstrate, that the
first two limits in the right part of (1.15) equal to zero. Let’s prove, that
the first one of them equals to zero (proving for the second limit is similar).

The second moment of prelimit expression of the first limit in the right
part of (1.15) equals to the following expression:

N=1j3—1j2—1 T2t Tin#t
Z Z Z / / ((I)(tl, tg, Tj3) — CI)(tl, Tjas TjB))z dtldtgATj3. (1.16)
J3=072=051=0 7, 73
Since the function ®(¢1,ts,3) is continuous in the closed bounded do-
main Ds, then it is uniformly continuous in this domain. Therefore, if the
distance between two points in the domain Dj is less than 6 > 0 (6 > 0
and chosen for all € > 0 and it doesn’t depend on mentioned points), then
the corresponding oscillation of function ®(t1, ts,t3) for these two points of
domain Dj is less than .
If we assume, that A7; < § (j =0, 1,..., N — 1), then the distance
between points (t1, t2, 7j,), (t1, 7j,, 7j,) is obviously less than 4. In this case

|(I)(t1,t27 Tj3) - (I)(tla Tj277-j3)| <e.
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Consequently, when A7; < 6 (j =0, 1,..., N —1) the expression (1.16)
is evaluated by the following value:

N—-173—1j>—1 T_t 3
e’ Z Z Z AleATbATJé < 62( 6 )
J3=072=075:=0

Because of this, the first limit in the right part of (1.15) equals to zero.
Similarly we can prove equality to zero of the second limit in the right part
of (1.15).

Consequently, the equality (1.13) is proven when k = 3. The cases when
k =2 and k > 3 are analyzed absolutely similarly.

It is necessary to note, that proving of formula (1.13) rightness is sim-
ilar, when the nonrandom function ®(¢y,...,%x) is continuous in the open
domain D; and bounded at its border.

Assume, that

N-1 k .
Lim. 3 ® (75, ..., ) I] Aw® < 7)),

. . Tiy
N—ro0 ] ) J1,---50k =0 =1
JQ#JT;Q#T; Q7T:17"'ak

Then we will get according to (1.13)

T to ) .
JRlg = [...[ £ (B, ..., tx)dwi ... dwi?), (1.17)
t

(t1,eetr)

where summation according to derangements (¢1, ..., t;) is performed only
in the expression, which is enclosed in parentheses, and the nonrandom
function ®(ty,...,t;) is assumed to be continuous in the corresponding
domains of integration.

Lemma 2. Let us assume, that the following condition is met

ta

T
/.../<I>2(t1,...,tk)dt1...dtk < 00,
t t

where ®(t1,...,tx) — is a nonrandom function. Then

k)12
m {|r(e1)

T to
}gC’k/.../<I>2(t1,...,tk)dtl...dtk, Cj, < 0.
t t
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1.2 Theorem on expansion of multiple Ito stochastic integrals

Proof. Using standard properties and estimations of stochastic integrals
(see sect. 7.1) for &, € My([to,t]) (see also sect. 7.1) we have

M{ 2} :t/tM{|§T|2}dT, M{

Let’s denote

t

1<) [M{g ) ar
§ (1.18)

t
| &df:
to

o
to

try1 to

l i1 ;
@ tie = [ - [@tr, . ti)dwiy . dwy)?,
t t

where [ =1,..., k— 1 and £[®] , , © (ty, ... ).

In accordance with induction it is easy to demonstrate, that &[]
Ms([t, T']) using the variable ;1.

Subsequently, using the estimations (1.18) repeatedly we can be led to
confirmation of the lemma. O

Lemma 3. Asume, that ¢;(s); i =1,...,k — are continuous functions
at the interval [t,T]. Then

(@)

Lig 1,505tk

+ €

k
11 J[eirs = J[@IF) w.p.1, (1.19)
=1

T . k
where J[pilrs = [pi(s)dwlt); ®(ty,... 1) = lH1 ©i(t;) and the integral
¢ -

S

J[@]gﬁ% is defined by the equality (1.12).
Proof. Let at first 4 #0; [ = 1,..., k. Let’s denote

det " (i)
o = 2 o) Awr.
i=0

Since

k k k s1-1 k
1L Jlodx—11 Jledrs = 32( 1T Jledlrd) Gledy = Jledzo ( 11 Jlely)

=1 =1 1=1 \g=1 g=l+1

then because of the Minkowsky inequality and inequality of Cauchy-
Bunyakovsky

(™

k

zli Jlpiln — ll;ll Jleir

N

2}>§ < Ckl_Xk:l (M{|J[@lx — Jlelrd '}
B (1.20)
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where C), < 00.

Note, that
ol = Tipns = 5 Tl
where -
J[A@I 7y, = / (i(y) — pu(s)) dw'™.

Since J[Agy),,,, -, are independent for various g, then [27]
4
v b

2
+6 z M{‘J N } (1.21)

N-1

Z J[Awl]7j+177j

J=0

4 N-1
}: Zo M{‘J[Aw]mw
j=

2y j—1
} ZO M{‘J[AW]T(;H@
q:

we have

Because of gausswmty of J[Ag]

Tj+1,Tj

MA@ ] | = 71(901@') — @i(s))%ds,
M {186} = 3( [ (i) — r(s))2as)

Using this relations and continuity and as a result the uniform continuity
of functions ;(s), we get

N-1 4 4 N-1 N—-1 j—1
M| Z 00| } < (3 E (An) 46 X AnY An) <
J=0 J=0 J=0 q=

<3 (§(T—t)+ (T —t)?),
where A7; < §, 6 > 0 and choosen for all ¢ > 0 and doesn’t depend on
points of the interval [¢, T]. Then the right part of the formula (1.21) tends

to zero when N — oo.
Considering this fact, as Well as (1.20), we come to (1.19).

If for somel € {1, .. k} th = t;, then proving of this lemma becomes
obviously simpler and 1t is performed similarly. O
According to lemma 1 we have

N-1 Ir—1 :
J[¢(k)]T,t = l.i;m. oY () .- wk(le)Awgl) Awgf) -
© =0 =0
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1.2 Theorem on expansion of multiple Ito stochastic integrals

N-1 Ir—1
=lim. Y ... Y K(n,...,n)Aw® . Awli) =

T
N—oo 1,—0  1,=0 k

N-1 N-1
=lim. ) ...) K(Tll,...,le)AW o AwlE) =

Tl
N—oo 1,—0  [,=0 k

= lim. 3 K(m,,. .-, le)Ang) Awli) —

le

T
> (K(tl, L t)dwi .dw,§;k)) , (1.22)
t t (tla'"atk)
where derangements (¢, . ..,t;) for summing are executed only in the ex-
pression, enclosed in parentheses.
It is easy to see, that (1.22) may be rewritten in the form:

T to
J[p® g, = z / Kt ) pdwl | dw(®),
t

tl) 7 t

where derangements (¢1,...,%;) for summing are performed only in the
values dwgl) e dw§z’°), at the same time the indexes near upper limits of
integration in the multiple stochastic integrals are changed correspondently
and if ¢, changed places with ¢, in the derangement (¢y,...,%x), then ¢,
changes places with ¢, in the derangement (i1, ..., ).

Note, that since integration of bounded function using the set of null
measure for Riemann integrals gives zero result, then the following formula

is reasonable for these integrals:

T

/G(tl,...,tk)dtl...dtk_ 2/ 7Gt1,... tr)dty ... dty,
t

[t’T]k t17 -t t

where derangements (¢1, ..., t;) for summing are executed only in the va-
lues dtq,...,dt;, at the same time the indexes near upper limits of in-
tegration are changed correspondently and the function G(ty,...,tx) is
considered as integrated in hypercube [¢, T]".

According to lemmas 1 — 3 and (1.17), (1.22) with probubility 1 we get
the following representation

JpWr, =
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Chapter 1. Expansions of multiple Ito stochastic integrals

D1 Dk T ty . ,
Jj1=0 Jx=0 t t (tla"'atk)
D1 Pk
+RE ;=3 ) G X
=0 j=0
N-1
x1im. > Gin (1) - by (m ) AW L Awlin)
N—oo lla lk =0 k
lg#l; 9#7r ¢r=1,...,k
+Rp1;---;pk —

Y41 Dk

=> -2 Cii <11m Z %(Tll)---d)jk(m)Ang) AW —

7
N—=oo 1 1k=0 k

—l.im. Z ¢jll (Tl1)Angl) o ¢jlk (le)AW%’:)) 4+ Rpl, Pk

N—o0 (llr"alk)EGk
Z Z CJk J1<H C]
1=0 Jr=0

G T e (el A
N=oo (1, 1€y 1 k

where
T b
R%Z...,pk — Z / /(K(tl, . -,tk)—

tla 7 t t

-5 8 G Ty Jawl?)awl,(123)
J1=0 Jr=0

where derangements (¢1,...,%;) for summing are performed only in the
values dwgl) . dW,g ), at the same time the indexes near upper limits of

integration in the multiple stochastic integrals are changed correspondently
and if ¢, changed places with ¢, in the derangement (¢1,...,%x), then 3,
changes places with ¢, in the derangement (i1, ..., ).

Let’s evaluate the remainder R%; ™ of the series.

According to lemma 2 we have

T ta

M{(R%}""pk)Q}SCk / /( (t1, ... t1)—

tl) 7 t t

N Sy Il qbﬂ(tl)>2dt1...dtk _

Jj1=0 Jk=0
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1.3 Expansion of multiple Ito stochastic integrals

:Ck/<K(t1,... k) — Z ZCM J1H¢Jl(tl)>2dt1...dtk—>o

[#.T)¢ =0 =0

if p1,...,pr — o0, where the constant C} depends only on the multiplicity
k of multiple Ito stochastic integral. The theorem is proven. O

1.3 Expansion of multiple Ito stochastic integrals
with multiplicities 1 — 6

In order to evaluate significance of theorem 1 for practice we will demon-
strate its transformed particular cases for k =1,...,6:

/ Wy (ty)dw.") = z C; ¢, (1.24)
T to
/¢2(t2) /'(,b (tl)dwt th = Z OCJ2]1 ( J1 CQ t2) - 1{21—127&0}1{31—32})
t t J1oJ2=
(1.25)

T Nre= > Cii (CJ(II)CJ(?)CJ&)_1{21_22750}1{31_32}@3

J1,J2,53=0

~Lfiymigp) L (=i} G — 1{é1=i3¢0}1{j1=j3}4§§2)>: (1.26)
= % G (-
Jroeds=0 =
~ it} L=} Gy CJ4 — Lismigor Ljimin G G
~Limiaty Linmin G 6 = Linminroy Liimin G106 —
~Lipmicto L= G G = Lismiaro L= G G+
T 1i=io0} L=} is=isz0} L{jo=ju} +
T 1i=is0} Li=js} Hin=isz0} L o=} +
+1{i1=i4¢0}1{11=j4}1{i2=i3¢0}1{j2=j3}> : (1.27)
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Chapter 1. Expansions of multiple Ito stochastic integrals

00 5 .
T = 3 Ocjs...jl(n ¢_
J1y--)5= =

(i3) ) +(is)
_1{1'121'27'50}1{3'1:3'2}@; CJ5 _1{11 z3750}1‘01 J3}CJz J4 J;S

Vi L =i G G0 G — Linminroy =i G 6 60—
~Liymiyroy L (=i} G, CM G = Vi) 1 gomin G ng G-
—Lgi,—is 20315, 35}@ J3 9(4 V- Liig=isz201 1, J4}CJ J2 J(;S)
~Liyminro) L =it G G G —1{“—%#0}1{;4—35}431 G+
+1{¢1=i2¢0}1{3'1:9'2}1{i3=i4¢0}1{j3=j4}5j5 +
im0} L=} Lismioror Lgsmiod G+
+1{ir=in20) L (=i} Litamioto) L Gu=in) G +
+1gismiy0) L) Linmisror Lgomi G +

L gis=iy0) L) L inmioror Lgamiot G+

+1fiy=i 20} L (=i} Litamioro) L Gu=in) G- +
+Lgismiy 0y L L inmisror Lgomin) G +
ity 0y L) inmivror Lomio) G+

+1fiy=i 0} L (=i} Liisminto) L io=in) G +
+Lgis=iy 20} Lo} inmisor Lgamint G+
ity 0y L o) Linmisror Lgomi G+

+1 iy 20} L (=i} Liis=iaro) L io=in G- +
‘|‘1{z‘2:z‘37£0}1{j2:j3}1{i4=i5?£0}1{j4:j5}C.7(f1)+
ity 0} L= Lismivror Lssmint G+
+1{¢2:i5¢0}1{j2:j5}1{i3:i4¢0}1{j3:j4}C}f1)) :

00 6 .
T = X Cje...j1<H G-
J1yeje=0 =
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1.3 Expansion of multiple Ito stochastic integrals

) (lia) ) ) lis) )
1{11_16¢0}1{Jl_]6}<-] .73 Jja  SJs 1{l2_16¢0}1{12_16}gj J3 Ja j55

~1fiymiot0 L (jomin} o 42 <5:“<§5 ) — Liymigzor Lz G 42 <§;3><§;5>

) +(i3) (i) ) (is) -(is)
~Liymior oy L Gsmind G G G G = Limiory L=y G GG G

) ~(i5) ~(i6) ) ~(i5) ~(i6)
1{11_23750}1“1_]3}@2 ]4 Js Sje 1{11_24750}1{31_%}(]2 J3 Js  SJe

) (ia) -(i6) ) (is) -(i6)

~Lpimior L Gimint G G G G = Liminto =i G GGG
Lo LG G GG = Loy L G G 6 G
“Lgiamivroy s G G G G —1{13-2#0}1{]3-]5}@1 (eRlenren
~ izt Liamint G G G §26)

1 i) L=} L=t L s=int G i

1 a2y L= Lismio oy Lsmind G G

1 iy} L= Liamisoy L Gmin) Gl Je)
1 im0} L =i} Li=isro  iamin) G G
iy =201 1 =js} Lio= %5#0}1{32—15}CJ4 Je)
1 4i, 220} L (=) L mioo) L (s} G CJG
1 im0y L=t Lirmis oy L= G Gl
1 fir=i0y L =it Linmis 20} L =i G Je)
im0y L =it Liomis 0} Lmin Gl CJa
1 a0y L =i Lirmisoy Lo G Gl
+14i, =20} L (=i} Lirmiao) L o= G CJG
1 im0y Lo Loty L= G G
1 im0} L=} Li=ioro L Gu=ind G G
1 (im0} L= Lismioror L smio) G CJG
1 im0} Lo Loty L= G Gl
1 im0} L o=} Limisro L iomin G i
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Chapter 1. Expansions of multiple Ito stochastic integrals

1 ig=ir 2011 (o=} Lis= %5#0}1{33—15}@ ]4
L iy L=} Liamino) L (jamio) G C4
1 im0} L o=} Linmisro L amint G i
im0} L o=} Liimioro L Gumint G i
L gm0} L o=} Limioto) L iamint G i
1 gt} L o=} Liimioko L ismin) Gt Gpr”
L iymiaroy Lgomio} Lisminto) L Gumin) G @3
L iy} L jomin} Liimisroy L ismin G Gar”
1 iy Lgomio) Linminto) L =it G o
L iy} L jomin} Liimisro L =it G i
iy} Ljsmin) Linmisor L =i G J5)
1 figmi20) L o=} Lii=inz0) L ia=in) G it
1 fig=iy203 1 (jo=js} L {is= %5#0}1{34—15}C31 Ja o
L iymisoy Lgomio} Liamino L 1amii G C%
im0} Ljomio} Lii=ioroy L 1=io) G s
it} Ljomio} Liti=inroy L =i G o
im0} L jomio} Lt =it L 1=} G CJ5
1 im0} L= Liomioror Lsmint G G
L im0y L=t Liaminto) L amin) G ng
L im0} L o=} Liinmioto L iamint G Gar”
11yt L=t Linminto) L =i G G
1 im0} Lt Loty Lo G CJ5
L iy} Liomin) Liiminto L =it G i
1 iy} Ljomin} Li=iaro L is=in G i
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1.3 Expansion of multiple Ito stochastic integrals

(i1) ~(i3)
+ 1 fig=is 20} L o=} Lin=ia 0} L (=i} Gj1 Gy

L1y L=t Liaminto) L amin G G
L1y Lgomiot Linminrio) L =i G G
im0} L jomio} Liii=iotoy L =it G G
im0} L jomio) Liiiintoy L 1=t G s

~ Hig=ir 20} L (o=} Lin=is 20} L{o=3s} L{is=ia 20} L {j5=5s}
~Lig=ir 20} L (o=} Hin=ia 20} Lgo=ji) Liis=ia 0} L (=i}
~Liig=ir 20} L{jo=ji} L{in=iaz20} L (=3} L is=is 20} L {js=3is}
—Lig=in0y L jo=jo} L{in=is0} L (jr=js} Lis=iazt0} L {ja=iis}
— Lig=in0y L (jo=jo} L{in=ia0} L (jr=ja} Lis=is 20} L {ja=3is}
~ Lig=inz0} L (o=} L{ir=is20} L (1=} L{iu=is 20} L {ji=ss}
— Lig=is0y L jo=ia} L{in=is0} L (jr=js} Lio=iaz20} L {jo=iis}
— Lig=is 20} Ljs=js} L{in=iaz0} L (g =ju} Lia=is 20} L (o=}
—Liy=ig0y L ja=je} L{in=ia#0} L (jr=jo} Wis=is 20} L {ju=js}
—Liis=is20} L o=} Lir=is20} L (jr=js} L{io=is 20} L {jo=1s}
—Lig=isz0y L ja=ia} Lin=is0} L (a=js} Lia=is 20} L (o=}
~ Hio=isz0 L {o=ja} Lin=inz0} L (1=} L{is=is 20} L {j5=3s}
~Lig=is 20} L (jo=is} Lin=ia 20y L =a) Lin=ia#0} L (=g}
~Liig=is 20} L{jo=js} L{ir=iaz20} L (1=} Lis=ia 20} L {js=ja}

—1{i6=i5¢0}1{j6=j5}1{i1:i3¢0}1{j1=j3}1{i2=i4¢0}1{j2=j4}> : (1.29)

where 14 — indicator of set A (14 = 1, if condition A is executed and
14 = 0 otherwise).

Note, that according to the theorem 1 the series in (1.24) — (1.29) un-
derstanding as multiple series:

o0 def D1 Dk
= lim .
AP DR N D
jl,...,ijO ]1:0 ]kZO
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Chapter 1. Expansions of multiple Ito stochastic integrals

1.4 Expansion of multiple Ito integrals of any multi-
plicity k

Lets generalize formulas (1.24) — (1.29) for the case of any multiplicity
of the multiple stochastic Ito integral. In order to do it we will introduce
several denotations.

Let’s examine the unregulated set {1, 2, ..., k} and separate it up in two
parts: the first part consists of r unordered pairs (sequence order of these
pairs is also unimportant) and the second one — of the remains k — 2r
numbers.

So, we have:

({iglagQ}a"'7{92%—1792T1}){g1)'"7Qk—2t})7 (1'30)
pa}rt 1 pa;t 2

where {g1,92,---,92-1, 92, @1, -, -2} = {1,2,...,k}, curly braces
mean irregularity of the set taken in them, and the round braces — regu-

larity.
Let’s call (1.30) as partition and examine the sum using all possible
partitions:

Z aglg2a-'-ag2r—lg2raq1---qk—ZT' (131)

({{91,92}, s ,{927‘—1’927}}, {QIa .. an—Zr})
{glag2a < 92r—1,92r,91, - - - 7qk72'r} = {1523 .. ak}

We give an example of sums in the form (1.31):

Z QAg,g, — @12,
({91,92})
{91,92} = {1,2}

Og,g2939¢ = 1234 + 1324 + A2314,

>
({{91, 92}, {93, 94}})
{91392793394} = {15 2a 33 4}

Z Qgy 90,100 — A12,34 + 413,24 + a14,23+

({91592}’ {qla QQ})
{91592, q1, q2} = {15 2,3, 4}

+a93,14 + G24,13 + 34,12,

Z Qg go,q192q5 — 412,345 T 413,245 + 414,235+

({91, 92}, {1, 92, 93})
{glag27 q91, 492, (I3} = {17 2a 37 4a 5}
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1.4 Expansion of multiple Ito stochastic integrals of any multiplicity

+a15,234 + 23,145 + Q24,135 + Q25134 + Q34,125 + A35,124 + Q45 123,

> Qgrgogsgnq = 012345 + 013245 + Q14235+

({{91792}7 {93794}}’ {ql})
{915927937 94, ql} = {1’ 2,3,4, 5}

+a12,354 + A13,254 + @1523.4 + A12,54 3 + Q15243 + Q1425 3+
+a15,342 + @13 54,2 + G14532 + A52,34,1 + G53,24,1 + Q54,23 1-

Now we can formulate the basic result of theorem 1 (formula (1.5)) using
alternative more comfortable form.

Theorem 2. In conditions of the theorem 1 the following converging in
mean-square sense erpansion is valid:

00 k )
W= > Gl

jla"'ajk:O

4 )
+ 2 (=1)"- > I 1, =, 703X
r=1 ({{glagQ}a"' 7{927‘717927‘}}7{q17"'aqk72r}) s=1
{91592’ e g2r—1,92r5491y - - - s Qk— 27-} = {1,2, . ,k’}

k—2r iq
1
X {‘7925 = '7923} H Cj )7 (132)
where
> o >
1 mer=0 m’ﬂﬁw'— =0

In particular from (1.32) if £ = 5 we obtain:

00 5 .
T, = 3 Cj5---j1<l:[ i _

jla" 5j5:0

(iq;)
_ Z 1{19 = lg, 750} {9, = Jon } H CJ l
({91, 92}, {q1,92,43})
{gla927QI7Q2aq3} = {172a374a5}

+ Z 1{i91: igﬁéo}l{jgl: jgz}x
({{91192}, {93594}}1{(11})
{91’92’g3ag4aq1} = {172137415}

(igy)
X]‘{iggz i94760}1{j93= jg4}ch1 )

The last equality obviously agree with (1.28).
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Chapter 1. Expansions of multiple Ito stochastic integrals

1.5 Comparison of theorem 2 with representations of
multiple stochastic Ito integrals, based on Hermit
polynomials

Note, that rightness of formulas (1.24) — (1.29) can be collaterally veri-
fied by the fact, that ifi; = ... =ig=1¢=1,...,m and ¥1(s),...,¥s(s) =
¥(s), then we can deduce the following equalities which are right with
probability 1

1
J[¢(1)}T,t 5Tt7

1!
J [¢(2)}T,t = % <6%,t - AT,t) )
TP = % (67,4 — 307¢ATy)
T W]r, = % (87, — 667, Ary + 3A%,),

1
T = L (58— 1083, Ay + 1550%,)
1
Jw@hﬁ:gw%—ﬂw%Am+4%%A%—1M$97
where 07y = f Y(s)dfy", Ary = f ?/)2( )ds, which can be independently

obtained using the Ito formula (see sect. 7.2).
When k£ = 1 everything is evident. Let’s examine the cases k£ = 2, 3.

When k = 2 (we put p; = ps = p):

T @1, = 1 3 C. . D _ S C. .| =
[1/} }T,t -1.171. Z J231€]1 Cjz 'ZO Jij1
J J1=

pP—o0

j1,52=0
p -1 (i) 2
= p—) (ZO ZO (Chh + CJ1]2) le Cjz + Z leh ((CJ ) - 1)) =
J2 J1=0
P J1i—1 .
:ﬂ%(ZZQ@@h+ > a2 ((¢) -1)) =
J1 032 0 Jl =0
= p—> ( Z CJIC]2C]1 ng + Z ( Cgl )) -
1111%20 Jl =0
1/ 2 2 1,
=Lim (5 <j12:0 lech ) 2 Z ) Tl (7 = Ar). (1.33)



1.5 Comparison of theorem 2 with representations of multiple stochastic Ito integrals

Let’s explain the last step in (1.33). For stochastic Ito integrals the
following estimation [5] is right:

w{| e} < sl ([ ) (L3

where ¢ > 0 — is a fixed number; f, — is a scalar standard Wiener process;
& € My([t, T]) (see sect. 7.1); K, — is a constant, depending only on g;

df

/\§T2dr<oowp1 M{(/|£T 2d7’>%} < 0.

Since .
p
5Tt - Z CJ1CJ1 - /(¢(S) - 'ZO Cj1¢j1 (8))df(l)
71=0 t =

then using the estimation (1.34) to the right part of this expression and
considering, that

f(’(’b( Z Chd)h( )>2d8 — 0

n=

if p — oo we obtain

T
[6(s)df = g Lim. 3 G, g >0, (1.35)
t

p—00 ]1 =0

N 2
Hence, if ¢ = 4, then it is easy to conclude, that Li.m. <j1§::0 Cj, C](f)) _

pP—0

5T t'
This equality was used in the last transition of the formula (1.33).

If k=3 (we put py = p» = p3 = p):

T — 1 S e ue! C.
[¢ ]Tt lm Z J3]2.71<]1 C]2 33 Z .73]1]1@3

b J1,J2,3=0 J1,j3=0

L i) < (i)
> Cipiny — 2 Cipinyy | =

J1,52=0 J1,J2=0
1 DDA S e Lo Loy )
= L1.I. > J33231CJ1 Cjz ng > ( jsirin T Chijigs T 313311)@3
P00\ j2,53=0 J1,43=0
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Chapter 1. Expansions of multiple Ito stochastic integrals

p j1i—1lj2—1
= 1 1.1 ( YIS ( Jajeir T CJsJuz + C]231J3 + CJ2.73J1
=0 j2=0j3=0
+Cj1j2j3 + Cj1j3j2) C](I)CJ(; Cj3
b .71_]- (7,) i
+ Zo Zo( Jsgrds T Chrjss + CJ333J1) (ng ) le +
J3
p -1 N .
()
+ ZO Z ( Jsjii + CJ1J1.73 + CJlJ3.71) (CJ(I)) 73 + Z CJlJIJl (C ) o
J3= Jj1=0
s (i
- Z (Cj3j1j1 + Cj1j1j3 + Cj1j3j1) ng ) =
J1,33=0
p J1i—1lja—1
p (Z Z Z CJ1CJ2CJ3CJ1 Cjz ng
Jj1=0 j2=0 j3=0
p -1 p -1 .
+ Z Z ]1 (CJ3> C]l + Z Z J3 (Cﬁ) CJ(:)_}_
.71 =073=0 =043=0
p N3 1 P :
sy a(@) -5 2 cicj3<§;’) -
6 Jj1=0 2 J1,J3=
im (2 S oo o DA
= pl—)Io% é _ Z—o J1-J2 J3Cj1 C'J'2 Cj3 +
jlaéaél}éza’éjfg_h#a‘g
il (@ = (i)
+ Z Z j1 (Cj3 ) le + Z Z .73 (le ) Cj3 +
=073=0 J =0j3=
12 ; 1 i) (i
rg 20 () -5 S ciod)) =tim (— S 60,00
6 j J1 »Ja=0 P J1,J2,53=0

(3 > hzl o (g}j) SRSy hil Ci, (C§f))2é§§)+_§=005’1 (¢! )3)

J1=0j3=0

6 J1=0j3=0
P Ji— 1 i P - 1 N2
_]1 =0 j3= 0 .7 =0j3=
p N 3 1 P .
b 3 (¢ _ 2 20 D) =
+6 Z: le (le ) 9 31323 00310]3CJ3 )
31 2 1
pl_gg ( (Z CJICJI) 5 Z i Z C]3<]3) = (5Tt 35T,tAT,t).
(1.36)



1.6 On usage of full orthonormal discontinuous systems of functions

4\ 3

The last step in (1.36) is arisen from the equality lz'ai—'>m' ( fjo legj(lz)) —
o ]'1:

&%, which can be obtained easily when g = 8 (see (1.35)).

In addition, we used the following correlations between the Fourier
coefficients for the examined case: Cj ;, + Cj,j, C;,Cy,, 2055
0?17 Cj1j2j3 + Cj1j3j2 + Cj2j3j1 + Cj2j1j3 + Cj3j2j1 + Cj3j1j2 = Cj Cj Cj37
2(0j1j1j3 +Cj1j3]‘1 +Cj3j1j1) = Cf10j3, 6Cj1jlj1 = Cj‘?’l and the formula
(2.224) if k =2, 3.

Cases kK = 4, 5, 6 can be analyzed similarly using the formula (2.224)
when k =4, 5, 6.

1.6 On usage of full orthonormal discontinuous sys-
tems of functions in theorem 1

Analyzing the proof of theorem 1, we can ask a natural question: can
we weaken the condition of continuity of functions ¢;(z); j =1, 2,...7

We will tell, that the function f(z) : [t,T] — R! satisfies the condition
(%), if it is continuouse at the interval [¢,T] except may be for the finite
number of points of the finite discontinuity, as well as it is continuouse
from the right at the interval [t, 7.

Afterwards, let’s suppose, that {¢;(z)}52, — is a full orthonormal sys-
tem of functions in the space La([t,7]), moreover ¢;(z), j < oo satisfies
the condition (x).

It is easy to see, that the continuity of function ¢;(z) was used sub-
stantially for proving of theorem 1 in two places: lemma 3 and formula
(1.13). It’s clear, that without damage to generality, partition {Tj}é-vzo of
the interval [¢,7] in lemma 3 and formula (1.13) can be taken so ”small”,
that among the points 7; of this partition will be all points of jumps of
functions ¢1(7) = ¢;,(7), ..., wr(T) = ¢, (7); j1,-. -,k < 00 and among
the points (7j,,...,7,); 0 < j1 < ... < jr < N — 1 there will be all points
of jumps of function ®(¢y, ..., ).

Let’s demonstrate how to modify proofs of lemma 3 and formula (1.13)
in the case when {¢;(z)}52, — is a full orthonormal system of functions
in the space Ly([t, T]), moreover ¢;(z), j < oo satisfies the condition (x).

At first, appeal to lemma 3. Proving this lemma we got the following
relations:

M

N-1 4 N—1
} = ;) M {|J[Agol]7j+1,rj 4} +
j=

[A@Z}Tﬂ_l T3

j=0
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Chapter 1. Expansions of multiple Ito stochastic integrals

N-1 j—1
+6 % M{IT8 ¢t ) E M AR} (137
J: q:

Tj+1

M{[T[8@ 0 n [} = [ (ar() = als))?ds, (1.38)

Tj

Tj+1 2

4} = 3(/ (i) — cpl(s))2ds) . (1.39)

7j

M{1T1A¢ .

Propose, that functions ¢;(s); | = 1,...,k satisfy the condition (%),
and the partition {Tj}jy:_ol includes all points of jumps of functions ¢;(s);

I = 1,...,k. It means, that, for the integral Tl(wl(rj) — 1(s))%ds the

subintegral function is continuous at the interval [7;, 7j41) and possibly it
has finite discontinuity in the point 7;41.

Let p € (0, A7) is fixed, then, because of continuity which means
uniform continuity of the functions ¢;(s); I = 1,...,k at the interval
(7, Tj+1 — p] we have:

J/_ (1(75) — ¢i(s))*ds = ]/ (01(1) — i(s))?ds+
+ 71 (i(5) — gol(s))st < 62(ATj —u) + M?p. (1.40)

Obtaining the inequality (1.40) we proposed, that A7, < §; j =
0, 1,...,N —1 (6 > 0 is exist for all € > 0 and it doesn’t depend on
s); lei(7j) —@i(s)| < e if s € [Tj41— p, Tj11] (because of uniform continuity
of functions ¢;(s); I =1,...,k); |wi(7j) —@i(s)] < M, M — is a constant;
potential point of discontinuity of function ¢;(s) is supposed in the point
Ti+1-

Performing the passage to the limit in the inequality (1.40) when u —
40, we get

Tj+1

/ (pi(15) — @i(s))*ds < e*Ar;.

Tj

Using this estimation for evaluation of the right part (1.37) we get

"

N-1 4 N-1 N-1 j—1
Y I8¢ | <433 (A5 +6 T A Ar) <
=0 =0 q=0

J=0
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1.6 On usage of full orthonormal discontinuous systems of functions

<3 (6(T—t)+ (T —t)?). (1.41)

This implies, that M{

3 remains reasonable.

Now, let’s present explanations concerning the rightness of the formula
(1.13), when {¢;(z)}52, — is a full orthonormal system of functions in the
space La([t,T]), moreover ¢;(x), j < oo satisfies the condition ().

Let’s examine the case k = 3 and representation (1.15). We can demon-
strate, that in the studied case the first limit in the right part of (1.15)
equals to zero (similarly we demonstrate, that the second limit in the right
part of (1.15) equals to zero; proving of the second limit equality to zero in
the right part of the formula (1.14) is the same as for the case of continuous
functions ¢;(z); j =0, 1,...).

The second moment of prelimit expression of the first limit in the right
part of (1.15) looks as follows:

4
} — 0 when N — oo and lemma

Z J[ASOZ]TJH,T]

N—1j3=1ja—1 "oz Tir +1

S XX [ ] @yt 7)) — @t 7, 7,)) dhdt ATy,

J3=072=071=0 75, 75

Further, for the fixed p € (0, A7j,) and p € (0, A7;,) we have

Tio+1 Tj1+1

/ / tl,tQ,TJ3 cb(tl,’i'j2,7'j3))2dt1dt2 =

Tjp  Ti

Tig+1—H Tjo+1 Tj1+1—P Tj1+1

= ( / + / >< / + / ) ((I)(tl,tg,Tj3) — @(tl,sz,Tjg))ZdtldtQ
T2 Tjo+1—H Tj1 Tjy+1—P
Tjor1—H Tji+1=P  Tjp+1—H Tj41 Tjo+1  Tj1+1—P Tjg+1  Tjp+1
~(J o+ T+ ] )
Tjo Ti1 Tia  Tj41=P  Tjg1—H Tiy Tjo+1—H Tj +1—P

X (D(t1, ba, 7j,) — B(t1, Tjy, j,))° dirdty <

e’ (AT, — p) (ATj, — p) + MPp (ATj, — p) + M*p (A7y, — p) + M(Qfﬁé)
where M — is a constant; A7; < 6; =0, 1,...,N—1 (6 > 0 is exists for
all € > 0 and it doesn’t depend on points (t1,t2, 7j,), (t1, Tj,, Tj,)); We also
propose that, the partition {Tj}j-v:_ol contains all points of discontinuity of
the function ®(¢1,t,t3) as points 7; (for every variable).

When obtaining of (1.42) we also suppose, that potential points of dis-
continuity of this function (for every variable) are in points 7, 41, Tj,+1, Tj,+1-
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Chapter 1. Expansions of multiple Ito stochastic integrals

Let’s explain in details how we obtained the inequality (1.42). Since
the function ®(ty,ts,t3) is continuous at the closed bounded set Q3 =
{(tlat27t3) 1t € [Tj1’Tj1+1 - p],tg € [Tijjz-}—l - /'L]ati’» € [Tj37Tj3+1 - V]) }7
where p,p, v — are fixed small positive numbers (v € (0, A7), p €
(0, A7j,), p € (0, A7;,)), then this function is also uniformly continous at
this set and bounded at closed set D3 (see sect. 1.2).

Since the distance between points (t1, 12, 7j,), (t1,7j,, Tj;) € Q@3 is ob-
viously less than 6 (Ar; < d; 5 =0, 1,...,N — 1), then |®(¢1,t2,75,) —
®(t1,7),,7j,)| < €. This inequality was used during estimation of the first
double integral in (1.42). Estimating of three remaining double integrals we
used the feature of limitation of function ®(ty,ts,%3) in form of inequality
|®(t1, b, 75,) — P(b1, 75, T )| < M.

Performing the passage to the limit in the inequality (1.42) when p, p —
+0 we obtain the estimation

Tia+1 Tjr+1
/ / tl,tQ,T]3 —(I)(tl,TjQ,TjB))2dt1dt2 S €2ATj2ATj1.

TJ2 7']1
Usage of this estimation provides

N=1j3—1jo—1 Tjo+1 Tj1+1

S Y XY [ ] @t tem) - Ot i) dhidts ATy, <

J3=0j2=0 j1=0 Tjo  Tj

N 1j3—1j2—1 T —t 3
Z Z Z A”-J1ATJ2ATJ3 <ég %

J3=0 72=071=0

The last evaluation means, that in the considered case the first limit in
the right part of (1.15) equals to zero (similarly we may demonstrate, that
the second limit in the right part of (1.15) equals to zero).

Consequently, formula (1.13) is reasonable when k = 3 in the analyzed
case. Similarly, we perform argumentation for the case when £ = 2 and
k> 3.

Consequently, in theorem 1 we can use full orthonormal systems of func-
tions {@;(z)}52, in the space Ly([t,T]), for which ¢;(z), j < oo satisfies
the condition (x).

The example of such system of functions may serve as a full orthonormal
system of Haar functions in the space Ly([t,T]) :

1 1 z—1
) = S dule) = e (75
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1.7 Remarks about usage of full orthonormal systems in theorem 1

wheren =0, 1,...;5=1, 2,...,2" and functions ¢,;(z) has the following

form:
2%a ZS ['2%7 L + 2n+1)
enj(T) = { 2%, g e [ 1+2n1+1, iy
0 otherwise
n=0,1,...;5=1, 2,..., 2" (we choose the values of Haar functions in

the points of discontinuity in order they will be continuous at the right).
The other example of similar system of functions is a full orthonormal
Rademacher-Walsh system of functions in the space Ly([¢, T):

do(z) = %_t ..y () = \/%soml (%) - Pm (;:i) :

where 0 <my < ...<mg; my,...,mp=1,2,...; k=1, 2,...; on(x) =
(=B 2 €[0,1];m=1, 2,...; [y] — integer part of y.

1.7 Remarks about usage of full orthonormal systems
in theorem 1

Note, that actually functions ¢;(s) of the full orthonormal system of
functions {¢;(s)}32, in the space La([t,T]) depend not only on s, but on
t T

For example, full orthonormal systems of Legendre polynomials and
trigonometric functions in the space Ly([t, T]) have the following form:

2 + 1 T+t\ 2
(s t.T) = P ((s—
9i(s,t.T) =\ 7, ”((8 2 )T—t)’

P;j(s) — Legendre polynomials;

| 1 when 7 =0
¢;(s,t,T) = \[SIH%T when j =2r — 1.
vI—t ﬂcos%;(_t ) when j = 2r

r=1, 2,....

Note, that the specified systems of functions will be used in the context
of realizing of numerical methods for stochastic differential Ito equations
for the sequences of time intervals: [Ty, T1], [T1, T3], [Ts, T3], - - -, and spaces
Lo([Ty, ), Lo([T0, ), Lo([To, T3] -

We can explain, that the dependence of functions ¢;(s,¢,T) from ¢, T
(hereinafter these constants will mean fixed moments of time) will not affect
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Chapter 1. Expansions of multiple Ito stochastic integrals

the main characteristics of independence of random variables. C((jng,t =

T .
{quz(S’taT)de”); i 7’é 0;1=1,...,k.

Indeed, for fixed ¢, T due to orthonormality of mentioned systems of
functions, we have:

(i) ~(ir) _
M {C(jf)T,tC(j,-)T,t} = Li=i, 2011 {ji=ji}
where C((;llth = tf(,/)jl(s,t, T)dw; iy #£0;1, r=1,...,k.
. T, .
On the other side random variables C((;;;Tl o = J dils,t, Tl)dwgl) and
501 tl

. T .
C((;Z;TQ o= [ ¢;(s,t2, To)dw) are independent if [t1, Ty] N [t2, To] = O (the
202 tg

case T} = to is possible) according to property of stochastic Ito integrals.

Therefore, two important characteristics of random variables C((jng,t
which are the basic motive of their usage are stored.
In the future, as it was before, instead of ¢;(s,t,T) we will write ¢;(s)

and instead of C((ng,t we will write CJ@ for brevity sake.

1.8 Convergence in the mean of degree 2n of expan-
sion of multiple stochastic Ito integrals from the-
orem 1

Creating expansions of stochastic Ito integrals from theorem 1 we stored
all information about these integrals, that is why it is natural to expect,
that the mentioned expansions will be converged not only in the mean-
square sense but in the stronger probability meanings.

We will obtain the common evaluation which proves convergence in the
mean of degree 2n, n € N of approximations from theorem 1.

According to notations of theorem 1:

T t2 . .
Ry ™= 5 [ Ry p(tr,. . ti)dfs” . dfY) (1.43)
(t1,e-5tr) ¢ t
def b1 Pk k
Rp1---pk (tl, R tk) = K(th R 7tk) - Z S Z Cjk---jl H ¢jl(tl)'
J1=0 Jk=0 =1
For definiteness we will consider, that iy,...,4 = 1,...,m (it is ob-

viously quite enough for unified Taylor-Ito expansion (see sect. 7.9 ) and
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1.7 Remarks about usage of full orthonormal systems in theorem 1

we can see decoding of other notations used in this section at the text of
proving of theorem 1.

Note, that proving of theorem 1 we obtained, that

T to
M{(RE;7)%} < G, / R (s t)dt Lty =
t

--Pk
tl; a t
=Cyp [ R, (t,... . t)dty...dty, Ci < co.
[¢,T]
Assume, that

to

i
e é/ [ Row gty t)dESY L dEY 1=2,8, k41,
t t

T to
k def (k k f i1 )
Mene ek nel € [ Ry gty t)dESY L dEY.
t

’ t
Using Ito formula (see sect. 7.3) it is easy to demonstrate, that

t

th defT)zn} =n(zn-1)/ u{ ( / fudfu)2n_2£3}ds-

Using the Holder inequality in the right part under the sign of integra-

¢ 2n
tion if p = n/(n—1), ¢ = n and using the increase of value M{ (f §Tdf7> }
to
with the growth ¢, we get:

n_

M{(/t &) | <ni2n- 1>(M{QZ AN [uigrpta

to

Raising to power n the obtained inequality and dividing it on

(] )]

we get the following estimation

t

M{Q/ &) | < (n(on - Oy (foaterpias)’. 1

0
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Chapter 1. Expansions of multiple Ito stochastic integrals

Using estimation (1.44) we have

M) < (n(2n = )| [a{(all )| <

/< (2n = 1)) l/ tk 1t Zn}) ndtg— 11”);(1%]”:

(M{("ltk 1t)2n}) ndty_ 1dtk]n <...

N

< (n(2n - 1))"

tr t3

’ n
// / M{ 77t2 t 2Tl} .. dtk—ldtk] =
t t

t

/f j/ ooty -y t)dt ..citk]n <

| R (. t)dt .dtk] .
(1T

.. < (n(2n —-1))

= (n(2n — 1))"*"Y(2n

< (n(2n —1))"*=V(2n — I

The next to last step was obtained using the formula

M{(7 )2} = (20— 1)1 V tl,...,tk)dtlr,

which follows from gaussianity of n,ﬁj}t = tf2 Ry po(t1,. .., tk)dft(f )

Similarly we estimate each summand in the right part of (1.43). Then,
from (1.43) using Minkowsky inequality we finally get

(g <
n ﬁ 2n
/ Rlek (t]J LRI | tk)dt]_ .« e dtk;| ) >

= (K)?"(n(2n — 1))"* -V (2n — D!

< <k!((n(2n 1))k (2n — 1)1

n
| R (. th)dh dtk] .
[¢,T]*
(1.45)
The inequality (1.45) means, that approximations of multiple stochastic
Ito integrals, obtained using theorem 1, converge in the mean of degree 2n,

n € N, as according to this theorem . ijk RZ o (t1, .. ty)dty .. dt — 0
when pq, ..., pr — 00. 7
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Chapter 2

Expansions of multiple stochastic
Stratonovich integrals, based on
generalized multiple and repeated
Fourier series

This chapter is devoted to expansions of multiple Startonovich stochas-
tic integrals. We adapted the results of chapter 1 (theorem 1) for multiple
Stratonovich stochastic integrals of multiplicity 1 — 4. Also, we consider
other approach to expansion of multiple Stratonovich stochastic integrals
of any fixed multiplicity k£, based on repeated generalized Fourier series
converging pointwise.

2.1 Expansions of multiple stochastic Stratonovich
integrals of 1st and 2nd multiplicity

In the following sections of this chapter we will denote full orthonormal
systems of Legendre polynomials or trigonometric functions at the interval
[t,T] as {¢;j () }52

In the mentioned sections we will also pay attention on the following
well-known facts about these two systems of functions.

Assume, that f(z) — is a bounded at the interval [t,T] and section-
ally smooth function at the open interval (t,T). Then the Fourier series

(o) T
ZO Cipi(z); C; = [ f(z)pj(x)dz converges at any internal point x of the
J= t

interval [t, T to the value { (f(z — 0) + f(z + 0)) and converges uniformly
to f(z) in any closed interval of continuity of the function f(x), laying
inside [t,T]. At the same time the Fourier series obtained using Legen-
dre polinomials converges if x =t and x = T to f(t +0) and f(T — 0)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

correspondently, and the trigonometric Fourier series converges if x =t
and z = T to L (f(t+0)+ f(T —0)) in case of periodic continuation of
function.

Assume, that v1(7), ¥,(7) — are continuously differentiated functions
at the interval [¢t, T]. For the case k = 1 we obviously have

«T

/ i () df™ = Z CJlCJI )

t Jj1=0

where the series converges in the mean-square sense;

T
Cjo = [ W1(t1) gy, (t)dta; ¢y / bi ()dE; iy =1, m.
t

According to the standard connection of stochastic Stratonovich and Ito
integrals with probability 1 we have

J [¢ ]Tt = [¢(2)]T,t + 51{i1=z‘2¢0}/¢1(t1)¢2(t1)dt1- (2.1)
t
On the other side, according to theorem 1
T t2 . .
[alts) [n(tr)de el =y 0 (GG = 1ty L=y ) =
t t J1,J2=
= Z OCJ2]1CJ o 1{21_12750} Z CJlJl (22)
J1,J2= 71=0

The following natural questions take place: is it legal the partition of
limit in two limits in the last formula and is the following equality reason-
able (it proves the possibility of such partition):

T 0
%/ U1 (t1)a(th)dir = jZO Civir- (2.3)
t 1=

Note that, according to (5.36), (5.37) the formula (2.3) (polynomial
case) is right, at least if 1 (7) =t —7, Yo(7) = 1; 1(7) = 1, o(7) =t — 75
D1(7), Yo(T) = t=7591(7) = (t=7)% (1) = L;¢1(7) = 1, a(7) = (t—7)°
and according to (5.49) the formula (2.3) (trigonometric case) is right, at
least if Y1 (1) =t —7, (1) = 1; (7)) = 1, o(r) =t — ;7 € [t, T).

Since if 11(s) = 12(s) the equality Cj,;, = 3C3 is realized, then in this
case the equality (2.3) is a conclusion of Parseval equality.
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2.1 Expansions of integrals of 1st and 2nd multiplicity

From (2.1) — (2.3) it follows:

PHOke= > Cipdie®,
.71).72 0
where the series converge in the mean-square sense.
Let’s prove (2.3) in more general case.
Let’s analyze the function

1
K*(t1,t2) = K(t1,t2) + 51{t1=t2}¢1(t1)¢2(t1); (2.4)
where t1,ty € [t,T] and K (t1,ts) has the form:

_ it a(ta), t1 < ta
Kt tz) = {0, otherwise  hytp €T].

Let’s expand the function K*(t1,ts) using the variable ¢;, when t9, is
fixed, into the Fourier series at the interval (¢,7) :

K*(t,t) = 3 Ci(b)gi(t) (b £1,7T), (2.5)

Jj1=0
where
T

Cj, (t2) / *(t, t2) 5, (1) dt, = /K (t1,t2)@j (t1)dt; =

t

= Ya(t2) /2¢1(t1)¢j1(t1)dt1,

{#;(%)}529 — is a full orthonormal system of Legendre polynomials at the
interval [t, T7.

The equality (2.5) is executed pointwise in each point of the interval
(t,T) according to the variable ¢;, when ¢y € [¢, T is fixed due to sectionally
smoothness of the function K*(¢1,t2) according to the variable ¢; € [t,T]
(to — is fixed).

Note also, that due to well-known features of the Fourier series, the
series (2.5) converges when t; = ¢, 7.

Obtaining (2.182) we also used the fact, that the right part of (2.5)
converges when ¢; = ¢, (point of finite discontinuity of function K (¢1,t2))
to the value

1

5 (K (t2 = 0,0) + K(t2 4 0,15)) = %¢1(t2)¢2(tz) = K*(ta, 1a).
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Function Cj, (t2) is a continuously differentiated one at the interval [¢, T'.
Let’s expand it into the Fourier series at the interval (¢,7'):

Ciults) = 3 Crpnbinlts) (t2 #4,T), (2.6)

J2=0
where

to

T
.72.71 /le t2 QSJz t2 dt? = /¢2 t2 ¢J2 (tQ) /wl(tl)d)h (tl)dtldt27
t

t

and the equality (2.6) is executed pointwise at any point of the interval
(t,T) (the right part of (2.6) converges when to = ¢, 7).
Let’s substitute (2.6) into (2.5):

Kt = 3 3 O ()bn(t) () € 1T (2)
J1=U J2=

Moreover the series in the right part of (2.7) converges at the boundary
of square [t, T2
It easy to see, that putting ¢; = t5 into (2.7), we will obtain:

%fﬁl(tl)%(h) Z Z Cjubj, (t1)bj, (1) (2.8)

=0 jo=

From (2.8) we formally have:

T T
% [ r(t)ds(t)dt = [ ZO > Chnthi (1) by (01)dty =
t t 51=0J2=
o T
Z / .72]1¢J1 t ¢.72 (tl)dtl - ZO C.h]l (29)
1=072=0% J1

Let’s explain the next to last step in (2.9) (the last step follows from
orthonormality of functions ¢;(s) at the interval [¢, T7).

We hayve:
T m T
/. Z 5 ()@ (t)dt — S [ C(t) s, (t)dh | <
t J1=0 J1=0%

dty =

</l

i C (t1)e; (t1)
fi=pi+
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2.1 Expansions of integrals of 1st and 2nd multiplicity

i«mm/M@@@wwum

T
=/ dty <
t |Ji=p1+1
T Oo t
<cf| ¥ / 1 (s)dj, (s)dsej, (t1)| dty; C = const. (2.10)
t |i=pt+1li

Let’s suppose, that function ;(s) is twice continuously differentiated
at the interval [t,T] and {¢;(z)}32, — is a full orthonormal system of
Legendre polynomials at the interval [¢,T]. Then

00 t
> [Ui(9)g5(s)dssy, (1)) =
Jhi=p1+1%
1] & #) —t T+t
=51 S @i+ [ () PudyPi ()], @10
J1—p1+1 1
where z(t1) = (t1 — 5) 75, {¢;(s)}2; — is a full orthonormal system of

Legendre polynomials at the 1nterval [ 1,1].
From (2.11) and the well-known formula

dP; dP;_ . :
Tt g) ~ Tt gy = (2 + DPy(a); =1, 2,
it follows: ,
Z /¢1(8)¢j1(8)d8¢jl(t1) =
Ji=p1+1%
1 (o]
=5 5 {Braem) - Pralet) valtn)-
2 Ji=p1+1
T _ ¢ *0) —t T+t

] Bunil) = P b (S )y Paew) <

<G 5 (PGP E(0) - Bl P ) +
| 2 i) (5575 (Pue(0) — Pa(e(e) -

1
5 (Pasale(t)) = Py (o(0)) -
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Z(tl)

5 | (51 Bea) = Pw) - 5 (Bulo) = Buaw) %

<f (5 ) duf P (e(e)

where Cy — is a constant; 1], ¢] — are derivatives of function ;(s)

- : T—t T+t
according to variable 5y + 5.

From (2.12) and well-known estimate for Legendre polynomials:

, (2.12)

K
r; Y €
Vi1 -y’

(constant K doesn’t depend on y and n) it follows:

| Pa(y) I< (=1,1); n€ N, (2.13)

o0 1

> [ ()64 (s)dses (1)

Ji=p1+1%

<

o0

dim D0 (Pia(2(0)) Py (2(t)) = Pi-a(2(4) Py (Z(tl)))‘Jr

j1=n+1

Cl 9 1 1 1
i j1=%+1 il ((1 — (2(t1))?)> " _/1 (1—92)% (1 — (2(t1))?)" -

< O | iz (P (2(0) Pa(2(12)) — P (2(12)) P (2(00)))| +

< (Cy

+C1 i % ( L T+ Co L 1) <
=m+1J1 \ (1 — (2(81))?)? (1— (2(t1))?)*

1 1 1
< C3 lim (— + —>

+Cy i lz ( : r +C . 1) <
gi=pm+1J1 \ (1 — (2(¢1))?)> (1—(2(t1))?)"

+04((1+ 3 1)(1_(1 4 zi;g

"2 2 1
PT ji=p+1Ji 2(t1))?)? &
where Cy, C1, ..., Cy — are constants.
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2.1 Expansions of integrals of 1st and 2nd multiplicity

From (2.10) and (2.14) it follows:

i:o G (1) (t)dts — 3 /Cgl (t1) s (t1)dta| <

J1=0%

K((1+ & 1>/1(dy+ 5 1/@)<

R W 1— yQ)% ji=p+1J

1 1
SKI( Z _2> _>07

Pl fi=m+1J1

when p; — oo, where K, K{ — are constants.
So, we obtain:

T T
% / VY1 (t1)a(t1)dt = / _ZO Cj,(t1) ¢, (t1)dt, =
t t =
o T T
Z / (t1) by, (t1)dt1 = 20 / 20 Ciois i, (t1) 5, (1) dty =
1=0% J1=0% Jo
o0 o T
Z Z / Chojr @5 (t1) 5y (t1)dtr = ZO Ciji - (2.15)
1=072=0¢ =

In (2.15) we used the fact, that Fourier-Legendre series %0 Cj,j, @i, (t1) of
J2=

smooth function Cj, (¢1) converges uniformly to this function at the interval
(¢,T) and converges to Cj,(t + 0) and Cj, (7' — 0) when ¢t; = ¢, T That is
why we may to write down

/

Relation (2.3) is proven for case of Legendre polynomials.

Let’s suppose, that {¢;(z)}32, — is a full orthonormal system of trigono-
metric functions at the interval [¢,T] and (as above) function v (s) is twice
continuously differentiated at the interval [¢, T.

Using (2.10) we have:

io: CJzJ1¢32 t1)¢31 (tl)dtl - Z /CJ2J1¢J2 t1)¢31 (tl)dtl

Jj2=0 Jj2=0%

T p T
/ Z tl d)]l (tl)dtl ZO/le(tl)d).h(tl)dtl S
t 51=0 J1=0%
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

2 F| = (B 271 (s — ¢) 2751 (t1 — t)
< — P1(s)sin————=ds sin————+
SRR s
t :
271 (s — t) 21 (b — t))
+ | 11(s)cos dt; <
t/ T - T -
<C 7 ( i 1 . 27Tj1(t1 _t)) ¢ (t)—l—
> U1 TS 1
t | \ii=p+1J1 Tt
© 1 (% 2mj(s—t) , 271 (1 — t)
+ — | [ cos s)ds s —
iy (t T—¢ Tt
t
F 2 —1 2 th1—1
— t/sm Wjjlj(it )Qpll(s)ds co W];(i )) dt, =
o f ( > Lo 2math ‘”) b+
=01 —-sm 1
t | \ji=pi+1 J1 T—t
T—-t x 1 p p 27Tj1(t1—t)
— t1) — Yyt
ot 5 (vhe) - wieos

t . .
2 —t 2 t1 —t
—/sin—wjl(s ) 1(s)ds sin—wjl( ! )—

1
t Tt

t :
F 2 —t
—/cos—ﬂjl(s )

dt, <
T —¢ !

"
d
1(s)ds cos T+

27Tj1 (tl - t))

t

T 00
<02/<€+ Z

1
2
t ji=m+1J1

T
1
- ) dtl < 02/ (8 + —> dtl — CQ(T — t)é‘ (216)
t b1

when p; — oo, where C7,Cy — are constant, ¢ — is any small posilive
number. Here we used the fact, that the functional series

© 1 2m71(t1 — ¢
> —sin—ﬂ‘h( 1—t)

=101 T—t

uniformly converges at the interval (¢,7') due to Drichlet-Abel test and
converges to zero at the points ¢t and 7', so we may write down:

© 1 2m91(t1 — t
> —si11—7rjl(1 )

< 2.17
A=p1+1 J T—1 = ( )
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2.1 Expansions of integrals of 1st and 2nd multiplicity

when p; > N(eg) (N(e) doesn’t depend on ¢; and exists for all ¢ > 0).
From (2.16) it follows

)

T 0

| 3 Cit)g,(tr)dtr = > /Cyl t1)@j, (t1)dtr.
t

]1=0 _71 =0 t

Further consideration of this case is similar with proving of relation (2.3)
for the case of Legendre polynomials.

Thus, we proved the following theorem.

Theorem 3. Assume, that the following conditions are met:

1. The function ¥o(T) is continuously differentiated at the interval [t,T)
and the function ¥1(7) is twice continuously differentiated at the interval
¢, T].

2. {¢j(z)}320 — s a full orthonormal system of Legendre polynomials
or system of trigonometric functions at the interval [t,T.

Then, the multiple stochastic Stratonovich integral of the second multi-
plicity

* xt2
TP = [ walts) [ wa(ta)dfVdfS (in,ia=1,...,m)
t t
1s expanded into the converging in the mean-square sense multiple series
J*[¢(2)}T,t _ Z Cjﬁlgj(fl)cj(?),

J1,J2=0

where the meaning of notations introduced in the formulations of theorems
1 and 2 is remained.

Let’s make one remark about multiple and repeated series. For multiple
series when k = 2 we use the following notation:

o0 def b1 P2
: Z iz = py pz—>oo Z z Xz (2.18)
J1,§2=0 J1=0 jo=
but for repeated one we write down:
o0 00 def p1 P2
22 gy, = lim limo >0 30y, (2.19)
J1:0 ]2:0 ]1:0 szO

It is clear, that (2.18) and (2.19) are different things in mathematical
sense. Sometimes series (2.18) is equal to series (2.19) (there is well-known
theorem about reducing the limit to the repeated one). Howewer, usually
series (2.18) not equal to series (2.19).
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s consider one simple example, when series (2.18) is equal to series
(2.19). Let’s put 91(s),12(s) = 1 in (2.4) and consider repeated Fourier
series (2.7) under this assumption. We have:

S Y Chidi ()i (t2) = 3 S Crains (1) (1)

J1=072=0 J1=0 j2=0

S Y Ciudi (t)di(t)] . (2.20)

J1=0 jo=p+1

Let’s suppose, that {¢;(z)}32, — is a full orthonormal system of Leg-
endre polynomials at the interval [¢,T] and p > 1.
Then due to orthonormality of Legendre polynomials we obtain:

T ta
Civiy = [ 3(t2) [ 65, (t1)dtrdty =
t t

_ V2t 1\/21'2 +1(T —1) _/1 P (y)_/l Py, (y1)dyrdy =

ZQQgggﬂpmw@M@—&xmwz

_\/W(T_t) 1 2 _ Tt P
B A v sy e K A

lfjl 7é 0 and

to

T
Chjy = [ $i(ta) [ ¢ (t)dtrdts =
t t

=0

VIREUT=0 [ b )+ 1)y

if j1 = 0, where {Pj(z)}32, — is a full orthonormal system of Legendre
polynomials at the interval [—1, 1].
So, we obtain:

C(T —t)
<
~2/(2p+1)(2p+3)

when p — oo, where C — is a constant.

pr io: Coin 5 (81) $5, (2)

J1=0 jo=p+1
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2.1 Expansions of integrals of 1st and 2nd multiplicity

Therefore in this case we have:

p q
pll)lglo Z Z CJ2J1 ¢.71 (t1)¢J2 (t2) - pll%lo qllglo Z Z J2J1 ¢J1 (tl) ¢Jz (t2)
J1=052=0

J1=0j2=0
(2.21)
Howewer, if we put 11(s),1¥2(s) not identically equal to 1 in (2.4) or
take k > 2 (k — is multiplicity of multiple Fourier series), then we can see,
that equality like (2.21) may be not correct.
Let’s consider another approach of proving the equality (2.3) in the
general case. If we demonstrate, that

S Chn ()5, (10) = 5 (0 (1), (2.2

jl ;j2:0

where the multiple series converges uniformly according to variable ¢; at
the interval [t,T], then integrating the equality (2.22) and using the or-
thonormality of functions ¢;(7) we get the equality (2.3).

In order to prove (2.22) we should refer to the facts taken from the theory
of multiple Fourier series, summarized in accordance with Princeheim.

For each 6 > 0 let’s call the ezact upper edge of difference |f(t') — f(t")]
in the set of all points t’, t” which belong to the domain D, as the module of
continuity of function f(t) (t = (¢1,...,tx)) in the k-dimentional domain
D (k > 1), moreover distance satisfies the formula p(t',t") < 6.

We wz'll declare, that the function of k (k > 1) variables f(t) (t
(t1,..-,tk)) belongs to the Holder class with the parameter 1 (f(t) € C’l( ))
in domain D if the module of continuity of function f(t) (t = (t1,...,tx))
in the domain D has the order O(9).

In 1967, L.V. Zhizhiashvili proved, that the rectangular sums of multiple
trigonometric Fourier series in the hypercube [t, T]* of the function of k
variables converge uniformly in the hypercube to this function, if it belongs
to C%([t, T]¥); a > 0 (definition of Holder class with the index o > 0 may
be found in the well-known mathematical analysis manuals).

It is also well known, that for rightness of the similar statement for
Fourier-Haar series, at least for a two-dimensional case, it is enough to
have only continuity of function of two variables in the square [¢, T]?.

The author thinks, that for double Fourier-Legendre series the simi-
lar formulation will be true, if the function of two variables belongs to
CY([t, T)?). If this condition is not enough, then at least the result will be
correct if the function is constant in [¢,T]? (it corresponds to ¥;(7) = 1;
i = 1,2,3 in the following arguments). In this case we may also to use
theorem 3.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s analyze the auxiliary function:

K'(tt) = { POV 122 nh e )

and demonstrate, that it belongs to C*([t, T]?).
Let’s analyze the increment: AK' = K'(t1,t2) — K'(t},t5), where

\/(tl - tjlﬁ)2 + (t2 - t§)2 <9, (t17 t2)7 (t’{at;) € [ta T]Q'

Using the Lagrange formula for v (¢]), 1o (}) at [min{ty, ¢} }, max{t1, t}}]
and for ¢y (t3), ¥o(t3) at [min{ts, t5}, max{ts, t3}] we will come to the rep-
resentation

[ a(t)n(te), 2t [da(t)in(ta), 8 2 15
AR = { Uitz o 12 ~ Lintaaie, 4 < 6 + 00

Hereafter, it is clear, that the difference staying in the right part of the
last equality is different from zero and equals to

+ (1)1 (t1) a2 (t2) — ¥1(t2)w2(t1)) + O(0) (2.23)

on the set: M = {(¢1,t2) : min{ty, t1+e} < to < max{ty,t1+¢}; 1 € [¢,T]},
where € = (t] — t1) — (t5 — t2) = O(9).

Since we have |ty — t1] = O(d) on the set M, then using the Lagrange
formula to s(t2), ¥1(t2) at the interval [min{¢y,t2}, max{t1,¢2}] and sub-
stituting the result into (2.23), we will get, that K'(t1,ts) € C1([t, T]?).

Let’s expand the function K'(¢1,%s) in the square [t, T]? into the multiple
Fourier series, summarized using the method of rectangular sums, i.e.

n ny LT

K'(tits) = lim 3 3 [ [ K'(t1,t)85, (t1)85, (b2)dtrdta-¢, (t1) 85, () =

n1=0752=0% 3

= m}}ggoo % % <7¢2(t2)¢j2(t2)(f¢1(tl)¢j1 (t1)dt1>dt2+

]1=0 j2=0 t
T

+/¢1(t2)¢j2(t2)</ Vo (t1) by, (tl)dt1>dt2> b, (t1)dj, (t2) =

t
. 1 no
= m}llzrgoo 'ZO 'ZO (Cjzjl + lejz) ¢j1 (tl)d)jz (tg). (2'24)
J1=VUJ2=
Obtaining (2.24) we replaced the order of integration in the second
repeated Riemann integral.
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2.1 Expansions of integrals of 1st and 2nd multiplicity

It is easy to see, that putting ¢; = t5 into (2.24), separating the limit in
the right part in two limits and renaming j7; by 79, 72 by 71, n1 by ny and
ny by nq in the second limit, we will obtain

hr(tr)a(tr) = 2, lim _ZO ZO Claji @5y (t1) b5y (1)
J1 J2

The required equality is obtained.

Let’s demonstrate expansions of multiple stochastic Stratonovich in-
tegrals of second multiplicity using Legendre polynomials, trigonometric
functions, Haar functions and Rademacher-Wolsh functions.

Using Legendre polynomials:

*T
/dfT(m) — mgéu)7
t

*/T(t N t)g/ i (

i1) L)
gO \/gé-l )7

/ / del) ggliz) — lcozl cli) +Z \/4%7_ { ¢l ) _ C@_(il)gi(izl)”_

For system of trigonometric functions:

*T
Farso = =i
t

o~

N

ﬁ\%

*/T(t —7)df") = _M[ i % Car— 1]

r=1

x© 1
g;{ 27’1 T)l 2(r)+

1
T
+\[(C2r 16 —C(gil oo 1)}]

Using the system of Haar functions:

*T
J at = v
t

o

T oo 27"
[e=mare = LS (04 & 5 6,00),

n=0j=

61



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

T i) ety _ T 1 2 o~ (i) plin) _ i) i)
[ [atiagt = =R (e + ¥ 2 (66" = GG+
t ot n=0j=

= = (iz) 1(ir)
+ Z Z Z anjz,nl.h najodN1j1 |

ni,Na= 0_71—]. J2—1
Y N e TR B LNt AN AT
an—22<2< on +2n+1> — ( on —\on) )
_ nitny L (2 —1 R - 1 g1 — 1\2
Cn2j2,n1j1 =22 <<<m1n{ UL + oMma+1’  9my + oni+1 o ony
< {j2—1 jl_l} j1—1>2)
—| max , — X
AL AL WAL
X1 jo—1 -1 j2— o
{max{ ORI }<m1n{ 573 +2n2+1, in +2n1+1}}
B . [ 72 J1—1+ 1 _]1—1 B
min 2n2’ oni 2n1+1 o
Jo—1 1 j—1) ji—1)\?
J— <maX{ 2’”2 + 2”24‘1’ 2’”1 } - 2711 X
X 1{max{ 122"21+2n2+1’ 2"1 }<m1n{ om2 ]21n11+2n11+1 }}+
. [J2 5 J1
-I—((mm{ oy’ 2,“} - 2n1) -

J2—1 I 5n-1 1 71>
_<max{ ona T omrl gm T gmeif g ) )X

where

X1 jo—1
{max{ o) —|—2n2+1, It +2n1+1 }<m1n{ 575 2n1 }}

. ]2 —1 1 ]1 .71
- min 2n2 + 2n2+17 2”1 N 2”1 B
jo—1 ji—1 1 iy’
_<maX{ om om + 2n1+1} - 2n1) X
X 1{max{ 2t ]21"11+2n1+1 }<m1n{ 273 +2n2+1a 3T }}>

, T :
&) = [ go(r)df®, ¢ = {qﬁm( AV, n=0,1,...;5=1,2,..., 2" —
t
are independent as a whole according to lower indexes or if i # [ (i, | =
1,...,m) standard Gaussian’s random variables; i1, i = 1,...,m.
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2.1 Expansions of integrals of 1st and 2nd multiplicity

For the system of Rademacher-Wolsh functions:

*T
[ det = VTG,
t

N

T —t)

t

1<mi<...<mg <o
1<k<o0

*T xs

. . T —t . )
//dfT(u)dfbgw) — T(Cé“)fém—l—
t

t T GGG = )

1<mi <...<mp<oo
1<k<oo

Y G GG ),

1<n1<...<ng; <oo
1<mi<...<my, <oo

1<k ,k2<00
where
B 2m1 1 2mr —1
le---mk = Z (_1)81 ce Z (_1)5kx
s1=0 sp=0

X 1 51 s . s1+1 sp+1 X
{max{2m1 ,...,—27rIEk }<m1n{ ST 3+ 2’2% }}

X min g ey — | mMmaXx PR 5
2m1 2mk 2m1 2mk

B 2m—1 2™k —1 2m —1 2"k 1
Crpenigmuenyy = 22 (=100 30 (=)™ 3 (=1)%... 3 (=1)%
s1=0 sk1:0 ¢1=0 qk2:0

x1 s 5k N 1 q 9k . [l gyt
{mw{ﬁ,,ﬁ}(mln{;ﬁ,,ﬁ—kl}} {max{ﬁ,...,f—é}<mln{%Tl,...,zg—h}}
1 q qk2 s1 skl . . q1+1 qk2+1 . s1+1 Sk1+1
max4 max QTl"”’anz ,max W,...,w—kl <min{ min PIGRER 2"/{:2 ,min CUGRERY kal
: (41 gk, +1 . [s1+1 Sp, +1
X | | min{ min e , min e —
o ok omi ok,

S1 Sk, 2
—maxy ——,..., —
2m1 2mk1
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals
( { { q1 Gk, } { S1 Sk, }}
— | max{maxy —,..., , max s e —
2n1 2nk2 2m1 2mk1
2
S1 Sky
—maX{%, ey kal }) >+

+2 -1 q . . [ s1+1 sp,H1 . . g1+l g, T1
{ma,x{ma,x{ﬁ,...,n—kzz},mm{ ST ""’"1’—/61 <minq min 2171—1,...,2,%—@ , 1

2 2

( ,{sl—l—l skl—l—l} {51 Sk, })
X | min yer.,——— ¢ — MNAXy —, .. X

om My omi’ """ 9myy

1 1
X<min{min{(h+ ,...,Qk2+ }, 1}—
om oy

—max{ maxqy —,..., , min e ;
2m Mk 2m1 2k

T T

& = To()dEP, ¢y = [ S (T)AED; 0 < i <<y
k, my,..., mpy = 1, 2,... — are independent as a whole according to
lower indexes or if p # g (p, ¢ = 1,...,m) standard Gaussian random
variables; i1, 1o =1,...,m.

‘ Apparently, due to its complexity (in comparison with expansions ac-
cording to Legendre polynomials and trigonometric functions), the given
expansions performed using Haar and Rademacher-Wolsh systems repre-
sent more theoretic interest than practical one.

Let’s provide some additional remarks in the context of analyzed prob-
lem.

Note, that the following statement is reasonable.

Assume, that & m, tm, pn;m, m = 0, 1, 2,... — are sequences of
random values, moreover

l.i.m. = l.i.m. = l.i.m. =
Lime &om =G, Lim. &um = pim, Lime &um = pn,

where { — 1s a random value. Then

lim lim M{(&.,, — ¢)*} = lim lim M{(&,., — ¢)*} = 0.

n—0o00 m—0oQ m—00 N—00

We prove this fact as in deterministic case using the inequality: M{(z —
y)?} < 2M{(z — 2)?} + 2M{(z — y)?} instead of the inequality: |z — y| <
|z — 2+ |z — yl.

Assume, that

gn’m — Z Z Cjzj1€§f1)C}§2)7 ¢ = J*[¢(2)]T,t'

J1=0 j2=0
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2.2 About the expansion of integrals of 3rd multiplicity

Let’s take for u,, and p, the following formulas

Z Z 0]2.71 ) 152 and Z (Z lecj ) Ja

Jj2=0 71=0 \Jj2=0

correspondingly.
Actually, since

M{(Eum — )P} = > 3 C2ps M{(Em—p)}= 3 3 O

J2=0j1=n+1 J1=0 ja=m+1

Z ]2.71 S Z J2]1’ Z J2.71 S Z .72.71;

]1_ JI,JQ J2— .717.72—
Z .72]1 = / K2(t17t2)dt1dt2 < 00,
.717.72 =0 [t T]Z
then

lnl_glo Enm = Hm, 1m1_>m gnm = Pn-

Then, using the statement given before, we will obtain

‘]*[ ] Z Z 03211 J2 7 J*[ } Z Z Chh ]1 ]2 7

=0 jo= J2=0j1=

where the series converges in the mean-square sense, i.e. for example for
the first case

2
TL]L%%I_I)%QM{(J [ ]Tt_ Z Z CJ2J1€J J2 > }: 0.
J1=0j2=0

The possibility to generalize theorem 3 to the case of multiple stochastic
Stratonovich integral of any fixed multiplicity £ seems quite natural. But
this problem as we will demonstrate in the next section turned out to be
rather difficult.

2.2 About the expansion of multiple stochastic Stra-
tonovich integrals of 3rd multiplicity. Some rela-
tions for the case of weight functions of general
form

Investigating the problem connected with a possibility to generalize the-
orem 3 for the case of multiple stochastic Stratonovich integrals of 3rd mul-
tiplicity, the author didn’t obtain general results. However, he has noticed
some interesting and useful practical facts.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

In particular, we will show in this chapter, that in the case 1 (7),...,
Yy(T) = 1;41,...,44 =0, 1,...,m and the system of Legendre polynomials
or the system of trigonometric function, generalization of theorem 3 for
stochastic Stratonovich integrals of 3rd and 4th multiplicity is correct.

In addition in this chapter, we will show, that for some combinations of
indexes 11, 19,73 and the functions ¢;(7), ¥a(7), ¥3(7) of polynomial type
or even for some more general smooth functions, generalization of theorem
3 (case of Legendre polynomials) for stochastic Stratonovich integrals of
3rd multiplicity is also correct.

We will also analyze the more general situation for which using the
formulas, obtained in this section, we may formulate sufficient conditions
of correctness for generalization of theorem 3 for stochastic Stratonovich
integrals of 3rd multiplicity in more general case using the terms of number
series convergence.

So, let’s try to develop the approach described in the previous section
for multiple stochastic Stratonovich integrals of 3rd multiplicity.

Let’s write down the relation connecting the stochastic Stratonovich and
Ito integrals of 3rd multiplicity:

e (3) ! / i (is)
TNy = T[]y + il{ilziQ}/¢3(t3)/¢2(t2)¢1(t2)dt2dft33 +
t

t

1 T t3 .
o Lt [ a(ts)alts) [ (t)dfi ds, (2.25)
t t

which is correct with probubility 1 and (1), ¥2(7), ¥3(7) — are contin-
uously differentiated functions at the interval [¢, T7.
From here we see, that there are the following particular cases:
11, %9, 13 are pairwise different;
1 = 19 7 13;
1 7 g = 13;
i1 = 13 7# 19
11 = 19 = 13.
Here we propose, that 71,49,i23=1,..., m.
It is clear, that in the first case multiple stochastic Stratonovich and
Ito integrals are simply the same. It also relates to the any multiplicity &,
therefore we may use theorem 1 for these integrals.
Let’s analyze the second particular case.
From theorem 1 if 47 = i3 # 13 follows, that

TN = X 00j3j2j1< RGN - 1{1'1:]'2}@(;3))'
J1,J2,)3=

i o
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2.2 About the expansion of integrals of 3rd multiplicity

If we could rewrite the last equality in the form

JWre= Y CipnGl GG - > Ciojui G5y
J1,J2,53=0 J1,j3=0

and could demonstrate, that in the mean-square sense

t3
S Gl / s (ts) / o(t)ehn (1) dty dE) (2.26)
J1,J3=0
then we will obtain
00 3 .
TN = > Ongml lH ¢ iy = iy # i3), (2.27)
Ji,32,J3= =1

where the series converges in the mean-square sense.

The author doesn’t have a proof of equality (2.26) in the general case
(leaping ahead we can note, that this equality is true in some practically
important cases: theorems 4 — 6). We will only demonstrate here, that

t3

T
> S Chindl = 5 [ uslt) [t n(e)dndt,  (2.29)

J3=0j1=0

where the series Z converges in the mean-square sense, and the series Z
J3=0 71=0
converges in the common sense.

In accordance with the Ito formula, the last equality may be rewritten
in the following form

J3=0751=0 t

T T '
Z Z CJsth = %/¢1(t1)¢2(t1) /¢3(t3)dft(;3)dt1-
t1

Let’s show, that

sUs(ts)(t)e(th), 1 < ts
t17t3 0 t1 > 13 =

s¥s(t1)Y ( )2(t), ti=t3

=5 5 Canada(n)di()64(5), (2.29)

where t1,t3 € [t,T] and the convergence of series according to t; and t3 is
uniform at the intervals of continuity of expanded functions.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s analyze the auxiliary function

P3(ts)a(ta)i(t), 1 <ta<t3
K5(t1,ta,t3) = § 3(t3)1(t)a(t), te <ty <ts, ti,to,t3 € [t, T
0, otherwise

Let’s fix t1,t, and expand the function Kj(t1,ts,t3) using the variable
t3 at the interval [t, T'] into the Fourier series:

o T
Ky(ty, o, t3) = .ZO<1/)1(751)¢2(152) /¢3(t3)¢j3(t3)dt31{t1<t2}+
J3= to

T
o (t1)a(ta) [ s(ts)dy, (ts)dtsL iy, —p)+

to

T
e (t2)a(t1) [ ¢3(t3)¢jg(ts)dt31{t2<t1}></5j3(t3) (t3 # 1, t2).  (2.30)

It is easy to see, that the function staying in the parentheses looks as
follows

t) W, (t2), t1 < to
K, (t1,t Yr(h) W, ; ts)¢j, (ts)dt
.73( 1, 2) {¢1(t2) ]3(t1) to < t1° ( ¢2 /77[)3 3 ¢J3 3) 3.

Therefore, this function belongs to the Holder class C1([t,T]?) (see the
previous section). Let’s expand it in the square [t,T])? into the multiple
Fourier series, summarized according to Princeheim and substitute the re-
sult into (2.30):

o0 D1 D2

Ké (th la, t3) = Z lim Z Z ( Jajedr T CJ3J1]2) ¢.71 (t1)¢32 (t2)¢]3 (t3)

A — A
J3=0 DP1,P2 6. 9) ji= 0 .72 0

Thinking t; = t2 in this equality, which is correct if t3 # t1, t2, we get
(see the previous section):

1 0 0
Kt t, ts) = _ZO D> 00j3j2j1¢j1 (t1) ), (t1)dj, (t3)  (ts # t1)-
J3=Y J2,1=
Let’s analyze the auxiliary function

(3(t3)a(t2)n(ty), t1 <ta <13
¢3(t3)¢1(t2) (t1) ty <t <t3
(t3)¢2(t2)¢3(t1), t3 <ty <t
Pa(ts)hr(t2)Ys(th), ta <t3 <t




2.2 About the expansion of integrals of 3rd multiplicity

Let’s expand this function in the cube [t, 7] into the multiple Fourier
series, summarized according to Princeheim

K4(t1)t2)t3) nl,ng,n3—>oo Z Z Z J3J2]1 H QS]l (tl) (231)

0 J2 0 _]3_
where
(1) 3
Cj3j2j1 - / Ka(t1,t2,13) ll_[l ®i (t)dtdtadls.
[t,T]3 =

The function Ky(t1,ts,13) is selected in such manner, that after using
the property of additivity of Riemann integrals and usage of integration
order replacement in these integrals we could get the equality:

1
O i = Chisis + Cisiusa + Cisiis + Cisiois + Ciujais + Chigoa- (2:32)

Substituting (2.32) into (2.31), proposing in the obtained equality, that
t1 = t9 = t3 and separating the limit in the right part of obtained equality
into 6 limits we get:

SVt = T Con ()6 (1) (1),
115J2,)3=

Since

§ Cianir 032 (1) 05, (t1) =

J1,J2=0

R (t1,0) = 5t () a(tn) [ ()8, (s)ds

N | —

and because of the well-known statement about reducing the limit to the
repeated one we come to (2.29). The equality (2.29) is proven.
Let’s analyze

1 r (i) O plin) 2 ?
M{<§¢1(t1)¢z(t1) [ st — Y- ¢ S Cj3j2j1¢jl(t1)¢j2(t1)) }:
t1

Js=0 J1,J2=0
T n . ' 5
= M{(/(Kz(tl,m) - j;o b, (t3) jh%:() Clisjojs @ir (t1) Pj, (tl))dft(:3)> } —
T
- /<K2 thtg) Z ¢J3 (t?’) Z OJ3JzJ1¢J1 (tl)d)h (tl)) dts.
J3=0 J1,J2=0

The right part of the last equality converges to zero if n — oo because

of uniform convergence of the series according to t3 € (¢,7T), t3 # t1 (¢ is
fixed).
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

So, in the mean-square sense
o0 . 00 1 T .
> 67 3 Couini ()6 (0) = ¥n(ta)ihalty) [ s(ta) el
J3= J1,J2= t1
Considering Parseval equality we have

{(/ > ¢ io: Ciaois $ir (£1) Bjy (1) dt1—

t J3=0 J1,§2=0

T ., ) 00 ?
_ / IRCLEDY Cj3j2j1¢j1(t1)¢i2(t1)dt1) }S
t

Jj3=0 J1,52=0

T - 2
<L[ ¥ ( 2 stjzjl¢j1(t1)¢j2(t1)) dt =
t J

3=n+1 \j1,j2=0

T n 00 2
L/( vi(t)¥i(h) /771’3 (ts)dts — 3. ( 2 Cispin®in (t1)¢j2(t1)> >dt17
t

J3=0 \j1,j2=0

where L. — is a constant.
Because of continuity (here ¢;(7) are assumed to be continuous) and
nondecreasing of members of functional sequence

n 00 2
wnlt) = 3 (3 Chpd(t)dn(t))
J3=0 Nj1,2=0

and because of the property of continuity of the limit function
1 T
u(tr) = LW (0w (1) [ ¥3(ts)dts
t1

according to Dini test we have a uniform convergence u,(t1) to u(t1) at the
interval [¢t,T] (t1 # ts3, tsisfized).

That is why, performing the passage to the limit under the sign of inte-
gration in the last equation we obtain in the mean-square sense

2 CJ / Clajujy B (t1) @5, (81)dbr = /@bl (t1)t2(t1) /¢3 (ts) dftZ3 dty.
Jj3=0 t Ji,52=0

Replacing the sign of integration in the left part of this equality and
the sign of the right series (that is possible due to uniform convergence of
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2.2 About the expansion of integrals of 3rd multiplicity

the last one according to ¢; at the interval [¢, T, t; # t3, tsisfized). and
taking into account orthonormality of functions ¢;(7), we come to (2.28).
Let’s analyze the third particular case.
From theorem 1 if 4; # i3 = i3 follows, that

o . .
J[¢(3)}T7t = ' Z Cj3j2j1< ,7(11) ](21) ,7(3 ) 1{]2 J3}C] )
J1,J2,j3=0
Again, if we could write down
J[¢(3)}T,t = Z Cj3j2j1 J(fl) j(Zl) 3(23) - Z CJ3J3J1 ()
j17j27j3=0 ]17]3—0

and could demonstrate, that in the mean-square sense

> Cijidl / V3 (t3)¢ba(ts) / 1 () dfLVdt, (2.33)

.717.73—0

then, because of connection between stochastic Ito and Stratonovich inte-
grals we could get:

o0 3 .
T = Y Cig ILGY (ia # 12 = is),
j17j27j3:0 =1
where the series converges in the mean-square sense.
Let’s only demonstrate here, that in the mean-square sense

> 3 Ciguidl / s(ts)a(ts) / (b)) dts, (2.34)

J1=043=0

where the series E converges in the mean-square sense, and the series E
J1=0 J3=0
converges in the common sense.

Let’s demonstrate, that

sUs(ts)a(ts)n(th), t1 < ts

Ks(ti,t3) = 0, to>ty =
Lt (t)ve(t), t=ts
- i i Cj3j2j1¢j1(t1)¢j2(t3)¢j3(t3)a (2.35)
J1=0 j2,j3=0

where t1,t3 € [t,T] and the series converges uniformly according to ¢; and
t3 in the intervals of continuity of expanded functions.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s analyze the auxiliary function

Y3(ts)a(t2)r(t1), t1 <ty <t3
Ki(t1,ta,t3) = § ¥s(to)ba(ta)n(t), t1 <tz <ta, t1,ta,t3 € [t,T].
0, otherwise

Let’s fix t3,t3 and expand the function Kj(t1,ts,t3) using the variable
t1 at the interval [t, T'] into the Fourier series.

00 t2
Ks(t1,t2,t3) = 'Zo<¢2(t2)¢3(t3) /¢1(t1)¢jl (t1)dt11 g, <ty +
= t

to

+a(t2)¥s(ts) [ Whi(0) s, (t1)dt1 Lgtymiy +

t

+93(t2)¢2(t3) /3 G (tl)dtll{t3<t2}> i, (t1) (b #ta, t3).  (2.36)

It is easy to see, that the function staying in the parentheses looks as
follows

P3(ta) Wy, (ts), t3 <ty ' N

Therefore, this function is related belongs to the Holder class C([t, T?)
(see the previous section). Let’s expand it in the square [t,T]? into the
multiple Fourier series, summarized according to Princeheim and substitute
the result into (2.36):

{¢3(t3)\1’jl(t2); LSl g (5) = (s) / bi(th)y, (t1)dts.

o0 P2 DP3
Kty ta,ts) = 3> lim 37 37 (Clyjojy + Clhajoji) $ir (t1) b5, (t2) 85, (L)
=P =0 =0
Taking ¢t = t3 in this equality, which is correct if ¢ # to, t3, we get (see
the previous section):

1 o0 o
St ta,ts) = 30 X Clupgidii ()95 (13) 94 (3) (01 7 ta)-
J1=0 j2,j3=0
The equality (2.35) is proven. The following proving of relation (2.34)
is similar to the case which was investigated earlier.
In the fourth particular case the considered stochastic Ito and Strato-
novich integrals with probability 1 will be the same, but as it follows from
the theorem 1 the series

s S )
Z Cj3---j1 H le )
J3,J2,J1=0 =1
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

generally speaking, may not converges to stochastic Stratonovich integral
J* W@ when 4y = i3 # .

In this case let’s use the theorem 1 and formula (2.25) if 4; = i3 # .

Nevertheless, close connection of formulas (2.26) and (2.28), as well as
formulas (2.33) and (2.34) is non-random. In particular, in the following
sections we will demonstrate, that for the case ¥1(7), ¥2(7), ¥3(17) = 1
and the system of Legendre polynomials or the system of trigonometric
functions the formulas (2.26) and (2.33) passes to formulas (2.28) and (2.34)
correspondently.

Besides, let’s demonstrate, that within the frames of the mentioned
case the generalization of theorem 3 for multiple stochastic Stratonovich
integrals of 3rd multiplicity is correct.

2.3 Expansions of multiple stochastic Stratonovich
integrals of 3rd multiplicity, based on theorem
1. Case of Legendre polynomials

2.3.1 The case ¥1(7), ¥a(7), ¥3(7) = 1; i1,49,i3=1,...,m

Assume, that ¢1(7), ¥2(7), ¥3(7) = 1 and {¢;(z)}32, — is a full or-
thonormal system of Legendre polynomials at the interval [¢, T7.

In this section we will prove the following expansion for multiple stochas-
tic Stratonovich integral of 3rd multiplicity:

T *t3 *ta . . . 00 . . .
//dft(lll)dft(;2)dft(3’3) — z CJ-BijlCJ(fl)CJ(f)CJ(;S), (2.37)
t t

J1,J2,73=0

*

——

where the series converges in the mean-square sense, its coefficients has the
following form:

T s S1
Cj3j2j1 = /¢j3(3)/¢j2(31)/¢j1(32)d32d31d3
t t t

and ’il,ig,’i3 = 1,...,m.
If we prove the following formulas:

b1

D3 3
Lim. Cisinir G Cmg)_ Tt5<g g)
P1,p3—00 .20]32 J3J1] J1]Z3—0 J3J1) 4( ) \/— 1

(2.38)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Li.m, pi > CmiGi 3 Crptht! = 3=t (¢ = 2l
P1,p3—00 =0 jom JaJsi 5o J333J15)1 4 0 \/—(1 )7
2.39
ook ) def (i2)
llr_r)loo Z Z CJ1]331 = Z Cj1j3j1 J3 =0, (240)
p1,p3 1=0 j3=0 j1.73=0

then in accordance With theorem 1, formulas (2.38) — (2.40), standard
relations between multiple stochastic Stratonovich and Ito integrals, as
well as in accordance with formulas (they also follows from theorem 1):

1 T T _ 1 s i
5//d8dfr(l3) = i( t)> (Co + 7(1 ) w. p. 1,
bt

1 T 7 _ 3 1 i

L dfgzl)dT: ! 5( ) _ W) w.p. 1
we will have

T t3 to 00 . .

/ / / df e df = Y O P -

t t t j17j27j3=0

1T ' 1T
g | [ 506~ Loy [ [ attar

It means, that the expansion (2.37) will be proven.
At first, note that the following relations result from formulas (2.28),
(2.34)

1 T
z zcm L[ —pyaet = Ly (g g%), (2.41)
2/ ; 7
1 T 1 . 1 T
Z Z OJSJBJI = 5//dfs(l1 5/ —5)df") =
=073=0 t ot t
L [ agt [ i) = Lop_pd (e _ L L 6
= | (T= fll _ fZl Z(T—%)2 S G Y el 1 | —
(=0 [+ [mo)ae) = 5=t () = 56 - 5 =)
1 3 (e _ 1 (n))
= —(T —1)2 - —= . 2.42
(=0} (¢ -] (2.42)
The series 3. in the left part of the formula (2.41) and the series > in

J3=0 J1=0
the left part of the formula (2.42) converges in the mean-square sense. The
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

number series % in the left part of the formula (2.41) and the number

Jj1=0
series %0 in the left part of the formula (2.42) converges in the common
sense.”
Let’s examine (2.41). It follows from (2.41), that
0 1 s
Z 00j1j1 = —(T — t)Q, (243)
J1=0 4
S C ! (T —t)* (2.44)
1 .1 .1 = = - 27 *
=0 J1J 4\/3
> Cijjy =0, j3 > 2. (2.45)
Jj1=0

Let’s check formulas (2.43) — (2.45) by direct calculation. Let’s examine
(2.43). We have

o

T—t
0000=7( 6 ) )

T s s1
Cojljl = /¢0(3)/¢j1(31)/¢j1(82)d82d81d8 =
t t t

= %/%(8) (/8 ¢j1(81)d81> ds; 12> 1. (2.46)

Here ¢;(s) looks as follows:

¢>j(x):\?fQJ%((S_T;t)TQ_t);jZO, (2.47)

where Pj(z) — is a Legendre polynomial.
Let’s substitute (2.47) into (2.46) and calculate Cy;,j,; 7 > 1:

. z(s) 2
21 +1 T —t
COjljl = ! g/(/ le (y) 9 dy) ds =
N

2

. — T z(s)
_Cnt DTt ( ! (P;m(y)—P;ll(y))dy) ds =

(Pj+1(2(5) = Py-1(2(s)))" ds, (2.48)
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T+t) 2 and we used following well-known properties

where z(s) = (s — Tf) 2
of Legendre polynomials:

1 ' / .
Pi(y) = 511 (Pi(v) = Piy(y); 4> 1,

Pi(=1) = (-1)%; j > 1.

Also, we denote %(y) dof Pi(y).
From (2.48) using the property of orthogonality of Legendre polynomials

we get the following relation
3 1

- : 2 _
C10.71.71 T 16 2]1 + /1 ]1+1 + P l(y)) dy -

_(T—t)%< Lo 1 )
821+ 1) \251+3 25 -1/’

where we used the relation

Then
o0 (T —1)? (T—t)% 1 © 1 )
Cojujr = + et Y =
jlzz:o o 6 Z 1 (251 +1)(25: + 3) jlzz:l 452 -1
(T—t% —t%(7 1 = 1 )
— _+27. —
6 42—1 j1=14]12_1
_(T—t)%+ (1 1+1)_(T—t)%
B 6 8 2 3 2/ 4

The relation (2.43) is proven.
Let’s check correctness of (2.44). Represent C1j,j, in the form

1 T s 2
Cljljl = §/¢1(3) (/ d)jl (81)d81> ds =
t t

3 2
T —1)2(2 +1 :
( g (1é1 / (/ (n dyl) dy; j1 > 1.
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Since functions

2
(/ '!/ldyl) ;1 =>1
are even, then, correspondently functions
y 2
Pi(y) ( / le(yl)dyl) dy; j1>1
=1
are uneven.

It means, that Cy;,;, = 0; 71 > 1.
Besides

Njw

'I—‘\b—l

N

V3(T = 1)
16

(T —t)

Cio0 = 1)2dy = ~——~=.
100 y(y +1)°dy ™G

Then

N

X (T —1)
Cij.5, = Croo + Cijj, = —F——
le n jlz=:1 “ 4\/§

The relation (2.44) is proven. Let’s check correctness of formula (2.45).
We have

s 2
jlzzo i = 2/ Bjals (t/ ¢jl(81)dsl> ds; js3 > 2. (2.49)

It is easy to see, that the integral fsgbjl (s1)dsy is a Fourier coefficient for
t

the function

1, s1<s
K{(s1,5) = {0 o‘lchervvlse s1,8 € [t,T).

The Parseval equality in this case looks as follows:

2 T s
(/ Pir(s1) dSl) = [K*(s1,5)ds = [ds1 = s — ¢. (2.50)
=0 4 )

1=

Taking into account the nondecreasing of functional sequence
2
un( (/ ¢Jl S1 dSl) )
J1=0

continuity of its members, as well as continuity of limit function u(s) = s—t
at the interval [t, T'] we have according to Dini test the uniform convergence

7
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of functional sequence u,(s) to the limit function u(s) = s—t at the interval
¢, T].

Then from (2.49) and (2.50) using the uniform convergence of functional
sequence uy(s) to the limit function u(s) at the interval [¢,7] we have

2
]3]1]1 = /¢]3 (/ ¢]1 S1 dsl) ds =

j1 1=
= /¢J3 t)ds = 0; js > 2. (2.51)

Obtaining (2.51) we used the well-known feature of Legendre polynomi-

als:
1

[ Piy)ytdy =0; j > k. (2.52)
“1

The relation (2.45) is proven.

Let’s prove the equality (2.38). Using (2.44) we get

D1

p3 i) (T ) (i) p1 o p3
Z Z CJ3J1J1 Z 003131C0 \/— Cl + Z Z Cmm

=0js= J1=0 =0 j3=2

i i) (T —t)F gy | Lo M2 (i)
= > CojiiiGo Wi =G+ > Y CuinGL (2-53)

J1=0 j1=0 j3=2,j3—even

Since
2
(T —1)2(21 + )23+ 1 | Y
Ciyjus = T [ Pu) | [ Pi(wn)dy: | dy
-1

and the degree of polynomial

o)

equals to 251 + 2, then using (2.52) we get Cj,j,5, = 0 for js > 251 + 2. It
explains the circumstance, that we put 277 + 2 instead of ps in right part
of the formula (2.53).

Moreover, the function
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is even, it means, that the function

y) (/y By, (yl)dyl)

is uneven for uneven j3. It means, that Cj,;;, = 0 for uneven j3. That is
why we summarize using even j3 in the right part of the formula (2.53).
Then we have

D1 2j1+2 . 2p1+2 41 .
XY Cua@l= X L Gy =

J3J1J15)3 T 13191573 —
j1=0 js=2,js—even js=2,js—even j, “ia=2

2p1+2

— Z Z CJ3J1J1 : (2-54)

J3=2,jz3—even jy =
We replaced JST_Q by zero in the right part of the formula (2.54), since
Cj3j1j1 =0for0< 51 < '%_2
Let’s put (2.54) into (2.53):

[M[S]

p1 o P3 (i) ( )
Z Z 033]1]1 Z 00]1_714-0 4\/— Cl

0]3 0

2p1+2 21

+ Z Z 0331131 : (255)

J3=2,jz—even j1=

It is easy to see, that the right part of the formula (2.55) doesn’t depend

on p3
2
1 (i3)>
— O,
3C1

If we prove, that
(2.56)

+
Sl

im M{ (3 ¥ ¢ L — o) (¢
p11—r>%o 20]320 VEY I o Z( o ) (CO
then the relaion (2.38) will be proven.

Using (2.55) and (2.43) we may rewrite the left part of (2.56) in the

following form:
2
. p1 T — ¢ 2p1+2 D1
lim M {( Z COjljl - ( ) ) COZ3 Z Z CJ3J1]1 ) } =
=0 J3=2,j3—even j1=0

pP1—00

e

. pL (T —t)2 _ 2p1+2 2
= lim (Z C0j1j1 - T) + lim Z Z 0333131) =
=0

p1—00 j3=2,j3—even \j1=0
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2p1+2 2
= p}% > Z Cjwm) . (2.57)
J3=2,53—even \j;=0

If we prove, that

2p1+2 2
p}I_E%O > Z CJ3J1.71) =0, (258)
j3_2,]3 even 1 =0

then, the relation (2.38) will be proven.
We have

2p1+2 j21 2
Z Z Cj3j1j1 =
j3=2,j3—even j1:0

2

2p; +2 T 2
-4 | pi (/ bis(s) 2 (/ 5, (s1) dSl) dS) =
J1

4 J3=2,j3—even \}%

-1 (/ 85.(5 (<s—t>— > (/ qul(sl)dsl)?)ds):

Jjz=2,j3—even \} Ji=p1+1

2
2p1+2

21' > (7@3() (/qﬁgl 81d81>2d8) <

4 J3=2,j3—even \} Ji=p1+1
1 w2 (T o [ 2 \?
<3 S (1ol £ (Jouspas) o) o s)
J3=2,jz3—even \} Ji=p1+1 \}

Obtaining (2.59) we used interrelations (2.50) and (2.51).
Then we have

(j¢j1(81)d81)2:(T_t 2j1+1) (/ ) —

z(s) 2
- Q_]T (/1 1+1 3{1—1(?J)) dy) =
T—1t )
= 15+ 1) Dt () = P (+(9))
T—1 )
- m(P1+1( 2(s)) + Pj_1 (2(s))) (2.60)
where z(s) = (s — T) 72,
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

For the Legendre polynomials the following well-known estimation is
correct: %

NoES IR
where the constant K doesn’t depend on y and n.

The estimation (2.61) may be rewritten for the function ¢,(s) in the
following form:

| P.(y) |< y€e(—1,1); ne N, (2.61)

|¢ (s) |< 2n+1 K 1 -
" +1 T —¢ 1
! (1- (-5 )
K 1

, Ky =KV2; se(t,T). (262

T (-5 )

Let’s estimate the right part (2.60) using the estimation (2.61):

< 2 T _¢ K2 K2 1
(t/ ¢j1(51)d51> < 2(251 + 1) <j1 + 2 - J1 ) (1- (z(s))Q) )
(T — t)K*? 1

271 (1—(2(9))?)

where z(s) = (s — 5) 74,

Substituting the estimation (2.63) into the relation (2.59) and using in
(2.59) the estimation (2.62) for | ¢;,(s) | we get:

N =

< ; s € (t,T), (2.63)

D=

2p1+2 p1 2
> (Z Cj3j1j1> <

j3=2,j3—even j1:0
2
(T —)K*'K?  t2 | ] ds © 1
< 16 : Z / NG X S| =
j3=2,js—even | } (1 _ ((s _ %) TL—t) >4 ji=p+1Ji
2
T —t)3K'K? ) ([} d © 1)’
_ ) i(p1+1) /7?/§ ( )y ._2) _ (2.64)
64 el (1 — y2)4 ji=pi+1J1
Since
1 dy
S (1 —y?)
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and .
S| v 1
D> s /—2 =00 (2.66)
hi=p+1JT
then from (2.64) we find:
2p1+2 2 C(T =t 3 1
> Z Cmm) < ( )2(p1 +1) — 0 with p; — oo, (2.67)
Js=2,js—even \j1=0 b1

where the constant C' doesn’t depend on p; and T — ¢.
From (2.67) follows (2.58), and from (2.58) follows (2.38).
Let’s examine proving of the equaity (2.39). From (2.42) we get

00 1 .
> Cigjso = 7 (T = 1)%, (2.68)
J3=0
i O = L(T £)?, (2.69)
20 VENEY 4\/3 :
O .
Z Cj3j3j1 = 0, n > 2. (270)
J3=0
Let’s check formulas (2.68) — (2.70) by direct calculation.
Let’s examine (2.68). We have
(6.¢] o
>~ Cisjso = Cooo + 3= Cligjio;
J3=0 Js=1
T —1t):
Cooo = = ) ;
(T—1?2 [/ 2
Cj3j30 = m—/l (Pj3+1 (y) + Pjs—l(y)) dy -
T —t)> 1 1
:()< + );szl.
8(2j3+1) \2j5+3  2j3—1
Then
o0 (T —1t)? (T—t)%(J 1 © 1 )
Clajio = - . ——+ ) — =
7 0= S S @ D)@t 8) g1
T — ) T — ) 1 00 1
RGECNCEUNE SRR S
6 8 js=1 4]3 —1 3 — jg 1
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Njw
N0
N0

(1 1 1) _(T—1)

(T -tz (T-1)
6 i 8 2 3 T 2 4
The relation (2.68) is proven. Let’s check the equality (2.69). We have

T

33J3J1 / )/S¢j3 (31) 7¢j1 (82)d82d81d8 =
t t

t

T T
/ (s2) d82/¢]3 (s1) dsl/q’) (s)ds =
t 52 S1

= %/%‘1(52) (/ %(Sl)dsl) dsy =

s 2
T —1)2(2j3+ 1)V2j1 +1 | 1 .
_ (T —t)3( ]316 )V251 /pﬂ (/ Pjg(yl)dyl) dy; j3 > 1. (2.71)
Y

Since functions

. 9
(/ Pj3(yl)dy1) ;73> 1

are even, then functions

Pi(y) (/ Pj3(y1)dy1) dy; js > 1

Y
are uneven.
It means, that Cj,j,1 = 0; j3 > 1.
Moreover
V3(T —t)2 T—t 2 (T —t)?
Coor = y)2dy = - 1)
001 = /1 y(1 Yy = 1 \/§
Then ,
o0 o0 (T —1)2
j;o Cjyis1 = Coor + j;l Claja1 = e

The relation (2.69) is proven.
The equality (2.70) may be proven similarly to (2.45). We have

00 © 1 T T 2
> Ciojin = 22 5 | 6i.(s2) ( / ¢j3(81)d81) dsy =
0 J3=0 4% $2

J3=

83



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

1 T 00 T 2
_ 5 /¢Jl(32) Z (/ ¢j3(81)d81) dsy =
t J3= S92
1 T
B §/¢jl(32)(T — 89)dse = 0; j1 > 2, (2.72)
t

where we used the Parseval equality in the following form

2 T T
(/ b, (s1 dsl) = /K2(51,52)d51 = /d81 =T — s9, (2.73)
Jj3=0 t $9

S2

. 1, So < 81 .
K (s1,82) = {O, otherwise * 1252 € [t,T]

and the fact, that the series in the left part (2.73) converges uniformly
according to Dini test. The relation (2.70) is proven.
Using the obtained results we have:

Mw

b B i1) (T_t) Z1 b 2
Z Z 0333331 Z CJ3]30C0 - 4 \/— + Z Z CJsth =

J1=073=0 Jj3=0 J3=071=2

P3 (“) (T ) 11 D3 2j3+2 (11)
= > Cjjoo " — W ———G + > > CuunG (2.74)

Jja=0 J3=0 j1=2,j1 —even
Since

3 2
T —1)2(272 + 1 \/2 +1 : 1 )
= (T = )25 2 / (/ szs(yl)dyl) dy; 73 > 1,
Yy

Cj3j3j1 16

and the degree of polynomial

(/ 13j3 (yl)dyl)

equals to 2js + 2, then using (2.52) we get Cj,j,;, = 0 for j; > 253+ 2. It
explains the circumstance, that we put 2j5 4+ 2 instead of p; in the right
part of the formula (2.74).

Moreover, the function



2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

is even, it means, that the function

y)(/fﬁxyﬂdyq

is uneven for uneven j;. It means, that Cj,;,;, = 0 for uneven j;. It explains
summation of only even j; in the right part (2.74).
Then we have

D3 2j3+2 (i1) 2p3+2 D3 (i)
Z Z Cj3j3j1<j1 = Z Z C]3J3J1 le =
j3=0 j1=2,j1 —even J1=2,j1—even j, _J1 2
3 2
2p3+2 D3

- Z Z 0.73.73.71 . (2-75)

jl 2,j1 evenj3 =0

We reptaced %‘2 by zero in the right part of (2.75), since Cj,;,;, = 0 for
0 < j3 < 172
Let’s substitute (2.75) into (2.74):

N

D1 p3 11 T t
Z Z C.73.73.71 Z CJ3J3OCO - ( 4\/—) C( )‘|‘

=0j3=0 J3=0

2p3+2

+ Z Z CJ3J3J1 : (2'76)

J1=2,j1—even j3=0
It is easy to see, that the right part of the formula (2.76) doesn’t depend

on pi.
If we prove, that

L 1 s [ G 1 2
lim M{(Z Z C]3J3]1 )_Z(T_t)§ (C(l)_%cl( )>) }_0,

p3—00 j1=0 j3=0
(2.77)
then (2.39) will be proven.
Using (2.76) and (2.68), (2.69) we may rewrite the left part of the for-
mula (2.77) in the following form:

3 (T )% ; 2p3+2 3 2
1 —
ph_r)réo M Z Cjyjs0 — Co > > 0.73.73]1 =
3 J1—2;J1 even j3=0

2p3+2

2
+ lim Z Z 0333331) =

J1=2,j1—even



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

2p3+2

2
= lim > Z CJ3J3J1) )

P30 4 9 i —even

If we prove, that

2p3+2 2
li =0 2.78
p31—r>%o 1= 27]; oven Z CJ3J331) ) ( )

then the relation (2.39) will be proven.
From (2.71) we get

2p3+2 D3 2
Z (Z Cj3j3j1> =

j1=2,51—even \j3=0

2ps+2 T 2 2
— 1 . pz_'- (/ ¢j1(82 . (/ ¢]3 81 dSl) dSQ) =
J3=

4 Jj1=2,j1—even |\ % So

2

— 1 2%'2 (/ ¢j1(82) ((T — 32) — i (/ ¢j3(81)d81) ) d82) =

4j1=2,j1—even t J3=p3t+1 \$s
2
1 2p3+2 T 00 T 2
~ > /¢jl(32) > /¢j3(81)d81 dso| <
J1=2,j1—even \ Js=p3+1 \sy

j1=2,j1—even \ % J3=p3+1 \s3

<K (/|¢j1<sz>| > (/ ¢j3<51>d31) d) (2.79)

In order to get (2.79) we used the Parseval equality (2.73) and relation

(2.72). Then we have
T 2
(/ ¢j3(81)d81) =

_T-v P (e
= Sy (Po (+(52)) = Pyt (+(52)
< gy (Phon (2(62) + P (+(52)

. Tt <K2 +K2>
2(2j3+1) \Us+2  Js (1—(2(32))2)%
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(T —t)K? 1
< 5 ; s € (t,T), (2.80)
5 (1 (2(s2))%)’
where z(s9) = (82 — %) T2_t

In order to get (2.80) we used the estimation (2.61).
Substituting the estimation (2.80) into relation (2.79) and using in (2.79)
the estimation (2.62) for | ¢;, (s2) | we get:

2ps+2 Ps 2
z Z Cj3j3j1 <
J1=2,j1—even \j3=0

2
T—t)KiK?2 w2 | T ds o 1
<( 1)6 1__2.Z_een / T 2 2%'—Z+1E —
=201 t (1 _ ((5 — T) T——t) ) J3=Dp3
2
T — 3 KAK? 1 1 d o 1)\2
_ (-1 f(ps +1) /7?;3 ( 5 '_2) | (2.81)
64 o1 (=92t js=p3+1J3
Using (2.65) and (2.66) from (2.81) we find:
2ps+2 2 C(T — +)3 1
> 2 CJ3J3J1> < ( ;2(293 +1) — 0 with p3 — oo, (2.82)
J1=2,j1 —even 3

where the constant C' doesn’t depend on ps and T' — ¢.

From (2.82) follows (2.78) and from (2.78) follows (2.39). Relation (2.39)
is proven.

Let’s prove the equality (2.40).

Since 1 (1), ¥2(7), ¥3(7) = 1, then the following relation for the Fourier
coeflicients is correct (see section 1.2):

lej1j3 + Cj1j3j1 + Cj3j1]1 - 20321 Cj37
where C; =0 for j > 1 and CO =+/T —t. Then w.p.1
L 11737153 L 2 Vi J1J1J3 J3J1J1 J3 .
J1,J3=0 J1,33=0
Therefore, considering (2.38) and (2.39), w.p.1 we can write down the fol-
lowing:
00 ., 1 . )
) Z Cj1j3j1 J(; : - ECS’C(SZ - Z C(J1J1J3 v _ Z C]3J1]1 ) =
J1,J3=0 J1,J3=0 J1,53=0
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1 (i) Lo 3 () 1 @)
- i(T - t) CO 4(T t) (CO \/§C1 )
1 s [ i s
_Z(T t)2 (Co + _\[gl ) = 0. (2.84)

The relation (2.40) is proven. So, we have proven the following expansion
for multiple stochastic Stratonovich integrals of 3rd multiplicity for the case
of Legendre polynomials:

*T xt3 xto

[[]aaiaPag = S iy, (@)
t t t

J1,J2,J3=

where the series converges in the mean-square sense,

T s 81
Cionii = [ $1(5) [ 652(51) [ 85, (52)dsadsds
t t t

and ’il,ig,ig = 1,...,m.
It is easy to see, that the formula (2.85) may be proven for the case
i1 = 19 = i3 using the Ito formula (also see section 6.3):

*

T xt3 xto

[ [ deiVaelVaes) = (/ df (" ) = < (Co™)’ = Comel e,
t t

where the equality is fulfilled with probability 1.

Let’s analyze expansions of specific multiple stochastic Stratonovich and
Ito integrals using obtained results and the system of Legendre polynomi-
als.

Assume, that

——

T to '
18 = [ =) (= t)hafl) . df,
t t

o «T *to _
L0 = [ =) (=) af ey
t t
where 21,...,0,=1,...,m; ly,..., [ =0, 1,....

The direct calculation according to theorem 1 provides:
Y 1 21 2
i =~ (1 1 )

38
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+%I(gi;’,) (Iocglm) [0(522“)) -

s [1 (i) (is) [ ~is iy L G,
(1= 0} |66 (67 + V3 - 2o +

) , 1 ), 1 (is) (’i3)>
+ "%+ =+ GV ) +
CO 3C1 3\/*4-2 T,

4
4 {ir=i2}
i) L ) (i) 1)
CO _\/§C1 3\/*<2 + Tt>+

) L (i) <)) <mm)]
— G+ +-D
CO \/5C2 Q

-I-}l (
4 {i2=is}

i) [CO“ () +Z -, ("I)C(“)—Cz-(“)d?f}],

12 T 192 (T B t)2 2
I1(§l B) - 9 IO(gz 2 4 [\/gCOl C1z
+§(@+ngwﬁl (+2)¢Y¢ G )
20\ /(20 +1)(2i 4 5)(2i + 3) (2 —1)(2i +3) /)
D(Zm%) - i=1 jgo k=i NZJszJrl k+1, k+2i‘j+1€z'(11)€3(22)€1223)+
%i>k+imj>—2; k4i—j — even
00 i—1 i\ i .
+ izlzyj':o kZ::1 NiijkH,iH,WHQ@ )CJ(Z )Clglg)_
2k2k+z’—j2’—2; k+i—j — even
= > NijiKy oy ers (¢ cfin)
i=1,j=0,k=i+2 1k i1 k-1, k
2i4+2>k+i—j5>0; k+i—j — even
00 1+1 iy i .
— EDOEDY Niijk_l,z-_i_l’ﬁiCi(i )Cj(l )Cl(cis)_
i=1,j=0 k=1 2

2k—2>k+i—3>0; k+i—j — even
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— % N K. i C_(il)C(b)C(i:i)_
i=1,j=0,k=i—2,k>1 WRTH—1k+1,25=050 0 55 Sk

2i—2>k+i—35>0; k+i—j — even

00 1—3 ; i ;
- POy Niijk+1i—1_’°+i—ﬂ'Cz’(“)C}ZZ)CI§l3)+
i=1,7=0 k=1 T2

2k+2>k+i—j>0; k+i—j — even

+ 5 Noo K i el i)
i=1,j=0,k=i LA S WA R A LR YR Y
2i>k+i—j>2; k+i—j — even
S (i1) (i) ~(ia)
i o NigreKp 151 16 G G s
7’:17.720 k:]- 2

2k>k+i—3>2; k+i—j — even

2j

. 0 .
G(T,St) - = 21{ > ijkKj+1,k+1,§+1Clg 3)+
J:

k=j, k — even

J—1 .
+ Z ijkKk+1,j+1,§+1C1?3)_

k=1, k — even
2j—2

(i3)
- Z ijkKj—l,k+1,§ ko
k=j-2, k>1, k — even

' (is)
- X NipKp G-

k=1, k — even
2542

(i3)
- Z ijkKj+1,k—1,§ k-~
k=j+2, k — even

j+1
_ ]i N K (i),
JIEB E—1,5+1,55k
k=1, k — even
2j .
JikE j—1k—1,2—15k

k=j, k — even

N Nk (s
+ X JikB p—15-1,5-16k " (>

k=1, k — even

i) _ _3{[ R (i2)
Qri = ) > > NijiKi+1,z’+1,z’+1_%'Cj —

1=1 \j=0, 7 — even
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21

-2 Z NijiKi_l,i_l,i_%C}i2)+

71=2, j —even

2i—2

+ Z N@JiK —1,4-1,i— 1—1C }

7=0, j — even

where
1
N —
ik J@k+D@j+U@%+U’
K _ OmkGhGn—k 2n +2m — 4k +1 (2k—1) <
et Gmin_k  2n+2m—2k+ 1’ poor=

On the other hand, in accordance with (2.85) we may use more compact
expression:

*(i1021 1 i2i1 iod
Ioo(oT,t )= T (I(g )[16 )+ [(g )Il(g 3)>
1 .
L8 (10 - ) -

—(T )[ﬁ%”@#+¢h”_7@ﬂ iggﬂ

or
1121 1 201 2
= L (4 ) +
(i3) (i172) *(1211)
+2% (I’j-—héi)—
3 1 ) 19 i2) 9 1 19219
—( - [ (67 + VA - 2= + 108 +
1 1 i1
+1{11_22}2I](_ ) - 1{12223}5 ((T - t)l(ng,z —I_ I](-;",i)f) )

where

, s 1
0 _ 1 3< “ﬁ’
11 9 ( ) CO \/§CI
N T .
CJ@ = [ ¢;(s)dfD; {#;(x)}52 — is a full orthonormal systems of Legendre
t

polynomials at the interval [¢, T7.

Let’s prove some generalizations of expansion (2.85) for the situation,
when v;(7) = (t — 7)% I; = 0, 1, 2,... are fixed natural numbers; i =
1, 2, 3.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

2.3.2 The case ¢;(7), (1) = (t — 7)1, W3(7) = (t — 7)B; i1 = 1p # i3

In this section we will prove the following expansion for multiple stochas-
tic Stratonovich integral of 3rd multiplicity:

*T *S *81
[t=s) [(t—s1)' [ (t— so) dfDdEdfl) =
t t t
- Z CJBthg(h)CJ%z)CJ(;B) (il = 12 7é i3 t1,%2,03=1,..., m)7 (2'86)
J1:J2,J3=0
where the series converges in the mean-square sense; [,l3 =0, 1, 2,... and

S1

T s
Cisinis = [ 655(8)(t=5)" [(t—51)'85,(51) [(t = 52)'j,(s0)dsadsrds. (2.87)
t t

t
If we prove the formula:

S

T
3 Cirin Gy =< [(t= )" [(t = s1)"ds,df ), (2.88)
t

J1,J3=0 t

NN

where the series converges in the mean-square sense and the coefficients
Cj,j,j, has the form (2.87), then using theorem 1 and standard relations
between multiple stochastic Stratonovich and Ito integrals we get the ex-
pansion (2.86).

Using theorem 1 we may write down:

1 T S ) 1 21+1s+1
5 [t =8)" [(t = s)"dsadf® = 2 3 G wp. 1,
t t Js=0
where
T s
/ t—8l3/t—81 'dsids.
t t
Then
P3 D1 . ) 1 2l+l3+1 -
Z Z CJ3J1J1 - 5 Z CJs<J
Jj3=0j1= 73=0
2l+13+1 1~ (i3) Dp3 D1 (i3)
= > (Z Clajiir — 5%) Ga + 2 2 CuininG -
J3=0 J1=0 j3=2l+I3+2 71=0
Therefore
ps P 1 T - ol (ia) ?
. 7 —
plgolgrgoo M (JzZOhZ 0.73.71.71 §t/ (t=s)" t/(t — 51)" dsydf” ) =
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) 2l+13+1 1 . 2
- p}l—rgo ng:o 12_: CJ3J1J1 - §Cj3) +

Ps3 41 . 2
+, im M{( 2 Z%ﬁﬁ(}f)) } (2.89)

P1,p3—0 =542 11=0

Let’s prove, that

éj3>2 = 0. (2.90)

N |

Y4
limn (Z Cisjiji —

— .
P1—00 j1=0

We have
D1 1 - 2
(Z Cj3j1j1 - 50j3> =
Jj1=0
1 P T ] 2
- (2 Z /¢]3 t_ 8 </¢J1 51 t— 81 d81> ds—
71=0% 4
PN / ¢]3 t - S l3/ t— s1 2ld81d8) =
2 , /
1 (% s 2
=1 (/ ¢y (5)(t — )" ) (/ ¢, (s1)(t — 51) dsl> / (t — s Zldsl) s)
t Jji1= Y

=3 S outora— o i suptasn-

_.i <Z¢Jl(81)(t_51 d81> t/st—sl dsl) )2:

—i(/ b= > (/S ¢j1<sl><t—sl>’dsl) ds) BNCX)

In order to get (2.91) we used the Parseval equality, which in this case
may look as follows:

2 T
(/ &, (s1)(t — s1) d81> = /K2(s,sl)d81, (2.92)
t

71=0
where

— (t_Sl)l, 81<S. T
K(s, 1) = {0, otherwise ;s € [t T,
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Taking into account the nondecreasing of functional sequence
2
up(s) = (/ ¢, (51)(t — 51) d31> ,
J1=0

continuity of its members and continuity of limit function
S
/ t— 81 2ld81
t

at the interval [t,T] in accordance with Dini test we have uniform con-
vergence of functional sequences u,(s) to the limit function u(s) at the
interval [t, T7.

From (2.91) using the inequality of Cauchy-Bunyakovsky we get:

pi 1. \2
Z Cj3j1j1 - §Cj3) <
=
1 T T Oo 2\ 2
— 2l3ds ng s1)(t — s1 ldsy ds <
4 1
t t ]1—p1+1
1, r 1 2s+1 2
< e £ [ 2 (s)ds(T —t) = (T =™ (2.93)
¢

when p; > N(e), where N(¢) is found for all € > 0.
From (2.93) it follows (2.90).
Further

p1 2(j1+H+1)+3

D1 D3 .
Z Z CJ3J1J1 Z Z stjljl ,7(;3) . (294)

We put 2(j1 + 1 + 1) + I3 instead of ps, since Cj,j,;, = 0 for j3 > 2(j; +
[ 4+ 1) + l3. This conclusion follows from the relation:

T s 2
Cass = 5 | du(e)(e =50 [ (o)t — )t ) s =
t t

1 T
= 5/¢j3(S)Q2(j1+l+1)+13(5)d3a
t
where Qa(j, +1+1)+1,(8) is a polynomial of the degree 2(j; + 1+ 1) + 3.
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It is easy to see, that
p1 2(J1+l+1)+3 2(pr+l+1)+ls py

Y Y Gl = Y Y G, (2.95)

71=0 j3=21+I3+2 J3=2l+Il3+2 351=0

Note, that we introduced some coefficients Cj,;,;, in the sum ZO which
J1

equals to zero. From (2.94) and (2.95) we get:

no o i) 2p+H+D)H: py 2
M (Z Z CJ3]1]1C 3) = M Z Z CJ3J1J1 =

J1=0 j3=2]+13+2 J3=2l+13+2 j1=

2(p1+l4+1)+l3 / py

= Z Z Cj3j1j1> -

js=2l+13+2 \ji=0
s 2 2
/g[JJ1 (t —s1) dsl) ds) =
t

/ ¢J3
2

.71 Ot (
] 2
(/ ¢, (s1)(t — s1) dsl) ds) =
t
1 2(p1+1+1)+13

-y ( [ 6(s)(t — 5" (f (t — 1) dss

4 =712

S (t/ b (s1)(t — sl)ld81>2) ds)2 _

(P1+l+1 )+s 1 21
j3—2l+l3‘|‘2

1 2(p1+1+1)+is
D> (/ bi,(s)(t —5)" >
t

4 jotls+2

2pi+I4+1)+13 [T 50 5 2 2
S (/ NOIEDDS (/ qul(sl)(t—sl)’dsl) ds)-

4 J3=2l+13+2 j1=m+1
(2.96)

In order to get (2.96) we used the Parseval equality of type (2.92) and
the following relation:

T
/¢j3(S)Q2l+1+l3(S)dS =0; j3>2l+1+13,
t

where Q241+1,(s) — is a polynomial of degree 21 + 1 + I3.
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Further we have

[ entanie s =

T — t2l+12 +1 z(s)
:( ) ] (/le 1+y dy -

22l+2

2041
— s (1260 (P (206 = Py (2(5) -
z(s) )
L[ (Biny) = Paea(y) (1+9) ™ dy) <

_ \20+1 s— 1\ 2 )
< g (o) (Paa (6D = Pu (e

z(s) 2
+ (/ (Pji+1(y) — Pji-1(y)) (1+y)l_1dy) ) <

~1
(T_t)2l+1 21+1 2 2

< g, 37y (2 (Pl () + Py (2(e) +
z(s) z(s) )

112 / (+0)"dy [ (i) = Pia(s) dy) <

—1) 2 921 1 2
< gy (27 (PR GO+ Py () +
z(s)
+2[ -1 ( ) / .71+1 )+ P2 1(9)) dy) <
-1
2l+1 )
< Sy (2 (P (6 + P (+(6) +
12 z(s)

i

where z(s) = (s — %) =

Let’s estimate the right part of (2.97) using (2.61):

2
S l (T—t)2l+1 K2 K2
[Jestmespm) <505 (s 5)

2 () + P2 _i(y) dy), (2.97)
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(1 _ (z(s))z)% 20-17 (1- yQ)%
(T t)2l+1K2 2 2r T 508
DY ((1 o)) M7 1) (t,7) (2.98)
where z(s) = (s — 5) 74,
From (2.96) and (2.98) we get

D1 D3 (13) 2
Ml > > Cuiid, <
j1=0 j3=2l+I3+2

2

P1+l+1 )+l / 2
g— | &, ( t—s) ( b4, (s1)( t—sl)dsl) ds
4 J3—2l+l3+2 t/ J3 1= p1+1 ’
1 ol 240+ (T 00 s l 2 2
SN N T IEACTED vy P T e
J3=2l+Il3+2 \} Ji=p1+1 \}
T — )A+20+1 frd g2 2(pi+i+1)+ls T 2d
< ( ) 1 Z / 5 §_|_
16 ja=2+ls+2 \ (1 _ (z(s))2)4
2 T 2
I“m ds S|
o= 1/ nt | 2 | <
t (1 — (2(s)) )4 hi=p+1 1
2
< (T _ t)4l+2l3+3K4K12 ' 2p1 +1 /1 2 7'(' 1
- 64 % (1- % 2l —1J, 1-yd)i) ~
2 1
< (T — t)HH2HBo=2 = LY — 0 when p; — oo, (2.99)

i
where the constant C' doesn’t depend on p; and T — ¢, and 2(s) =

(s - T5) 12,
From (2.89), (2.90) and (2.99) follows (2.88), and from (2.88) follows
the expansion (2.86).

97



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

2.3.3 The case ¢3(7),0s(7) = (t — 1), P1(7) = (t — )15 i3 = i # 1

In this section we will prove the following expansion for multiple stochas-
tic Stratonovich integral of 3rd multiplicity:

*T *8 *S1

[ =) [(t—s1)" [ (t— 50)"df Gl =
t t t
= Y Cipin P (i3 =iy # iy i,in i3 =1,...,m), (2.100)
j17j27j3 0
where the series converges in the mean-square sense; [,l; =0, 1, 2,... and
T S $1
Cioini = [ $5(5)(t—5)" [(t=51)',(51) [ (t—52)",(52)dszdsds. (2.101)
t t t
If we prove the formula:
1 T s
2l l1 1
ﬂ%ﬁqmﬁ —§/t—s [t—s df " ds, (2.102)

where the series converges in the mean-square sense and the coefficients
C},j,j, has the form (2.101), then using theorem 1 and standard relations
between multiple stochastic I[to and Stratonovich integrals we get the ex-
pansion (2.100).

Using theorem 1 we may write down:

17 2 |
5 (=) [(t = s)df(Pds =
t t

1} oA 5 1e(ir)
§t/ t— s1) SZ — 5)"dsdf" =
1 2+h+1
- 5 Z CJIC] Ww. P. 7
where

3 T T

Ci, = [ ¢ (s1)(t — s) [ (t — 5)"dsds,
t S1

Then

D1

D3 (ir)
Z Z CJ3J3J1 PN

—03=0 2 20



2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

201+h+1 [ p3 1 -~ (i1) 4! P3 (i1)
= 2\ X i =500 | G+ 2 2 Cigin G,
71=0  \j3=0 J1=2l+11+2 j3=0
Therefore
2
L& 1} 21 r l
1 - _ _ 1 i1) —
(£ 8 o) - oo -
' 2+0L+1 [/ p3 1. 2
= Jim jlz::o ,3{:0 Clisjsir — §Cj1) +

D1 P3 . 2
+ lim M{( S Y Chii }1“)) } (2.103)

Prpse0 J1=20+11+2 j3=0

Let’s prove, that

2
Cyl> =0. (2.104)

_ 2
Ch) =

(Z /(15]1 (s2)(t — s2) 1d82/¢]3 (51)(t — s1) d81/¢]3 — s5)lds—

J3=0%

N | —

pll_{%o (Z CJsjsh o
J3=0

We have

DN |

P3
( Z Cliajojs —

Jj3=0

N %/%(81)@ —s)" [(t - S)Qldesl) =

S1

1 P3 T 2
/¢J1 52 t_ 82 (/ ¢j3(81)(t— sl)ldsl) dSZ_

33—0 t

2
/gb]l (s1)(t — sl)ll/( — s)gldsdsl) =

sl o]
/

1 T
=1 ( ¢, (s1)(t — s1)" (/(t_ 5)%ds—

S1
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

T

-y (/ %(s)(t—s)lds) —/<t—s>”ds) dsl) =

J3=p3+1 \s; 81

- i (/ Pi(s)(t— 1) (/ Pjs (s)(t = S)ldé’) dsl) - (2108)

J3=p3+1 \s;

In order to get (2.105) we used the Parseval equality, which in this case
may look as follows:

i;@&Mg@—g%% = [ K*(s,s1)ds, (2.106)
where

(-9 s1 <5,
K(s,51) = {0, otherwise  o°1€ %71

Taking into account nondecreasing of functional sequence

2
Un(Sl) = Z (/ ¢J3(S)(t — S)ldS) R
continuity of its members and continuity of limit function
T
u(s1) = /(t — 5)%ds

at the interval [t, T], according to Dini test we have uniform convergence

of the functional sequence u,(s1) to the limit function u(s) at the interval
¢, T].
From (2.105) using the inequality of Cauchy-Bunyakovsky we get:

ps 1. \2
> Cijsin — 5C5 | <
=0 2

T
&@—@%/ﬁ@mmauw:iguo%ﬂé (2.107)
t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

when p3 > N(e), where N(g) is found for all € > 0.
From (2.107) follows (2.104).

We have
D3 n ps 2(Jz+HI+1)+l (i)
1
) > OJ33331 = > > Cj3j3j1le . (2.108)
3=0 j1=21+11+2 §3=0 ji1=2l+l;+2

We put 2(j3 + 1 + 1) + [; instead of p;, since Cj,j,;, = 0 when j; >
2(j3 + 14 1) + I;. It follows from the relation:

T T 2
Cj3j3j1 = %/gbjl (82)(t — 52)11 (/ ¢j3 (31)(t — Sl)ldsl) d82 —
t 52

1 T
=35 / 5 (52) Q2(js+14+1)+1, (S2)ds2,
t

where Qy(j,1+1+41)+1, (8) — is a polynomial of degree 2(js + 1+ 1) + ;.
It is easy to see, that

ps 2(js+H+1)+h (i) 2(ps+l+1)+l p3 i)
1) _
Z Z Cj3j3j1 o Z Z C]3J3]1 . (2109)

Note, that we included some coefficients Cj,;,;, in the sum ZO which
Js

equals to zero.
From (2.108) and (2.109) we get:

D3 jai (i1) 2 2(ps+l4+1)+1l; ps 2
M (Z Z Cj3j3j1 j11 ) =M Z Z CJ333J1 =

J3=0j1=21+11+2 J1=2l+11+2 j3=0

2(ps+I+1) 4+l / ps 2
= Z Z Cj3j3j1
j1=2l+ll+2 3=0
2

T 2
/% (s2)(t = s2)" (/¢j3(81)(t—81)ld81) d32) =

J3 Ot

=

2(ps+1+1)+1 1n
j1=20+11+2

2
1 2(ps+i+1)+h

= — Z (/¢]1(82)(t_82 = (/ t—Sl) dsl) dSQ) =

4 J1=21+1+2 S9
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

1 2(p3+l+1 )+l
4 ,71_2l+l1+2

/¢31 32 t— 82) (/(t — 81)2ld81—

t 52

- i (/ ¢j3(51)(t—51)ld81) )dSQ) —

Jz=p3s+1 \s,

2
(p3+l+1 Y+

2
:1 (/¢J1 32 t—32) (/gf)J3 81 t—Sl) dSl) dSQ) .

4 31—21+ll+2 t .73—P3+1 S2
(2.110)

In order to get (2.110) we used the Parseval equality of type (2.106) and
the following relation:

/¢j1 (S)Q2l+1+ll(8)d8 =0; 1 >20+1+1,
t

where Q24141 (s) — is a polynomial of degree 21 + 1 + ;.

Further we have
T 2
(/ s (s1)(¢ — Sl)ldsl) =

_ 2419, 1 2
_ (T t) 221_,_(22]3 + 1) ( / ng(y)(l +y)ldy) _
&(

(T _ t)21+1
- 22l+2(2j3 + 1)

((1 + 2(52))' (Pjg-1 (2(52)) = Py (2(52))) —

— / is+1(y) — Pi-1(y)) (1 + y)l_l dy)2 <

_ 241 Sy — 2
< 2(2312(2?3 - f) <(2(T— tt)> (Pjs+1 (2(52)) — Pjy-1(2(s2)))" +

+ ( [ (Prasaly) = Paw)) (1 + y)l-ldy) ) <
&(

82)

(T _ t)2l+1 2041 2 2
< gy (2 (Pl (o) + Py (s(ea)) +
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

1 1
[ 4Py [ (Pealy) - Pua) dy) <
z(s2) z(s2)

T— 2 2[+1 2 2
< g gy (2 (PR (o) + P (o) +

2072 s — 1)\ 271 ! ) X
+2§—l1 (1 - ((T_:)> ) / (Pr+1(y) +Pjg_1(y))dy> <
2(82)

_\20+1
: %(Q (Pier (2(52)) + Pii-a (2(52))) +

l2
20 — ]_z

1
+

(P211(y) + Pi_1(v)) dy>, (2.111)
(s2)

where z(s2) = (s2 — 5 72

Let’s estimate right part of (2.111) using of (2.61):

T 2 (T . t)2l+1 K2 K2
(S[ bjs(s1)(t — sl)ldsl) < 225 1) (j3 3 + i )
2 2 dy
1 + 1
% ((1_(2(82))2)2 21_12:(3/2) (1_y2)2) <
(T -7k 2 Pr ). sewr 2.112
©o ((1 G 2o 1) A

D3 D1 (ir) 2
M Z Z Cj3j3j1 jl S

j5=0 ju =20+l +2

1 2(p3+i+1)+4L [ T ; 00 T l 2 ?
<7 X [l | E=s2)" X | [ils)(t—s)dsi| ds
J1=21+11+2 t J3=p3+1 \s,
1 o 2(p3+H+1)+ (T 00 T l 2 2
<(@-t > [l X | [en(s)(t—s)ldsi| dsy
4 gi=2l+1+2 \} Jza=p3+1 \sy
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

(T — ¢)2+2h+1 2 2(p3+lz-|51)+ll (( T 2ds,

< §+
16 J1=21+1+2 t (1 - (2(52))2)4
2
2y T ds & 1
457 1/ 2 02 i) S
4y (1 — (2(s2)) )4 Jo=pa+1 3
2
< (T — t)4l+2ll+3K4K12 - 2p3 + 1 /1 2dy n 2r 1 dy <
= 64 P \4 -yt A1 (—y)i) ©
2 1
< (T . t)4l+211+30% — 0 when p3 — 00, (2'113)

pP3
where the constant C doesn’t depend on p3 and T — t, and z(s3) =

_T+t) 2
(‘92 2 ) T—t*

From (2.103), (2.104) and (2.113) follows (2.102) and from (2.102) fol-
lows the expansion (2.100).

2.3.4 The case 1(7),¥2(7),¥3(7) = (t — 7)1 41,42,i3=1,...,m

In this section we will prove following expansion for multiple stochastic
Stratonovich integral of 3rd multiplicity:

*T *8 %81
[t=s) [(t—s1)! [ (t— so)df ) =
t t t
= > Cipi ](fl) 3(22) J(§3) (t1,19,3 =1,...,m), (2.114)
jlaj2:j3:0
where the series converges in the mean-square sense; [ =0, 1, 2,... and
T S 81
Ciojuir = [ 03s(8)(t—5)" [(t—51)'5,(51) [ (t—52)' by, (s2)dsadsrds. (2.115)
t t t

If we prove the formula:

> Cigny =0, (2.116)
jl 7j3=0

where the series coverges in the mean-square sense and the coefficients
Cj,j,j» have the form (2.115), then using theorem 1, relations (2.88), (2.102)
when [y = I3 = [ and standard relations between multiple stochastic
Stratonovich and Ito integrals we have expansion (2.114).
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Since ¥1(s), ¥a2(s), ¥3(s) = (t — s)! the following relation for Fourier
coefficients takes place

2
Cj1j1j3 + lejsjl + Cj3j1.71 - 2C]1 Cj3’

where Cj,j,;, has the form (2.115) and

.71 /¢J1 t - S
then w.p.1

Z lej3j1<](;2) - Z ( C2 O — Cj1j1j3 — Cj3j1j1> CJ(;Q) (2117)

. - J1
J1,53=0 J1,j3=0 2

Taking into account (2.88) and (2.102) when I3 = I3 = [ and the Ito
formula we have with probability 1:

) 19 1 l S &
Z Cj1j3j1 J(s )= 2 Z Z CJ3CJ . Z Cj1j1j3 J(3 -

J1,93=0 J1=0 j3— J1,J3=0
00 .
> Ciinl =
J1,J3=0
1 ) T 1 T , ]
:§j§OCJIt/(t—s §t/t—s t/t—sl dsydf

1 & r 1 7e(i 1 r '
= — 2 [ ( — 5)ldf i) t — )3+ 1gfiz)
2j12=00h t/( S) s + 2(2l + 1) t/( S) s
1 ( z 7 L e(is) 7 3141 g0(is)
— (T — t)?* [ (t — s)'dfl?) 4 [ (t — )% df;2) =
2(21 + 1) / /



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

1 ! o T Lo 21+1 T
= — . t — t2) _ t —
2 Z n /( S) S 2l + [ 8

1( 1 T T .
=3 (z c - [t s)%) [t = s)'dfl) =o.
J

t
Here, the Parseval equality looks as follows:

T 2+1
X A2 o, (T—t)
g:jo(] jlz— t/( =

and
T
/ t— S Z OJ3C]
Jj3=0

The expansion (2.114) is proven.
It is easy to see, that using Ito formula (see sect. 7.3) when iy = iy = i3
we get:

«T *S *81
[ =) [(t—s1) [ (8= 50)'df DD ) =
t t t

T 3

1 a)° 1
— 6</(t — s)ldfn )) =3 Z CJIQJ )
t

! L
= Y i (I w p. 1. (2.118)
J1,J2,J3=0
The last step in the formula (2.118) was made on the basis of formula
(1.36) derivation.

2.3.5 Theorem about expansion of multiple stochastic Strato-
novich integrals of 3rd multiplicity, based on theorem 1.
Case of Legendre polynomials

Let’s combine in one statement the results obtained in the previous
sections.
Theorem 4. Assume, that {¢;(z)}52, — s a full orthonormal system

of Legendre polynomials at the interval [t,T]. Then, for multiple stochastic
Stratonovich integral of 3rd multiplicity

*T *t3 *t2

Ilt(lill?;?;) _ / (t — t3)l3/ (t— t2)l2/ (t— tl)lldft(fl)dft(;Z)dft(:3)
t t t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

(i1,19,i3 = 1,...,m) the following converging in the mean-square sense
expansion
©(itisis) _ g (in) +(i2) ~(is)
Il1lzll32T,i - Z Cj3j2j1 jll j22 j33 (2'119)
J1,J2,J3=0

18 reasonable for each of the following cases:

1.’i17£2'2, 2'27&2'3, il#igandll, lQ, l3:0, 1, 2,...;

2. 21:’&27&23 andllzlg#lg andll, lQ, l3:0, 1, 2,...;
3. il#igzig andll#lgzlg andll, lz, l3:0, 1, 2,...;
4. il,ig,igz 1,...,m; l1:l2213:l andle, 1, 2,...,
where

T s s1
J332J1 / l— 5 l3¢]3 / t— 51 12¢]2 (51) /(t - 82)ll¢]1 (82)d82d81d8
t t t

Let’s note, that for expansion of multiple stochastic Stratonovich inte-
grals of 2nd and 3rd multiplicity theorems 3 and 4 will be very useful.

2.3.6 Generalization of the theorem 4

Let’s consider one generalization of the heorem 4.

Theorem 5. Assume, that {¢;(z)}52y — is a full orthonormal system
of Legendre polynomials at the interval [t,T] and 11(s), 1¥a(s), ¥3(s) — are
continuously differentiated functions at this interval.

Then, for multiple stochastic Stratonovich integral of 3rd multiplicity

*t3

«T
T, = / 3(ts) / o(t:) / Y (t)dES ) dES

(i1,19,i3 = 1,...,m) the following converging in the mean-square sense
expansion
P AN
J*[¢(3)]Tat - l;bi—}g%' Z Cj3j2j1 J(fl) 9(22) };3) (2'120)
j17j2aj3=0

18 reasonable for each of the following cases:

L. 41 # 19, G2 # 13, 11 F# 13

2. 41 = ig # i3 and P1(s) = a(s);

3. 7:1 7é ig = 23 and '(pg( ) (S),

4. ’il,'iQ,’ig = 1 ,m and ¢1(8) = ¢2(8) = ¢3(8).
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Proof. The 1st case directly follows from the theorem 1. Let’s consider
the 2nd case. We will prove the following relation:

p P s 2
lpl_gé j12= Z: Jsji 33 2 /¢3 t/'(p 51 dsldf

T s $1
Cj3j1j1 = /¢3(3)¢j3(3)/¢(31)¢j1 (31) /¢(82)¢jl(82)d82d81d8.
t t t

Using theorem 1 we may write down:

S

/¢3 ) [ 9 (s1)dsidel _%i; w.p. 1,

t

where series converges in the mean-square sense and

/¢]3 ¢3 /8¢2 81 dslds
t

' 2
éj3) C](:3)> } =

2
Z (Z CJ3J1J1 - st) =
J1

We have:

DN |

=0

b b
M (JZ—O Z Cj3j1j1 -
b

N |

=0

) / MOTAC (/ 83, (51) sl>dsl) ds—
1=0%

L\le—‘

g0

2
——/¢J3 ¢3 / 81 dSldS) =

t
2

% i: (/ ¢j3(3)¢3(8) (lio (/S ¢j1(81) S1 dsl) /¢ 51 dsl) ds ) —

2

(/ b3, (51)1(s1) d81>2d5) . (2121)

In order to get (2.121) we used the Parseval equality in the form:

2 T s
(/ ¢31 51 51 dSl) = /KQ(S, 81)d81 = /¢2(81)d81,
t t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

where

s), s51<s
K(s, 1) = {E)b(o)thei‘w_ise; s;s1 € [6,T).

Let’s write down the following;:

(/ w(soasjl(sl)dslf _

o () _ :
00 (g (T T ) -
T—1
N m<(ﬂl+1(2(8)) = Pji-1(2(s))) ¥(s)—
z(s) _ 2
- / Pj1(y) = Pj—1(y)) ¥ <T2 t’y‘i‘ T;_t> dy) , (2122)

where z(s) = (s — %) 72; ¥ — is a derivative of the function ¥(s) ac-

cording to variable £ty + ZHt,
Further proving is similar with the proving of 2nd case from the theorem
4. Finally from (2.121) and (2.122) we obtain:

~ . 2
Cj3) ;;3)> }<

P 1 1 2
<Kz92(/ %+/1 1)

—1

DN |

p
M{ Z Z CJ3J1J1 -

j3=0

K
< =1 — 0,when p — oo,
p
where K, K1 — are constants. The 2nd case is proven.
Let’s consider the 3rd case. In this case we will prove the following

relation:

1 7 ; .
Lim. z 2 Chainin G = = [¥2(s) [ (s1)dfds;
t t

P—00 ) 2

Cj3j3j1 = /¢(8)¢j3(5)/8¢(51)¢j3(51) /1¢1(82)¢j1 (82)d82d81d8.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Using the Ito formula w.p.1 we write down:

—/w / 1)dEd —/@bl (51) / s)dsdf(). (2.123)

Using the theorem 1 we may write down:

/¢1 (s1) / s)dsdf™ = = 3 C; ¢\ w. p. 1, (2.124)
2

l\DIr—\
o

where series converges in the mean-square sense and

T
Ci, = [ ¢5,(s)0(s1) /d) )dsds;.
t

Moreover:

S1

T s
.73.73.71 /'QZ) ¢]3 /¢ 31 925]3 31 /¢1(82)¢j1 (82)d82d81d8 =
t t

t

T

T T
/ (52)¢5(52) /¢ (s1)¢j(s1) /¢(8)¢j3(8)d8d31d32 =
t S

S1

_ % / D1 (52)5 (52) ( / ¢(81)¢j3(31)d31) dss. (2.125)

Using (2.123) — (2.125) we have:

2
p 1. i)
M{ z ZC]3]3J1_§C>C )}_
j1=0
2
i) -
p

i Zi: (t/ (s1)¢1(s1 (JZ (SZ ¢j3(8)¢(5)d31) —/¢2(8)d8) dsl) —

N | —

ﬁ (z Gl —

=0 \Jjs

3=0

i: (/ i (s1)¥1(s1) i (/¢j3(s)w(s)d8) dsl) : (2.126)
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

In order to get (2.126) we used the Parseval equality in the form:

(/d).?s ) = /KQ(S, Sl)ds = /¢2(8)d8,

J3=0 S1

where

— ¢(S)7 S Z S1 .
K{(s, 1) = {0, otherwise’ 51 € £, T].

Further proving is similar with the proving of 3rd case from the theorem
4. Finally from (2.126) we obtain:
N2
@)} <

p 1 1 2
<Kp2(/ %+/11_ 1)_

K
< =1 — 0,when p — oo,
p
where K, K1 — are constants. The 3rd case is proven.
Let’s consider the 4th case. In this case we will prove the following

relation:

p [P 1~
M2 | X Chagan — 503'1)
1=0 \j3=0

p P
1_)10% Z: Z: J1Jsi =0 ("7[)1( ) ¢2(3)7¢3(8) = Tl)(s))
In this case w.p.1 we obtain:

—00 - J1J3J15)3

— .
b .717.73:0

. p 1 12
=Llim. > (—C2 Cjs — Cijijs — Cj3j131> Cy(g -

:llmlic@ic- (=) _1im ﬁ Cj )—
P00 2j1:0 J i J35]3 P00 Pl J1J1J3
_1 1. Z Cisinin Gy o) =
.713.73 =0
1 o0 T 1T S
. 2 Z2
_§jlz:00jlt/ 5/ t/¢81 )df!



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

T T
== [*(s)ds [ 9(s)df™) -
t t

en) /¢ )dsdf () —;f W(sy) /«p )dsdf (™) =

[\le—\

/ W2 (s)ds df )
t

l\Dlr—\

l\DIl—\
ﬂ\'ﬂ “\H ”\H

ds/¢ ——/¢31/¢ )dsdf(? = 0

where we used the Parseval equality in the form:

> =y P (/«p $)d5(s ) /w

J1=0

1
2

The 4th case and the theorem 5 are proven. O

2.4 Expansions of multiple stochastic Stratonovich
integrals of 3rd multiplicity, based on theorem

1. Trigonometric case

In this section we will prove the following theorem.
Theorem 6. Assume, that {¢;(z)}52y — is a full orthonormal system

of trigonometric functions at the interval [t,T)].
Then, for multiple stochastic Stratonovich integral of 3rd multiplicity

T xt3 xto

/ / / dft(lil) dft(giZ) dft(3i3)

t t

(i1,19,i3 = 1,...,m) the following converging in the mean-square sense

expansion
*T' xt3 xt2 . . . 00 . . .
[ [ ] eV = % i (2.127)
t ot ot J1,J2,53=0

18 reasonable, where

T s s1
Cj3j2j1 = /¢j3(3)/¢j2(31)/¢j1(82)d82d81d8.
t t t
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2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

If we prove the following formulas:

D1 P3 1 T T )
) def
Lim > 3 (Y Cipp¢l =5 [ [dsdt®,  (2.128)
brbs J1=073=0 J1,93=0 -

y41

P3 .
lim. z Y Cljin (i) z Clajain iV = dfdr,  (2.129)

S

N | —
T~

P1:ps=00 =043=0 J1,J3=0
D1 D3 def o0 )
Lim. ¥ % Cglm 3 Chmg = 0. (2.130)
P1,p3—00
J1=03j3=0 J1,33=0

then from theorem 1, formulas (2.128) — (2.130) and standard relations
between multiple stochastic Stratonovich and Ito integrals the expansion
(7?) will follow.

We have:

pP3s M B (T _ t) 41 (i3) p1 (i)
Z Z CJ3J1]1 =—— Z 00;2j1;2j1C0 + Z 0072j1—1,2j1—1C0 +

J3=071=0 6 j1=1 ji=1

(VIS

b3 DN

D1 .
+ 3 Coipoolsd + 3 Y Cojonjiain G50+

Js=1 Jjz=1j1=1

y4l

D3
+ 3 Y Cojpoior2i1Gel) + Z Cjs—1,00C52 1+

Jz=1j1=1 Js=1

D1 D3 Y4

D3
+ Z Z 0233 12]1;211C2J3—1+ Z Z C233 1,251 —1,251— 1C213 15 (2.131)

Jjz=1j1=1 Js=1j=1

where the summation is stopped when 271, 251 —1 > py or 2j3, 273 —1 > p3
and

N

T —t 3(T —t)? V2(T —t)2
Co,1,21 = %, Co21-1,21-1 = %, Ca,00 = —EMQZQ ) ;

(2.132)
V2(T - t)>

|

Cor—1,2121 = 0,Co—100 = — , Cor—1.921-1,21-1 = 0; (2.133)

47l
3 AT =)
_%7 r=2I 3
Cor o121 = , Coro1—121-1 = 3 _%7 —1-
0, r#2l
L0, r#£ 1, r#2l

(2.134)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

After substituting (2.132) — (2.134) into (2.131) we get:

ps P 3 1 1 Pt 1 i
Z Z CJ3]1]1 = (T_t)2 ((E‘Fﬁ Z -_2) C(g -

]3 031 ™ j1:1 .7].

V2 gf CQB 1) (2.135)

47'(' ja= 1]

Using theorem 1 and the system of trigonometric functions we find

1 T s 1 '
5// ds,df (s —/(s—t)dfs(“) =
¢t

L\.')

1 3 ia 21 is
=m0 S ) (2.136)

From (2.135) and (2.136) it follows

D1

2
P3 1 T s '
‘ (i) _ 2 (i3) _
P}7;I%3I—r>loo M { (JZ Z C]3J1]1 9 t/t/dSIdfs ) } =

3=07j1=
= Lim. (T —1) b1 % ! 12+
= i 6 o272~ 2 1

1 [(#? P 1))
+— | = — Z ) =
87'['2 (6 j3=1]§

So, the relation (2.128) is executed for the case of trigonometric system
of functions.
Let’s prove the relation (2.129). We have

P p3 (T—t)2 & Q) & (i)
Z > CJ3J331 = 7 Y. Coj25:060 ~ + Do Coju—12j,-10G0  +
=073=0 Js=1 Js=1
D1 P3 Y4 P3
+ Zl Zl C2jy 25,251 14231_1 + Zl Zl Cojy—1,2j5-1,2j1— 142]1_1+
=173 J1=1]J3=
D1 D3
+ Z 000231 1C231 1+ Z Z 023372J372]1C2
Jji=1 j1=1j3=1
D1 D3
+ 21 21 Cjy—1,2j5—1, 2J1C2]1 + 21 0002J1C231 ) (2.137)
Nn=1])3= Nn=
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2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

where the summation is stopped, when 233, 273—1 > p3 or 251, 251 —1 > py
and

(T —t)2 3(T —t)2 V2(T —t)2
= - _ . = C - V- -
Cau 210 S2 Co-121-10 soz 0 oo PRI
(2.138)
V2(T —t)?
Cou—121-12r-1=0,Cpp2r—1 = %, Cao1,2r-1 = 0; (2.139)
T
_VAT-ni r=2[
—\/i(TQ_?% r =2l o
Caror = 1o , Coto1-19, = § V2T-02  _ I
4212 >
0, r#2l
L0, m# 1, r# 2l
(2.140)
After substituting (2.138) — (2.140) into (2.137) we get:
pP1 P3 3 1 1 2 1 .
Z > CJaJsh = (T'—1)” ((6 To3 2 -_2) C(gm‘f'
=0j3=0 T j3=1J3
\/5 p1
Zl 1(211_1 (2.141)
T j=

Using the Ito formula, theorem 1 and the system of trigonometric func-
tions we find
T

1 T s ' 1 ' T '
5 [ [ dfids = 5 ((T —t) [df™) + [(t - s)dfs(“)) =
t t t t
1 f

— (T —
T -oi(as
From (2.141) and (2.142) it follows

N)Ir—\

s Cg ) (2.142)
Lim. M{(pzl % 0331331

T s 2
dfds | } =
P1,p3—00 0 jom t/t/ 1 ) }
1 1 2 1 1\°
= llm (T—t)3 (— —— Z —2 —> +
6 ~j3 4

P1,p3—00 2
1 (72 1
T ( 6 >, 7)) =
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

So, the relation (2.129) is also correct for the case of trigonometric sys-
tem of functions.

Let’s prove the equality (2.130).

Since 1(71), 1¥2(7), ¥3(7) = 1, then the following relation for the Fourier
coeflicients is correct:

1 2
Cj1j1j3 + Cj1j3j1 + Cj3j1j1 = -C; Cj37

2 N
then w.p.1
o (i2) _ > (Lo (in)
3 Ocﬂ'ljsil DY . §Cj10j3 — Cjijijs = Cigjugn ) Gy - (2.143)
J1,)3= J1,)3=

Taking into account (2.128) and (2.129) w.p.1 let’s write down the fol-
lowing:
o0 .2 1 .2 0 .2 0 .
Y Cipn G = 3 3P = Y Gl = Y G =
J1,J3=0 J1,J3=0 J1,J3=0

1 s iy 1 o[ G,
— ST =0} - T -0 + 5 ),

(T -3¢ -
From (2.128) — (2.130) and theorem 1 we get the expansion (??). The-
orem 6 is proven. .
The expansion (??) may be also obtained by direct calculation according
to theorem 1:

j / :2df§f3)df£§”df§:” = jl,ji:o Cvioir G G G =
P O R >
FyT =07 4 o -0 (£ 5 - ) ) -
ey (- 03[ - 25 1)+
bom@ -0 (£ 5= ) &)+



2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

Njw

+1{21—z3} 12( ) (Z - _) C()22 ) (2.144)

where o 1
iz) ~(is) (i1 3 i1) ~(is) (i
j17j27j3_0
\/—Zl {rloC CZTIOC)}_i_
g (GBI — 20 1 ¢ ¢ }]+
272 2r S0 2r S0 2r S0
I & 1 i1 2 (i1)
SRR
r;él
+ C2r 1 21 ICOlB Co“ Czr 1 21 1} C2r 1 0 2 )1]
o I 1 .
+ Z Ll—{ C27“ 1 0 C2r 1 27‘ C C2r 1 2r COll + €2r 1 2r C((]zl)}
r=1 LATT
3 {3CQT 1Gor? 1 0Z3 +C2 r ng _6C2r 1 2r 1 éw)+
m2r

+3§2r 1 2r 1 0 2(2 2r CZQ +C2 27’ C(gil)}] +

4\/1_7r{§[ [C2 C2m12m+C2r12rC2:73z1+

rom=1
+C2r 1 Zm) 2(;3; 1= Czr 1 2m 1] +
1
+m(7“ + m) [ CQ (m+r) 5 Gom C 1C27’ 1Gom —
_C2ZI +7) 1C2 CQ "‘Cz (m+r) Czr 1 2m 1”+
S (i2) rlis)
+ > ol i) p i) )
m=11=m+1 m(l m) [ 2! 2(1 1621—-162m
Gty 1 G s + G GG ]
1 5 N 5 D )
+l(l “m) [_Cél(l)—m) ) + <2(7il)—m)—1€é;n—l 25—

G a0 — iyl | )
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

. x 2 .
Since Y r% = % and according to theorem 1:
r=1

N

(t — 7)dfD = —%(T _ )t [

a\s

2> 1
2;27‘ 1]

l\Dw\

then, from (2.144) we get the required expansion:

T t3 to T

Z Cj3j2j1€](f3 2 J3 ///dft dft dftl1 +1 ;lziz}%//df Vdr+
t

J1,J2,53=0
T *t3 *

/

2.5 Expansion of multiple stochastic Stratonovich in-
tegrals of 4th multiplicity, based on theorem 1.
Polynomial and trigonometric cases

*
~

2

| (ir)
ity / [ dsdf™ = df.) dfl agl),
t t

—e—
—

In this section we will develop the approach to expansion of multiple
Stratonovich stochatic integrals, based on theorem 1, to integrals of 4th
multiplicity.

Theorem 7. Assume, that {¢;(z)}52 — is a full orthonormal system
of Legendre polynomials or trigonometric functions at the interval [t, T).

Then, for multiple stochastic Stratonovich integral of 4th multiplicity

#T sty xt3 xto

I;)fil/\zjf\?)‘\‘j)“: / / / / dwt dwt th dwt

t ottt
(i1, 19,135,844 = 0,1,...,m) the following converging in the mean-square
Sense erpansion
p N
*(inigisia)  _ q (1) +(i2) +(is) »(ia)
I(/\l/\z/\3/\4)T,t_1;bl_'>rorol' . Z Cigsiain S Cia Sis i (2.145)
J1:J2,J3,§4=0

1s reasonable, where
T s 81 S2
Ciajuinin = [ 0is(5) [ $5,(s1) [ dis(2) [ 61, (s5)dssdsadsids;
t t t t

D= { ¢;,(s)dwl) — are independent standard Gaussian random vari-

ables for various i; or j; (if iy # 0); Wg) = fT(i) — are independent standard
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2.5 Expansions of integrals of 4th multiplicity

Waiener processes; 1 =1,...,
il = 1, ce. M.
Proof. From (1.27) it follows:

C. .. (i1) ~(i2) #(i3) 4(ia) __ I(i1i2i3i4)
JaJsj2JiSir Sz Sjiz Sja T F(Adedsh) Tt

P
Li.m. >

P00 i 42,d3,ja=0

+1{zl—12750}A + 1{11_13¢0}A + 1{11_147é0}A 1223

-|-1{i2:z'3;é0}A4M4 + 1{@2=z‘47é0}14&’>z123
— 15, =i 20} Lfiy=is20y B1 — 1{iy=ig20} L{iy=iy20) B2—
— 1y, =i, 20} L {ir=is20} B3,

where

s [T [ i dwf dwfo,
t t t t

. - p ] )
A(z3z4) — lim Z C. .. (i) (i),
1 = p—'>oo' L J43371715)3 SJg 0
Ja,J3,J1=0
p . .
(i284) __ 7 - o eli) (i),
A2 = lpl_gé _ Z CJ4JsJ2]3 J2  Sja 0
J1,J3,J2=0
. . p ) )
(i283) __ 7 - o eli) #(s),
A3 = lpl_gé _ Z CJ4JsJ2]4 J2 SJ3
Ja,33,J2=0
. p ] )
(i14) _ 7 i) 4G,
A4 = lpl_gg _ Z Cj4j3J3JICJ'1 Cj4 )
Ja,33,71=0
- p )
(i1is) _ 1 : (in) ¢ (ia).
Aj o 1131—3%3 . Z CJ4J3J4JIC Cj3 ’
Ja,33,J1=0
- - p ) )
(t1d2) (1) -(2).
A6 = lpl_-gé- Z Cj3j3j2j1cj1 gj? !
j37j27j1:0

By = lim Z Cjijujijr, B2 = lim Z Clisjagajer

—00 —00
P J1,J4=0 P Ja,J3=0

B3 = lim Z Clyjsisis-

._)
P .747.73—0
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Using integration order replacement in Riemann integrals, theorem 1
for k = 2 (see (1.25)), relation (2.3), Parseval equality and Ito formula we
obtain:

i / Bjs (51 (/ i (52 d32) ds1ds¢i i =
m. > t/T 83,(5) [ di(s0) ¥ (21¢j1(82)d82>2d51dsgj (i

: / 65(5) | ¢j3<sl>(<sl —1)-
(7%(32)(132)2)

_ p. 1T isis
= lim. . Z 5/ /¢J3 81 81 - t)dsldsCJ J4 — Ag ) —
t

dsldsCJ

4

1T . .
= [ [(s1 = awDawlo+
t t

1
‘|‘ 1{13 14750} 11

— 00

P i P ..
. 0/¢j3(3) / ¢j3(31)(81 — t)ds1ds — Ag”“) =
t

S1

7/S/d52dw d )+11{23 247&0}/ (s1—t)ds; — A" wp.1, (2.147)
t tt

l\DIt—k

where

A§3 ) - 11—>Io% ) Z aijs ](33) 3(44);

2
J4J3 /¢J4 /¢J3 31 (/ ¢J1 82 d82> dsids.
J1—p—|—1
Let’s consider A{?™
(iis) . P 17
AP =1im. Y (—/¢J4 (/ ¢]3 81 d81> /¢32 51 dslds_
pmreo J4,J3,J2=0 2 t
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2.5 Expansions of integrals of 4th multiplicity

T s 31 2
_%/¢j4(3)/¢j2(51) (/ ¢j3(82)d82> dsids—
/¢J4 /(bh s3) (/ b, (51 dsl) d33d3> (2) (4 ) _

= ( / ¢, (s)(s — 1) / ¢, (s1)ds ds—
J4,J2 =0 t

_; / 83,05 f 85, (51) (51 — O)dsuds—

——/qb“ /qﬁh (s3)( s—t+t—53)d53ds>g“2 i

— A 2214 + A 1214 + A Z224 _

= —AQ 4 AP L AP yp, (2.148)
where
A(zzu) —1; p (14)
o pl—)Io% Z J432 J2 J4 )
1 T
o )d )ds:d
Jajz T 9 t/¢]4 P (/ ¢33 51) 81) /d)h, s1)ds1ds;
(inis) : P ia).
A3 = 11')1—')2%' . Z j4]2C2 C]4 ]
Ja,j2=0
1 T s 00 ] 2
Ciih _/ /¢,72 83 Z (/ ¢j3(81)d81> dssds.
2 t Ja=p+1 \s3
Let’s conside Ag”3)
Aéiﬂ's) _

= 11_>I0% Z /¢J1 53 /¢J4 82 /¢J3 81 /¢J4 d5d81d82d83<3 ja

J1,J3,J1=0 %

d.m. Z /qﬁh (s3) /qﬁj4 /(]5]3 (s1) /(]5]4 (s2 d82d81d8d83C] C3

.747.737.71 =0 t

121



Chapter 2. Expansions of multiple stochastic Stratonovich integrals

27

= l}.}i_.g.} 34]33 » ( /¢Jl (s3) (/ IAE s) S[¢j3(3)d3d33_
s 2
_%/d)jl (33)/¢j3(8) (/ ¢j4(31)d31> dsdss—
2
__/qj)h 83 /¢J3 32 (/ ¢]4 S1 dsl) d82d83> (1) ;3 3)

% [ 65, (s3)(T = s3) [ ¢5,(s)dsdss—

J3:,J1= t
1 T T
—5 [ #i(ss) [ $1a(5)(5 — s3)dsdss -
t S3

| T T o
—§t/¢j1(33)/¢j3(52)(T - 82)d82d83>C§f1)C§§3) =

A 2123 + A 2113 —I— A 2123 _
= —A4ZIZ3 + A;I% + A62123 Wp]_,

where

.. p
A(lll3) — 1 1 m. z (13)
4 oo’ L GG Gl

J3J1 - 2/¢Jl 83 Pt (/ ¢J4 5) S/¢j3(8)d8d33;

53

NS e i ) ¢lis).

P .73.71 J1 3 9

2
3311 = /(15]1 (s3) /(1533 (/ b, (s1 dsl) dsdss;

Ja=p+1

\LI—‘
85

AgliS):l.i.m Z fm1 33 ,

—00
P .733.71—

2
1 T T
i = §/¢j1(83)3/¢j3(82).7 2 (/ i (1 d81) dsydsy =

S2
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2.5 Expansions of integrals of 4th multiplicity

2
1 T
—_ §/¢j3(82 (/ ¢]4 81 dsl) /qul 83 d83d82
Ja=p+1

S2

Let’s consider A We have:
Agi2i3) + Agi2i3) —

V4 . .
- lp1—>r£ Z (Cj4j3j2j4 + Cj4j3j4j2) C](;Z)Cg(?) =
j47j37j2:0
p T s
= lbi_.>r£ j4,j§j2:0t/¢34(8)t/ (s1 /ng2 59 /ng4 S3 d83d82d81d8CJ is

T
1—>I£ | i / (51) /qﬁj2 (s2) /qﬁj4 (s3) d83d82/¢J4 dsdslg} i
t

= l.im. i 0(/ b, (51 /¢>]2 59 /gbh S3 ds;;/gbh )dsdsodsy—

.747.73 7.72

_/ Pis(51) / ACY ( / ¢j4(s)ds) d52dsl)42 () =
t t $1

p T S1 2
= lpl_gorol Z /¢j3(81)/¢j2(82) (( — 81 (/ ¢J4 83 ng) )dszdslx
' t Ja=0

S1

<P = A0 wp.l
Therefore
A:()’iQig) _ 2Aé"2i3) _ Agizis) _ AELMS) _ Agm) 4+ Aéi2i3) w.p.1. (2.150)

Let’s consider A(““) :

Affli“) _

— lim. | i fth /gbh (s3) /(;533 (s2) /(]533 (s1 d81d82d83d8CJ i
t

T 2
1.m. i %/¢j4(s)/¢j1(83 (/ ¢J3 52 d82> ds3d8<] Ja
t

Js=0

T
i.m i 1/ /(b (s s—s)dsdsC C ) Al —
. -2 9 j1\93 3 3 J1 Sja 3

t
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

T s
//5—53 dW )d (i‘*)-i—
tt

l\DI»—l

1 . (41%4)
—|—§1{i1=i4¢0}1}l>m Z /gbj4 /gzﬁj4 (s3)(s — s3)dssds — A" =

Ja=0

T w T
= %///d (“)dsldw( ) 4 11{Zl =i4#0} (Z / t) ;. (s /¢J4 s3)dssds—
ttt =0

0 T S N
= 3 [ @ils) [(ss - t)¢j4(33)d83d3) _ Al
j4:0t +
1 T s2 81 . . N
=5 [ [aw{Vdsidw() — AP wop.1, (2.151)
ttt
Let’s consider Ag (i1i2)
Agr) =

T
= l.i.m. . i / 83 /th 82 /QSJB 81 /QSJB d8d81d82d83cjl B =
t

r 17 7 LA 2 (i2) (i2)
> 2 / Gii(s3) [ Gia(52) X | [ Sia(s)ds | dsadsafV i) =

= Li.m.
P70 =0 53 J3=0 \s3
. po17 T i
=Lim. > [ ¢;(s0) [ 5.(s2)(T — so)dsadssf ¢ — AP =
J1,J2=0 < ¢ s3
I p (i1i2)
- lpl—{o% i 02 /¢J2 82 - 52 /¢]1 53 dS?,dSQCJl 32 — AG =
1 T S9
i/ — 5 /dW W dw(+
t
1 oo T
+§1{i1=i27é0} z /¢]2(82)( - 82 /¢32 83 d83d82 A 1112) =
J2=01%
1 T 81 82 '
- 5///dw§ dw, 22 dsi+— 1{11—12#0}/ T—s9)dsy— A(m"’) w.p.1. (2.152)
t tt
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2.5 Expansions of integrals of 4th multiplicity

Let’s consider By, By, B :

2
By :pli_)m > 02 /¢J4 /¢J4 (s1) (/ b, (s2) dSQ) dsids =

p
z_: / /(/)J4 (s1)(s1 — t)dsids — Jim Z at, =

t J4—
1 T
1,5/ s —t)dsy — Jim jz_: al s (2.153)
2 S3
s (ot (Jeutons) [ opintes
J4,J3=0 t

T 51 S2 2
_%/¢j3(51)/¢j3(52) (/ ¢j4(83)d83> dsods;—
t t

T
_%/ )5 (51) / js (s) (/ ), (s2) d82> deSl) =
t

p 17T 53 P
= j32=0 5 t/ ¢)J'3(S3)(83 - t) t/ ¢j3(81)d81d33 - plg&nzzo b.?3j3_
p 1 T S1
_ .20§/¢j3(81) /( )¢33(82)d82d81 + llm Z CLJ3]3
J3= t t
P 1 51 ' p
_ P 5 t/ b, (51) t/ ¢j,(s)(s1 —t +t — s)dsds; —l—plgglo j3Z=0 C§3j3 —
' L. p ' p
- plgglo jzzo @3 s + 4 p—)oo jzz Cg N plggo jzzo bijs; (2'154)
By + B3 = 1 1.1 Z 0( Jajajaje T 033341433) =
Ja,jz=
= l]bi_.}oré. Z /(;533 /(;SJ4 (s1) /(;SJ4 (s2) /qﬁjg (s3)dssdsadsids =

J1,J3=0%

—lim Y / di,(s1) / di, (52) / di, (s3)dssds; / dj, (s)dsds; =

Ja,J3=01%
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

=1im. i()( [ 5 (s1 / éi, (53 / Bi, (52)dss / b, (s)dsdssds; —

prroe ]45.73

_/‘159'4(51)/1%(53) (/ ¢j3(8)d8) d83d81> =

00 T S1
= > [ dil(s)(T - 81)/¢j4(83)d83d81—
Ja=07%
00 T
— Z /¢j4(81)( — 81 /¢J4 83 ngdSl + 2 hm Z ]434 =
Ja=01% ® =0
- 2p1l>1g3jz_ Jaja®
Therefore
b b
B3 =2 hm Z j3J3 pll>m Z a]3J3 p z J3J3 + hm 'ZO b§3j3' (2'155)
Js— J3=0 3=0 J3—

After substituting the relations (2.147)-(2.155) into (2.146) we obtain:

p . . . .
i i) #(i2) (i) (ia) _
lpl—>ro% . Z 034733231 Ji Sj2 Sj3 Sja T
.717.727.737.74:0
S1

T s
= I8 3 iy | [ [ dssdw i dwlio
t tt

+11{12 13¢0}777dw h dSldW( )-|- 1{23 l4¢0}777dw (22)d81-|-

1 T S1
+11{i1=i2750}1{i3=i47é0}//d32d31 +R=
t t

= I e + R wop.d, (2.156)
where
* I xts xt3 xto

pg = [ 1T T aw
t t t t

(il,ig,ig,’i4 = 0, 1, . .,m);
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2.5 Expansions of integrals of 4th multiplicity

R =~ 145,y AT + Ls,mipoy (-5 + AT 1+ Af) 4
—}—1{21_247&0} (A('l2l3) _ Ag&2l3) + Aé’tﬂ;g)) . 1{12 Zs#O}A(l”‘l)

+1{i2:i4760}( A(uzs) +A(Z1Z3) +Aé1113)> 1{@3 14760}A(M2)

+1{21 127“)}1{@3 =is7#0} p2y hm Z aJ3J3
.73—

p
—L{ii=is0y L fia=iaz20} (hm Z a]3]3 Z Jajs plgglo ‘ZO b?3j3> B
J3=

J3=0 3=0

—1{i1=i4¢0}1{i2=z‘3¢0}
p p
(2 lim Z s —plbm Z al i, — hm > i+ hm > bggj,s) .

> ja=0 J3=0 % ja=0 > ja=0
(2.157)
From (2.156) and (2.157) it follows, that theorem 7 will be correct if
AL —0; Jim Y- iy, 3 W = i, 35 = i 30 11, =0
o lm aJs]s ; Js]s Js]s - Iglo ) J3J3 L
J3— 3=0 3=0 J3=
(2.158)

where k=1, 2,...,6; ,7=0, 1,...,m
Let’s consider the case of Legendre polynomials. Let’s prove, that
AW‘*) = 0. From (2.226) it follows:

2 4
) (i) 3=
{( Z CLJ4]3 J3 Jzi ) } Z Z ( ]3.73a’JIJI+
J :

J3,J4=0 53=0

n (a§3j> +2a} ab +( m) ) +3 Z (a,, ,>2 —

J31

éoai”) i Zo L (< ) +2 Z () (s =is  0)
3 ) (2.159)

2
{( Z a]4]3 3(24)> }_
J3,34=0

= 'i (@ 3433) (i3 # 145 13 # 0; 14 # 0); (2.160)

J3,Ja=0
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

(

2 (T —t) éo (a2 o)* if ig = 0,44 #0
{( Z a,74]3 .7(24)>}:<(T—t)§: (CLOJg) 1fZ4—OZ37éO

J3,J4=0 73=0

(T — )% (aBy)? if i3 =14 =0

(2.161)
Let’s consider the 1st case (i3 = i4 # 0):
. (T —t)2/(2j4+ 1)(2J5 + 1)><
T3 32
1 Y 00 Y1 2
x [ Pu(y) [ P(y) > (20+1) ( | P, (yz)dyz) dyrdy =
-1 -1 Ji=p+1 —1
_ (T2 + )25+ 1)
32
1 1
x [ Py(y) pp— (Pjs1(y1) = Prca(nn))? [ Piy()dydyr =
-1 Ji=p+1 21 +1 (1
_ TtV
32425+ 1
1 00 1 )
x [ Pyy(s1) (Piycr(91) = Piysa(m)) > 9 1 Binryn) = Pi-i(y1))” dyn
-1 Ji=p+1 J1 +
if j4 75 0 and
, (T —1)2/25+1
Tjaj3 = %
32
1 > 1 P P d
x [ P (y)(1 - —— (P, —P,_
J P =w) 3 e (P = Puea ) dn
if j, = 0.
From (2.13) and estimate |Pj,_1(y) — Pj,+1(y)| < 2 we obtain:
oo 1 : O]
al . _— — = (ja # 0); 2.162
ol <G B h e s
1 g C)
ah .| < C — 2.163
‘ 0,_73| = Ojlzzp-i- ]%/1 1_ % D ( )
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2.5 Expansions of integrals of 4th multiplicity

oo 1 1 1
a| < C, — , 2.164
| 00| = J1_p+1 j% 1 _ 1 p ( )

where Cjy, C; — are constants, which doesn’t depend on p.
Taking into account (2.159) — (2.164) we write down:

2 2
(ia) _
{ Z aJ4J3 J3 344) } - (GOO + Z a]3]3) +
33.74_ J3_

p Jz—1 2
.73—1 .7321.73 1
2
P 2 1 12 1 K,
+2 Z Qi +(a00) <K0< Z—> +—+
(jgl ( 74 ) P PisiVis

33_1 1

o ng—:l 33221 ( \/7 \F )

1 K K3 21
< K, /dw +—1+—32.—§
p P j;=17J3

when p — oo (i3 = i4 # 0).
The same result for cases (2.160), (2.161) also follows from the estimates
(2.162) — (2.164). Therefore

Al — . (2.165)

Not difficult to see, that formulas A(m“) =0, A(“”) =0, A(mg) = 0 may
be proved similarly Wlth the proving of the relatlon (2.165). Moreover, from
the estimates (2.162) — (2.164) we obtain:

Jim, 'Zo at ;. = 0. (2.166)
J3

Relations phm Z b . =0, hm Z

—~o Jsis J3]3 = (0 also may be provedanalo-
gously with (2.166)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s consider A(m“) :

AP = AP 1 AP AP a0, (a6
where
ALz 2Li.m. Z g ),
.725.74—
T
g§4j2 :/ /¢J2 31 (/ ¢J1 52 d52/¢31 S92 dsz) dsids =
t Ji=p+1
= Z /¢J4 /¢31 52 d32/¢j2(81)/¢j1(82)d82d51d8. (2.168)
Ji=p+1% t 51
Note, that
2
g§4j4 = 2 (/ ¢J4 /¢]1 32 d52d5) ; (2.169)
Ji p+1
g§4j2+g§)2j4 = Z+1/¢J4 /¢31 82 dSQdS/d)]Q /Qj)]l 82 dSQdS. (2 170)
=p+1ly
We hayve:
p_ (T=1)*/(2s+1D)(2ja+1)
gj4j2 - 16 X
1
P, —1(y1) — Pj11(y1)) X
Jl_p+1 2]1 /1 ! ) = Pinalyn))
/ J1—1 ) le+1(y))dydy1; j47j2 <p.

Due to orthonormality of Legendre polynomials, we obtain:

(@ @i+ DR+ 1)
16

D _
gj4j2 + 9'523'4 -

00 1 1

X —— | Pj,(y1) (Pj,-1(y1) — Pj+1(y1)) dya X
X gt ] Paw) (Buna®) = P ()

% [ Po) (Pyaa®) = P (v)) dy =



2.5 Expansions of integrals of 4th multiplicity

2
T-t)*(2p+1 T—4)
( )1((3 = )2p+3 <f I (yl)dy1> = m if ]2 ] =p

= ; (2.171)
0, otherwise
p_ (T—1)>*(2ja+1)
jsjs = 16 X
1 2
x5 o P() (Puoalw) — Puaw) dn | =
W 2n+12\/ " Y1) (Pj—1( n+1y1))dyr | =
2
T—t)*(2p+1 _ T—4)2 e .
_ ( )3§p )2p+3 <f Pp(yl)dyl) = m if J4 =P (2.172)
0, otherwise
From (2.159), (2.171), (2.172) it follows:
( 2 2 p J3—1 2
z aJ4J2 J2 J4 ) Z ngJs) + Z Z (gJ3J3+gJ333) +
j2,J4=0 J3=073=0

$ 2 (rT-v* Y (T —t)? )2
+2 p/ ] — + 0 ‘I‘ 2 — 0,
jgz=0 <933]3> (8(2p+3)(2+ 1)) (8(2}9-{—3)(2-{— 1)
when p — oco(is = 14 # 0).
The same result for the cases:

1.2275’1:4, 2:2#0, 7:47£O;
2.1 =0, 14 # 0;
2.24:0 227&0
2.19=0,14=0

also may be obtained. Then A" =0, and A" = 0.
Analogously we obtam that Aj i) _ .

Let’s consider E C? .. We have:

FEVEN

CJ%J:; = J;ZJ3 + d§3]3 o 29?3]3' (2'173)

We proved, that E 9333
From (2.172) it follows

= 0. Analogously we obtain, that EO d; ;. = 0.

(T —1t)?
— — ()’
332_ 993]3 p—>oo 8(2p + 3) (2p n 1)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

then
Z 3333
J3=0
Relations (2.158) are proven for polynomial case. Theorem 7 is proven
for the case of Legendre polynomials.
Let’s consider the trigonometric case. In this case we have:

2
3433 - /¢J4 /¢Js 31 (/ ¢J1 52 dSz) dsids =

J1i=p+1
1 7
—/ (s1) (/ b, (s2) d82> /¢J4 Ydsdsq;
2 t J1—p+1
81 flsinwds
2 T—t
| #i(s2)dsz = ;1/— AT =
t - f cosimi,i(_st_t) ds
\[ \/7 —cosim;(slt 041 :
< — (.71 7£ 0)7
27‘(’]1 SiIlQM}(Slt t) 1
271'j4($1—t)
T VT —1 | o571 -1 K,
¢, (s)ds = —————— < — (Js #0);
S[ i(9) s | e < 070
T—t
T
T — S1
ds =
3[ bols)ds = =
Kl & 1 Kl . Kl
ab | < — — < — 0); lab . | < —, 2.174
J4J3‘ = ]1_Zp+1]12 = pis (.747'é ) | 0,_]3| = p ( )

where K, Ki — are constants. N
Taking into account (2.159) — (2.161) and (2 174) we obtain: Al = 0.
Usmg the same arguments we find, that: A (iaia) _ =0, A (ia) _ =0, Ag (iia) _ =0,

=0, hmpr 011m2 = 0.

J3Js3

In this case we Wlll use (2.167) — (2.170). We have:

lim Za

p—)ooj3 0 J3J3 .73.73

i Z
Let’s consider A 2i4)

ﬂb- (s) (1 — COSM) ds
\/51 /T — ¢ 3 J4

T T
[ 85(s) [ 5, (s5)dsads = : |
4 s 27T]1 f¢]4 (S) <_Sin27TJ1(S—t)> ds

Tt
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2.5 Expansions of integrals of 4th multiplicity

where j1 > p+1, 4 =0, 1,...,p. Due to orthonormality of trigonometric
functions, we obtain:

T \/_2;3 or0if j4 =0
/¢j4(3)/¢j1(32)d32d3 = s >p+1 (2.175)
t d 0, otherwise

From (2.175) and (2.168) — (2.170) we obtain:

(I )2 or0if jo=74=0

p P v 2
Gjsge T Gings = 22 :
n=p+l | 0, otherwise
—$)2 . .
r 0 (Z;Q;zg or 0 if 14 = 0
jsjs = Z :
n=p+l | 0, otherwise
Therefore
< BLif o = g =0
g§4j2 + g§2j4 ’ (2176)
= 0, otherwise
< Bif gy =0
g,]]?4j4 R (2177)

= 0, otherwise
where K; — is a constant, which doesn’t depend on p.
From (2.176), (2.177), (2.159) — (2.161) it follows, that AY**) = 0 and
A:()f?i“) = 0. The similar arguments prove, that A(“”) = 0.

Taking into account (2.173) and relations lim E fiis = pll)m Z db . =

J3js T
=0
0, which follows from the estimates: |f};| < fﬂl, | i < f}, | foo‘ <
|db,| < £t we obtain:
P
~ S
phrcr}o 2 Cj3j3 = —2 lim Z Gjsja
J3= J3=
p K
p Tt
0= fim 2 g < Jig =7 =0
=

Finally, we have lim S Cr

= Clsis = = 0. Relations (2.158) are proven for
0 ja=

trigonometric case. Theorem 7 is proven for trigonometric case. Theorem
7 is proven. O.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

2.6 Expansion of multiple stochastic Stratonovich in-
tegrals of kth multiplicity, based on theorem 1.
Polynomial and trigonometric cases

The author thinks, that generalization of the theorem 7 for the case of
any fixed k (k — is multiplicity of multiple stochastic Stratonovich integral)
is correct (without the proof).

Let’s formulate (without the proof) the following theorem.

Theorem 8. Assume, that {¢;(z)}52, — is a full orthonormal system
of Legendre polynomials or trigonometric functions at the interval [t,T].

Then, for multiple stochastic Stratonovich integral of kth multiplicity

T xt3 xt2
i = [ [ dwiPaw L aw (2.178)
t t ot
(1,49,...,0 = 0,1,...,m) the following converging in the mean-square
Sense erpansion
o p L .
e =Lim > GGG G (2.179)
P70 g1,k =0

158 reasonable, where

Clois = / &5 (1) - / b, (£2) / B, (t1)dtrdby . . . diy;

T .
W = ¢;,(s)dw) — are independent standard Gaussian random vari-
t
ables for various i; or j; (if iy # 0); wﬁ) = fT(i) — are independent standard
Waiener processes; 1 =1,...,m and W&O) =1, NM=011uy,=0and \; =1 1f
il = ]_,. ..o, Mm.

Theorem 8 allows to approximate multiple stochastic Stratonovich in-
(l1 lk
tegral I o AR Tt by the sum:
o P L .
I = 2 OCjk...mlC}fl)Cg”---C},ﬁ’“), (2.180)
J1y---Jk=

Jim, M {(I e =1 :A(f%.'.';:))%t” = 0.

Integrals (2.178) — are integrals from the Taylor—Stratonovich expan-
sion (7.21). It means, that approximations (2.180) may be very useful for
numerical integration of Ito stochastic differential equations via the trun-
cated expansion of the form (7.21).

where
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2.7 Expansions of integrals of any multiplicity

2.7 Expansion of multiple stochastic Stratonovich in-
tegrals of any fixed multiplicity &k, based on gen-
eralized repeated Fourier series

2.7.1 The case of integrals of 2nd multiplicity

Let’s analyze the approach to expansion of multiple stochastic integrals,
which differs from the approaches examined before [34], [35], [46] (pp. 262
— 266), taking multiple stochastic Stratonovich integrals of 2nd multiplicity
as an example.

Thus, let’s analyze the multiple stochastic Stratonovich integral of the
following type:

T xt2

Tl = [ walts) [ wa(t)dEVdfS; iy,i=1,...,m,
t t

(4) (4) (0)

where w;*' = £ when ¢« = 1,...,m; w;’ = ¢;41,...,4, = 0, 1,...,m;
fT(’) (¢t = 1,...,m) — are independent standard Wiener processes; 1;(7)
(I =1,...,k) — are continously differentiated functions at the interval
[t,17;

Let’s analyze the function

1
K*(t1,t2) = K(t1,t2) + 51{t1:t2}¢1(t1)¢2(t1):

where t1,ty € [t,T] and K (t1,ts) has the form:

¢ t), t1 < t
K(tl,tz):{ﬁl(oéifﬁsvfs)e PRt e 1T,

Due to lemmas proven in chapter 1 and formula

ta

T T
" i1 i2 1
TP, = /¢2(t2) /¢1(t1)dw§1 )dW§2 )+ 51{1'1:@'27&0}/¢2(t2)¢1(t2)dt2
J t

t
with probability 1, we have
N-1N-1 _ _
T W, =Lim. 3 Y K*(m, ) AwWAw® wp1,  (2.181)
N=0o 1,20 1,=0 ! 2

where the sense of formula (1.8) notations is kept.
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s expand the function K*(t1,ts) using the variable ¢;, when ¢, is
fixed, into the Fourier series at the interval (¢,7T) :

K*(t,t) = 3 Gy, ()i () (b £1,7T), (2.182)

Jj1=0
where
T

Cj (t2) / (1, t2) @), () dt = /K (t1,t2)@j, (t1)dt; =

t

= Ya(t2) /2 1(t1) ¢y, (tr)dts,

{#;(x)}529 — is a full orthonormal system of continuous functions at the
interval [t, T7].

The equality (2.182) is executed pointwise in each point of the interval
(t,T) according to the variable ¢;, when ty € [t, T is fixed due to sectionally
smoothness of the function K*(¢1,t2) according to the variable ¢; € [t,T]
(tg — 18 ﬁxed).

Note also, that due to well-known features of the Fourier series, the
series (2.182) converges when t; = ¢,7 (not necessarily to the function
K*(t1,12)).

Obtaining (2.182) we also used the fact that the right part of (2.182)
converges when ¢; = ¢, (point of finite discontinuity of function K (¢1,t2))
to the value

% (K (t2 — 0,2) + K(ta + 0,12)) = %m(tz)w(tz) = K*(t2,12).

Function Cj, (t2) is a continuously differentiated one at the interval [¢, T'.
Let’s expand it into the Fourier series at the interval (¢,7):

Cj, (t2) = _ZO Cijr b (t2) (b2 #t,T), (2.183)
Jo=
where
to

T
Ciajy = [ Ciu(t2) by, (t2)dtr = / Va(t2) by, (t2) [ 1(t1) 5, (t1)dtadlts,
t

t

and the equality (2.183) is executed pointwise at any point of the interval
(t,T); the right part of (2.183) converges when t3 = ¢,7 (not necessarily
to le (tg)).
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2.7 Expansions of integrals of any multiplicity

Let’s substitute (2.183) into (2.182):
N (6.¢] (6.¢] 9
K*(t1,t2) = _Z Z Chi @4, (t1)5, (t2);  (t1,%2) € (¢, T)7, (2.184)
]1: :

moreover the series in the right part of (2.184) converges at the boundary
of square [t, T]? (not necessarily to K*(t1,t2)).

Hereafter, using the scheme of proving of theorem 1 and (2.181) w.p.1
we get:

D1 D2
J* [¢(2)]T>t = _20 ZO Cthcj + RIJ)}?? (2185)
J1=YU )2

where

T t Tt
RFY? = //Gplp2 (t1, o dwt dwt —|—//Gp1p2 (t1, t2 th( )dw,g )—I—
o bt

+1{i1:i2?50} / Gplpz (t17 tl)dtl;
t

b1

b2
i (t1,t2) © K*(t1,12) — 3 Y Ciyji s, (t1) s (t2);

n =0 jz =0

P1, p2 < 0.
Using standard evaluations (7.3) and (7.4) for the moments of stochastic
integrals, we obtain

to

M{ (BRP)™} < n(f [ (G (t1,12))"" dtrdta+
t t

T t1 T
+/ / i (1, £2)) 2" dtadts + 15,0y [ (G (11, 12))™ dt1>, (2.186)
t t

where C,, < oo — is a constant which dependsonnand T'—¢t; n =1, 2,...
Note, that due to assumptions proposed earlier, the function Gy, ,, (t1, t2)
is continuous in the domains of integrating of integrals in the right part of
(2.186) and it is bounded at the boundary of square [t, T]?.
Let’s estimate the integral in the right part of (2.186):

to

T
0< // oo (1, 12)) 2 ditydty = (/ /) e (11, 12)) 7" dtydty <
t t
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

S Z max (Gp1p2 (tl, t2))2n ATiATj + MSI‘E S

i=0 j=0 (t1,b2) €[, Tip1 ]X[75,7j44]

<Y 3 (G ()" Amidrt

J

2n
( s (t(p1p2)’t(1?1p2))) . (Gp1p2 (Ti7 Tj))2n‘ AT@ATJ' + MSI‘E S

Zs
,_.o

||M

n 1 1
g (G5, 7)™ ATATy + 1 (T — £ = 3)* (14 ) + Mk,

(2.187)
where D, = {(t1,t2) : to € [t + 26, T —e|,t1 € [t +¢&,t2 —¢]}; T. =
D\D.; D = {(t1,t2) : ty € [t,T),t1 € [t,t2]}; € — is any sufficiently small
positive number; St, is area of I';; M > 0 — is a positive constant limiting
(Gpupy (1, 2))™" ; (tz(p 1P2) t(plp 2)) is a point of maximum of this function, when
(t1,t2) € [, Tix1]x [TJ,TH_l] T =t+2e+iA (i=0,1,...,N); v =T — ¢
A= (T—-t—3¢)/N; A <eg e >0—is any sufﬁ(:lently small positive
number.

Getting (2.187), we used well-known properties of integrals, the first
and the second Weierstrass theorems for the function of two variables, as
well as the contlnulty and as a result the uniform continuity of functlon
(Gpupy (t1,2))*" in the domain D, (Ve; > 0 38(e;) > 0, which doesn’t
depend on t1, to, p1, p2 and if v/2A < 6, then the following inequality takes
place:

2n n
(G (77 177)) ™ = (G (72, 73)) ™ < 1)

Considering (2.184) let’s write down:

lim lim (Gpp, (t1,12))*" = 0 when (t1,t) € D,

P1—00 Pa—00

and execute the repeated passage to the limit lim lim lim in inequality
e—+0 P10 p2—

(2.187). Then according to arbitrariness of €; we have
T to
p}l_r)%o p%l_r)%o / DLP2 tl, t2 dtldtQ = 0. (2188)
t
Similarly to arguments given above we have:

Tt
lim lim [ [ (G (t1, £2))™" dbadty = 0, (2.189)
t t

P1—>00 Pa—00

[
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2.7 Expansions of integrals of any multiplicity

T
lim lim [ (G, (t1,1))>" dt; = 0. (2.190)

P1—00 pa—00

From (2.186), (2.188) — (2.190) we get

lim lim M{(Bf7)"'} =0; neN.

P1—00 Pa—00
The last equality and (2.185) provide a possibility to write down:
J [ ]Tt - ZO ZOCthCJ J2 ’ (2'191)
Wil J2

where convergence of the repeated series is regarded in the mean of degree
2n; n € N.

It is easy to note, that if we expand the function K*(¢1,t5) into the
Fourier series at the interval (¢,7") at first according to the variable 5 (1
is fixed), and then expand the Fourier coeflicient of the obtained series

i(tr) [ alta) s, (t2)dts

into the Fourier series at the interval (¢,7") according to the variable ¢,
then taking into account, that

T T
[ 1885 (8) [ ¥a(ta) s, (b2)dtadts = Oy,
t t1

we will come to the following formula of expansion of multiple stochastic
Stratononovich integral of second multiplicity:

J*[ ] Z Z C]ZJlCJ Jo
J2=071=0
Note, that directly from (2.191) follows (5.6) — (5.8), (5.11) — (5.13),
(5.44).
2.7.2 The case of integrals of 3rd and 4th multiplicity

In the previous section we examined the following equality:

V1 (t) (1{t1<t2} + %1{1:1:1:2}) i /¢1 (t1) @), (t1)dt19j, (t1), (2.192)

71=0
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

which is executed pointwise at the interval (¢,7'), besides the series in the
right part of (2.192) converges when t; = ¢, T.
Using (2.192) we get:

ta

S5 slts) | walta)dn(ta) [ r(t0)es (1) dtrdtad (12) 6, (1) =

71=0 72=0 t

o0

ta
= 3 Us(ts)va(ta) [ $r(tr)ds, (t1)dta (1{t2<t3} + %1{t2=t3}) ¢, (t) =
t

Jj1=0

1 1
= ¢1(t1)¢2(t2)¢3(t3) (1{t1<t2} + 51{t1=t2}) (1{t2<t3} + 51{t2=t3}> : (2'193)

On the other side, the left part (2.193) may be represented by expanding
the function

t t

3(t3) /3 pa(ta) ¢y, (b2) /2 D1 (t1) ¢, (f1)dtrdt

¢ t
into the Fourier series at the interval (¢,7") in the following form:
> 2 2 Chunin @4 (01) 9, (t2) 85, (23), (2.194)
J1=0 j2=0j3=0

where
to

T t3
Cisioii = [ ¥s(t) b (ts) [ ¥a(ta) by (t2) [ (1), (1) dtrdtadts.
t t t
So, we get the following equality:

io: i i Claiain @5 (t1) 9o (82) djy (£3) =

J1=0j2=0j3=0

1 1
= Y1 (t1)a(t2)s(ts) (1{t1<t2} + 51{t1=t2}> (1{t2<t3} + 51{t2=t3}> =

3 1
= II ¥u(tr) (1{t1<t2}1{t2<t3} + 51{t1=t2}1{t2<t3}+
=1

1 1 )
+§1{t1<t2}1{t2:t3} + Zl{tlth}l{tQ:@}) K (t1,t2, t3), (2.195)

which is executed pointwise in the open cube (¢, T')?, moreover series (2.194)
converges at the boundary of the cube [t, T]3.
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2.7 Expansions of integrals of any multiplicity

Using (2.192) and (2.195) we get:

t4 ts ?
53 5% () [ slts)0i(t) [ a1l [ ()6 (1)t
J2=Y J3 ! t
3
X H ¢jl (tl) =
=1
o0 0 1
— j12=20j2z=:0 Pa(ta) (1{t3<t4} + 51{t3:t4}) .

t3

Xty (ts) [ Walte) By t2) /2 Di(t) @ (1) dtrdta, (t2) 65, (1) =

t

1
= a(ts) (1{t3<t4} + 51{t3=t4}> X
t3 to

X Z S Wslts) / 2(£2)85, () [ W1(t1) &y, (1) dtadtad, (), (1) =

=07j2=0 t

2

1 3 1
= t4(t4) <1{t3<t4} + 51{t3=t4}> 11—11 i) 11 (1{tl<tl+1} + 51{t1=tz+1}> =

=1
3

1 1
- ll:Il ¢l(tl) l[[l <1{tl<tl+1} + il{tl:tl+l}> : (2196)
The left part of (2.196) may be lead by expanding the function

t4 t3 to

Pa(ta) [ Us(ta)dis(ts) [ Ya(ta)di,(ta) [ r(t1)ds, (tr)dtrdtadty

t t t

into the Fourier series at the interval (¢,T") to the following form:

i io: i i Clisjagain H i (t), (2.197)
J1=0372=0753=0j4=0

where Cj,;j,j,;, is defined using the formula (1.6).
As a result we get the following equality:

||M8

4 3 1 def
.74.73.72.71 H ¢Jl (tl) H zpl(tl) H (1{tl<tl+1} + 1{tl tl+1}> =

=1 [=

—

©F K*(ty, 1o, t3, 14), (2.198)
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

which is executed pointwise in the open hypercube (¢, 7)% moreover the
series in the left part of (2.198) converges at the boundary of hypercube
[t, T

Due to lemma 1, remark 2 and formula of connection between multiple
stochastic Stratonovich and Ito integrals:

t3 to

= /¢3(t3)/¢2(t2)/¢ (tl)th th th +

t

1 T ts .
+§1{i1=z‘2¢0}/¢3(t3) /¢2(t2)¢1(t2)dt2dw§3 I+
t t

1 T t3 i
+§1{i2=i3¢o}/¢3(t3)¢2(t3) /¢1(t1)dW§1 )dt:s
t t

with probulity 1, we get:

N—1N-1N-1
Ty =Llim. ¥ ¥ Z K* (Tll,TlQ,Tl3)AW(“)AW(’2)AW(’3) (2.199)

N—=00  [,=0 [,=0 I,=

where the equality is fulfilled with probability 1
Hereafter, using the scheme of theorem 1 proving and (2.199) w.p.1 we
get:

D1 P2 P3 .
T =% ¥ ¥ Cipnl G + Ry, (2.200)
J1=072=0j3=0

where

N—-1N-1N-1
D1P2P: ] ) 7
R1 P =1lim. D Y N Gp1p2p3(Tll,T12,T13)AW 1 AW 2AW 3)
N—=00 1.=0 1,=0 1,=0

P1 P2

P3
Gopipaps (t1s b2, 13) & K¥ (b1, t0,83) — 3 3 Y Cloini 0y (11) b5, (£2) b (£3).

J1=0j2=0 js=0
Using formula (2.225) for muliple sum we get:

N—-1N-1N-1
Rplpng = Lim. Z Z Z GP1P2P3 (Tll’ Tlys Tl3)AW(ll)AW(lZ)AW(23) -

N—o0 I3=0 1,=0 I1=
N-1Il3—-115—1

= Lim. Z Z Z ( P1P2p3(7717772’Tl3)AW7('fl)AW7('fz)Awg3)+
N=00 ;=0 1,=01,= ! 2 3
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2.7 Expansions of integrals of any multiplicity

Z 7 )
p1p2p3 Tlyy Tl Ty Aw 1 AW 2)AW7('123)+

Aw “ AW ZQ)AW(13)+

Tlys T3y TI

P1P2P3 1

( )

P1p2P3 (7-127 Tlys 7-l3)A Zl AW Z2)AW(23)+
( )
( )

Z ) 7
P1p2P3 Tl3s Tlys Ty Aw 1 AW 2)AW( 3)+

+GP1P2P3 (Tlga Tl TZQ)AW(“)AW(”)AW(%)) +
N-113—-1

+£V1_>123 lgzo lQZ ( P1p2ps (lea Tly» Tls)AWS'Z)AWS'Z)AWg:)_}_

Zl 12 23
+GP1P2P3 (le y Tlzy Tly ) AW AW AWTl2

+Gpipops (Tl37 Ty le)AWS';L;)AWg';;)AW’(fjj)> +
N-11l3-1 ) ) .
+Lim. Z Z ( D1P2P3 (Tlu Tls; 7'13)AW%1)AW%2)AW5§3)+
N—o I5=0 1= ! 3 3
+GP1P2P3 (7737 T Tl3)AWS;)AWSf) Ang)_F

+G oy pops (Tigs Tl Tll)AW%;)AW%)AW%f)> +

N-1
+1 1.101. Z G;D1p2p3 (Tl37 Tls, 7-l3)AVV i) AW Z2 AWT?S =
N—oo I3=0 3

GP1P2P3 (t17 to, t3)th th th —{—

I

) & S S S
N N N S S

Gplpzps(t17t37t2)dwt th th -|-

_|_

GP1P2P3(t27t17t3)th th th +

+

Gp1p2p3(t2at3at1)dwt th th —|—

_|_

Gp1p2p3(t3at2at1)dw,§ )dW§ )dwé )_|_

_|_
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

ts ta

T
] Jormiss sttt

T ty .
+1 (i, =ir0) / / Gipapaps (t2, ta, t3) dbadw e +
t t

T t3 .
+1{i1=i3#0}//Gp1p2p3 (t27t37t2)dt2dwg2)+
t t

T ty .
+1gi,=ig£0} / / Gipupaps (t3, T, t)dtadwis) +
t t

T ts3 .
+1{i2:i3¢0}//Gp1P2P3 (t17t37t3)dwgl)dt3+
t t

T t3
+1{21_l3750}//Gp1p2p3 t3,t1,t3)dwt22 dt3+

T t3 .
+1{i1:i27é0}//Gp1P2P3 (t37 ts, tl)dwgg)dt&
t t

Now, using standard estimations for moments of stochastic integrals we
will come to the following inequality:

T t3 to
2n n
M {(RP1P2P3 } < C (///( P1P2P3 tl’tQ’t3)) + (GP1P2P3 (t17t37t2))2 +
+ (Gplpzps (t2’ t1, t3))2n + (GP1P2P3 (t27 t3, tl))2n + (Gplpzps (t37 ta, tl))2n +

+ (Gp1p2p3 (tg, t1, tz) )2n> dt1dtodts+

t3

T
2n
[ [ (Lumirr (o5 + (Gt 1, 10) )+
t t

2n 2n
L miar) (G (283, 12)) + (G s, 2:1))” )+

+ 1{i2=i3¢0}<(Gp1p2p3 (t3,t2,2)) "™ + (Gpypaps (tz,ts,ts))2"> dt2dt3>- (2.201)

It is important, that integands functions in the right part of (2.201) are
continuous in the domains of integration of multiple integrals and in accor-
dance with comment to the formula (2.195), are bounded at the boundaries
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2.7 Expansions of integrals of any multiplicity

of these domains, moreover, everywhere in (¢,7T)® the following formula
takes place:
lim lim lim Gy p,p,(t1,t2,t3) = 0. (2.202)

P1—00 Pa—00 p3—r00

Further, similarly to (2.187) (two dimensional case) we realize the re-

peated passage to the limit lim lim lim wunder the integral signs in
P1—00  P2—300 P3—+00

the right part and we get:

lim lim lim M{(REPP)™} = 0.
P1—>00 Pa— 00 pP3—00
The last relation in it’s turn means, that

x 0o 0

T [t M—ZZZQM e, (2.203)

=0 j2=0 j3=0

where the repeated series converges in the mean of degree 2n (n — natural),
that is

! I tim ML (g N C. (i2) »(i3) o
pll—r>%o pzl—r>%0 p31—r>%o {( [ }Tt—hZOhZO]SZO Jaj2J1 J2  SJ3 ) }_0

2.7.3 The case of integrals of multiplicity &

In this section we will formulate and prove the theorem about expansion
of multiple stochastic Stratonovich integrals of any fixed multiplicity k& of
the form (1.2), based on the repeated Fourier series according to the Leg-
endre polynomials or the system of trigonometric functions. This theorem
provides a possibility to represent the multiple stochastic Stratonovich in-
tegral in the form of repeated series of products of standard Gaussian
random variables.

Let’s define the following function on the hypercube [t, T]*

k—1
K(ty,... ty) = H i(t) I Lty > 2. (2.204)

Let’s formulate the following statement.

Theorem 9. Assume, that the following conditions are met:

1. ¢i(7); i=1,...,k — are continuously differentiated functions at the
interval [t,T].

2. {¢j(x)}52¢ — 1s full orthonormal system of Legendre polynomials or
trigonometric functions at the interval [t,T].
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Then, the multiple stochastic Stratonovich integral J*[l/)(k)]ﬂt of type
(1.2) is expanded in the converging in the mean of degree 2n; n € N,
repeated series

J*[d)(k)]T,t = 'ZO Z Jk---J1 H Cj ) (2205)
le :
, T .
where CJ(;’) = [ ¢;,(s)dwl® — are independent standard Gaussian random
¢

variables for different 4; or j; (if i # 0);

k
Cipiv= [ Kt 1) 11 6 (t)dt ... dty. (2.206)

[¢,T]*

Proving of the theorem will consist of several parts.
Let’s define the function K*(¢1,...,%;) at the hypercube [t, T]* as fol-

lows:
k—1

k 1
K*(t1,...,t) = zH Ui(tr) 11 <1{tl<tl+1} + 51{tl:tl+1}> =

=1
k—1 k—1 1 k-1 r k—1
= ll_Il ¢l(tl)<H 1{tz<tl+1} + H 1{tsl:tsl+1} ll_[l 1{tl<tl+1}>‘
(2.207)

Particular cases of (2.207) for £ = 2, 3, 4 were examined in detail
earlier.

Theorem 10. In conditions of theorem 9 the function K*(ti,...,ty) is
represented in any internal point of the hypercube [t, T|* by the repeated
Fourier series

00 00 k
K*(tlv s 7tk) - Z s Z Cjk---j1 H ¢jl (tl)a (2'208)
=0 jx=0 =1

where Cj, ., has the form (2.206). At that, the repeated series (2.208) con-
verges at the boundary of hypercube [t, TF.

We will perform proving using induction. This theorem is already proved
for the cases k = 2, 3 and 4.

Let’s introduce assumption of induction:

0o 00 00 tp_1
Z ZO ' Z 0¢k—1(tk—1) / ¢k_2(tk_2)¢jk_2 (tk_g) .
1=0 jo= Jk—2= t
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2.7 Expansions of integrals of any multiplicity

t2 _
. .t/qpl(tl)qul (t1)dt; . .. dtp_s ];1:112 b, (t) =
k—1 k—2 1
= ZEII Yi(tr) llle <1{t,<t,+1} - 51{t,=t,+1}> : (2.209)
Then
o ope

Z Ui (ts) /¢k 1(tk—1)dj_, (Fk—1) - -

Jr—1=0
to

--/@bl(tl)(ﬁjl(tl)dtl coodtpy lljll 5 (i) =

t

0 0 o0 1
= Z Z e Z ¢k(tk) <1{tk_1<tk} + 51{tk_1=tk}) ¢k—1(tk—1) X
Jj1=0j2=0 Jr—2=0

tr—1 1)

k-2
X / Vr—2(tk-2)Pjy_, (tr—2) - - -/¢1(t1)¢jl (t1)dt1. .. dtg—s ZHI ¢j, (L) =
J =

t

1 o0 00 00
= Yk (tr) (1{tk_1<tk} + 51{tk_1=tk}> 22 e 2 Ya(ti-)X

51=072=0  jr—2=0
th—1

k-2
X / Yr—2(tr—2)dj, ,(tr—2) /¢’1 (t1)¢pj, (t1)dt1 .. .dtr—2 11 ¢;,(t1) =
=1

1 k=2 1
= Ui (tr) (1{tk_1<tk} + 51{tk_1=tk}> H Ui(t) H (1{tl<tl+1} + 51{tl=tl+1}> =
k—1 1
— H Yi(tr) H <1{tl<tl+1} + 51{t,:tl+1}> . (2.210)

On the other 81de, the left part of (2.210) may be represented by ex-
panding the function

to

t
Ur(t) [ Pno1 (i) @i, (brr) - [ Wr(t) g, () . dtyy
t

t

into the Fourier series at the interval (¢,7") using the variable ¢; to the
following form:

Z Z Cjk Ji H ¢]l (tl)

31=0  jr=0
The theorem 10 is proven. O
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Let’s introduce the following notations:

8lye--551 df
J[w(k)}iﬁt = H {zsp—zsp+1760}><

p_
T tsy+3 toy42
X /¢k(tk) e / Pg+2(ts42) / Vs, (tsi+1)Vsi41(ts41) X
t t t
tsl+]‘ tsl+3 t51+2
X / ¢Sl—1(t51—1) s / ¢S1+2(t81+2) / ¢81 (t51+1)¢81+1(t81+1) X
t t t

tsl +1

/ o1 (ts, 1) / Pu(t)dwit) L dwy Dt adwit

cdwydtyadwl ) dwlY, (2.211)
«T' b2 '

T ®re = [ n(te) ... [ a(ta)dwy .. dwi?, (2.212)
t t
T to

JWre = [wnlte) .. [ dr(tr)dwi? . dw, (2.213)
t t

where in (2.211)~(2.213): ® € (g, ... ), O €y,
Ak7l - {(317“'731) s >80+ 1, ...0,80> 814 1,
St,--,s1=1,...,k—1}, (2.214)

(s1,...,81) € Ap; 1 = 1,...,[%} i =0, 1,...,m; s =1,...,k; [zg] — is
an integer part of number z; 14 — is an indicator of set A (14 = 1 if the
condition A executed and 14 = 0 otherwise).

Let’s formulate the theorem about connection between multiple stochas-
tic Tto and Stratonovich integrals J[/®)]z;, J*[o®]r; of fixed multiplicity
k.

Theorem 11. Assume, that ¥;(7); i = 1,...,k — are continuously
differentiated functions at the interval [t,T].

Then, the following relation between multiple stochastic Ito and Strato-
nowvich integrals is correct:

—
N

|

T W, = J[@b(’“)]TtJr S JPREt wpd,  (2215)

STa---asl)EAk,r

||M

1
127
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2.7 Expansions of integrals of any multiplicity

where Z@j 18 supposed to be equal to zero.

Proof. Let’s prove the equality (2.215) using induction. The case k = 1
is obvious.
If £ =2 from (2.215) we get

T Pre = JpP)r + JW Tt w.p.1. (2.216)

Let’s demonstrate, that equality (2.216) is correct with probability 1
In order to do it let’s examine the process ny,+ = a(t2)J[V1]; t2 € [t, T
and find its stochastic differential using the Ito formula:

Ayt = J[W1]1y 1 dba (£2) + 1 (£2) o (b2) dwi?). (2.217)

From the equality (2.217) it follows, that the diffusion coefficient of process
Nia,ts Lo € [, T] equals to 1 40yt (t2)2(te).

Further, using the standard relation between stochastic Stratonovich
and Ito integrals (see sect. 7.2) with probubility 1 we will obtain the relation
(2.216). Thus, predicating of this theorem is proven for k = 1, 2.

Assume, that predicating of this theorem is reasonable for certain k& > 2,,
and let’s prove its rightness when the value k is greater by unity. In the
assumption of induction with probability 1 we have

T " V]p, =
I k [%] 1 (k) < . ( )
:/ ¢k+1(7){J[¢ Jrt + > > J\P ] 1}dw 1) —
t r=1 (Sr ----- 31)€Akr
T

= [ s (1) T it

t
o *T o
oy, X [ i () TP v, (2.218)

SpyeeyS1)EARF ¢

Using the Ito formula and standard connection between stochastic
Stratonovich and Ito integrals, we get with probability 1

«T

. 1
| e (TP dwli) = T, + ST, (2219)
t

«T
[ i (r) T dwlien) =
t
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

el o=k,
— (2.220)
J[w(k+1)];{%...,sl + %J[d)(k+1)]/§:§r ..... Uoifs, < k—1.

After insertion of (2.219) and (2.220) into (2.218) and regrouping of
summands we pass to the relations which are reasonable with probability
1

TN = T e+ X o0 X Tt (2.221)

when k is even and

g+
) I ) 1 ! ST
T +1)]T7t = J[p* +1)]T,t_}_ 3 > ) Ty +1)]§{} 7 (2.222)
=2 (oA

when k' = k 4 1 is uneven.
From (2.221) and (2.222) with probubility 1 we have

] |
T p®E D), = Jp® D], + Yy X JlpF D] (2.223)

(ST,...,Sl)EAk_H,T

The relation (2.223) accomplishes proving of the theorem. O

Let’s analyze the stochastic integral of type (1.12) and find its represen-
tation, convenient for following verbal proof. In order to do it we introduce
several notations. Assume, that

N-1 Ja—1

SP@=3 ... ¥ ag..iv

w=0 51=0 (j1,-.,jk)

jsr+2_1jsr+1_1 j81+2_1j51+1_1 ]2—].

csr...cslsg\’;)(a):]_vz;:... S OY .Y Y LY x

Jsr+1=0 Js,.—1=0 Jsq+1=0js; —1=0 J1=0
X Z ar

. LN
r H Ijslqjsl+1 (.715"-;.719)

lH Ijslvjsl+1 (.7177.716) =1
=1

where

’" : .\ def : :
ll_[]_ Ijsl;jsl—i-l (-7]-7 ttt 7-7k) é Ijsr;jsr—i-l ttt Ijslajsl-{—l (-7]-7 cte 7jk)7

(k) Ky T : : : :
Cyy - - Co, Sy (a) = Sy (a); zH L dogsn (0 -+ <5 36) = (G155 Jk);
=1
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2.7 Expansions of integrals of any multiplicity

L . . . .. . .. . def
Jl,]l+1(.7qla"'7.7q27.7l7.7q37"'7]qk727]l7.7qk717°"7.7qk) -

def /. . . . . . . N
= (]qU s Jay N1 Jgss - - -y Jqe—oy J1+1 Jq—ys - - - 7Jgk)7

here | = 1, 2,...5 0 # q1,---,42,G3,- - - Q=25 Q=15 -- -, Q. = 1, 2,...;
S1y---,8 =1,...,k—1; 8, > ... > s1; Uy rrday) scalars; q1,...,q; =

1,..., k; expression y > | means the sum according to all possible de-
Jqla'"a.jqk
rangements (Jg,, - - -, Jg.)-

Using induction it is possible to prove the following equality:

¥ S (0
2 - Z i) = 2 Y C,..CusP(a), (2.224)

k= =0 1_ r=0 sr,... s1=1
J J Sr’>.’..>sl

where £k =1, 2,...; the sum according to empty set supposed as equal to
1.

Hereafter, we will identify the following records:
Ajrsesi) = Ureeen) = Djrmie

In particular, from (2.224) when k& = 2, 3, 4 we get the following for-
mulas

—1N-1 ( (2)
Z Z A(j1,j2) (a) + ClSN (a) =
J2=0j1=

N—-172—1 N—

- Z Z Z a’(j1J2 Z Ajaga) =

72=0 j1=0 (j1,52) 2=0

N-1j»—1
Z Z (ah]'z + a’]z.h) + Z a’]2.727
Jj2=0j1=0 j2=0

NS 3) 3)
2 Z_ Z_ (J1,J2-J3) SN (a)+clsN (a)+

+C25% (a) + C2C18P (a) =

—1j3—1j2—-1 —1j3—1

Z Z Z Z Q(4;5253) + Z Z Z a(j2j2j3)+

J3=0 j2=0 j1=0 (j1,j2,53) J3=0 j2=0 (j2,2,73)
N—-1j3—1 N-1

+ 22 X QGisis) 2 Qsisds) =

J3=071=0 (51,43,3) J3=0
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

N—-1j3—1j2-1
Z Z Z (ajljzjs + Qjy j3 52 + Qjyj1js + QAjyjs 1 + Ajs a1 + aj3j1j2) +

j3=0 j2=0 7 =0
N-1j3—1
+ 22 D (Wjajs T+ Wnjags + Wgjagn) +
J3=0 j2=0
N-1j3-1
+ 2 D (Wgajs T+ Qs + Wgjajy) +
Jj3=0j1=0
N-1
+ Z aJ3J3J37 (2'225)
Jj3=0

YYY Y Grimgnin = SW(@) + C1SY(a) + CaSY (a)+

Ja=0 j3=0 j2=0 j1=0

+cgs§é>(a) +CC18W(a) + 03018V (a) + C5C2SWP (@) + C3C2C1SY (a) =

—1ja—1j3—1ja—1 —1j4—1j3-1
Z Z Z Z Z Q (3, j2j354) + Z Z Z Z ' a(j2j2j3j4)+
J4=0 j3=0 j2=0 j1=0 (j1,j2,J3.j1) Ja=0 73=0 72=0 (j2,j2,J3,j4)
N—-1j4—1j53-1 N—-1js—1752—1
+ Z Z Z Z QA(j1j35351) + Z Z Z Z a(j1j2j4j4)+
.74:0.73:0.7120(j17j33j35j4) -74 0]2 0]1_0(.717.723]43j4)
N-1js—1 N-1js—1
+ 2 X X Gkt X X X GGpai)t
-74:0 -73:0 (j3aj3;j35.74) ]4=0 ]2=0 (.725.725.747.74)
—174—1 N-1
+ Z > X i) T 2 Gajaais =
-74 0-71_0(]17.747J47j4) ‘74:0

N-1j4—1j3-1j5—-1
2 > 2 2 (@ugagiy  Girjajags T ijsgos + Wrjsjant
j4=0 j3=0 j»=0 ;=0
Ty jajsgy T Qrjagajs T Bjogrjsja T Usjijags T Fojagijs T Ujajagsgs T XajsjrjaT
T Qjyjsjais T Xsjrjojs T Ujsjrisgs T jsgagija T Fsgajais T Xsjagrge T Ujsjagajn T
+a’j4j1j2j3 + Aj,s 1 j3ja + Q54557173 + A5, 555351 + Ay jzj1jo + aj4j3j2j1) +
N-1ji—1j3—1
+ 2 2 D (Fasjoga + Wajojugs + Wsjaois T Usjagags T ijsjaga + Cajajsot
74=0 j3=0 j2=0
+aj3j2j2j4 + Q54557273 + A jz 557472 + Q545575372 + Ay jzjojo + aj3j4j2j2) +
N-1ji—1j3—1
+ _ZO _ZO ,ZO (@ jsjiia + Wjsjajujn + Vjajujsjs T Csjajsii T Usjagiis + Wjsjujags+
J4: J3: ]1:
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2.7 Expansions of integrals of any multiplicity

+aj1j3j3j4 + Qjyj3js 1 + Ajyj351753 + Qjy j35453 + Qjy jajags + aj4j1j3j3) +
N—-1j1—1j5—-1

+ Z Z Z (aj4j4j1j2 + Qjyjajon + Ajyj1j4jo + Qjyjajajn + Qjyjj1ja + aj4j1j2j4+
74=0 72=071=0

+aj1j4j4j2 + QAjsjsjasa + Qjsjsjija + jyjajaja + Ajyjojaja + aj2j1j4j4) +

N-174—1
+ Z Z (aj3j3j3j4 + Ajsjsjags + Qjs3jsjsjs + aj4j3j3j3) +
J4=0 _73=0
N—-1js—1
+ 2 > (Wjsjege F Uinjujoia + Wajujags  Wajajojs T jajsjsge T Vajagasn) +
]420 3220
N—-1js—1
+ Z Z (aj1j4j4j4 + Ajyj1jaja + Qjsjajija + aj4j4j4j1) +
74=0751=0
N-1
+ 'ZO Ajsjsjaja (2'226)
J4a=

Possibly, the formula (2.224) for any k& was founded by the author for
the first time.
The relation (2.224) will be used frequently in the future.

(i) where ® (ty,...,t) —

1
= i
is a nonrandom function of k variables. Then from (1.12) and (2.224) we
have

k
Assume, that aj, ) = @ (75,,...,7j) lnl Aw

N-1 jsr+2_1jsr+1_1 j51+2_1j81+1_1 ]2—1

“lim Y ... Y Y Y LY ) X

Jk=0 Jsr+1=0Js,—1=0 Js1+1=0Js; —1=0 J1=0 = . :
s s 51 51 ll:Il Ijsl sy (J1se-sJk)

d (le, .. '7TJ'51717T]'S1+17TJ'51+17 ooy T 19 Thgnitr Thapgns = '7Tjk) X

xAw!)  Awla-) Awlo) Awlsr)
le Tjsl—l Tj51+1 Tjsl+1

Tjsr—l ]S'r+1 Tj37‘+1 Tjk

- AW("S"*l)Awgsr) Awlsr) Aw(ik)] =

=l (k)s1,..8
=Y Y @B (2.227)

s
r=0 (87‘7"'781)€Ak,7‘
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

where
k) T top+3 tspt2 tsy ts1+3 Loy 42 tsy to
S13--458p
@)= [ /////// > X
t t t ot t lgl Its,,tsl+1(t1=---=tk)
X | P (tl, ce ,tsl_l, tsl+1, t51+1, cee tsr—latsﬁ—la t3r+17 ceey tk) X
J (is - ) (is ) (is ) (is )
xdwgl) cedwy U dwy N dwy T dwy
Ccdwir D dwle) dwi ) dwit) | gw i) (2.228)
and Z 9, k > 2; the set Aj, is defined in theorem 11 (see (2.214); we

suppose that right part of (2.228) exists as Ito stochastic integral.
Remark 3. The summands in the right part of (2. 228) should be under-

ot )

it 1s necessary to perform replacement in the right part of (2.228) of all
pa,zrs (thezr number is r) of differentials with similar lower indezes of type

stood as follows: for each derangement from the set H L,

dwt dwt by values 1y;—j401dty.
Usmg “standard evaluations for the moments of stochastic integrals we
get:

k 2n k-l k L1yeeey 7‘2n
w{ba <o w  wfieet) @)
r=0 (Sr,---,sl)eAk,r
2n
M {‘I[@]gﬂk}sh“"sr } S
T ts,p+3 tsp+2 ts, lsy 43 ts 42 tsy to
81...Sp
<cygr [ T[T ] £«
t t ot ot t ot ot t l;lltsl g1 (FLot)
XO? (t, .. g1, s 11, sy a1y - - s bsy—1y Loyl bt 1y - - o> L) X
thl R dtsl—ldtsl+1dtsl+2 R dtsT—ldtsT+1dtsr+2 R dtk, (2230)

where derangements in the course of summation in (2.230) are performed
only in ®2"(...); Cyi, Cit*r < 0o,
Lemma 4. In condztzons of theorem 9 wvalid the following relation

JIKS) = T W]z, w. p. 1. (2.231)
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2.7 Expansions of integrals of any multiplicity

Proof. Substituting (2.207) in (1.12), using lemma 1 and remark 2, it
is easy to see, that w. p. 1

B

JIKE = Jp®]r, +3 > T, (2.232)

Sra---;sl)eAk,r

1
12" (
where the meaning of theorem 11 notations is kept.

The affirmation of lemma results from (2.169) in accordance with theo-

rem 11. O
Using lemmas from the proof of theorem 1 we get:

TWlp, = 3 zqmng + J[Rpy ) w. p. 1,

Jj1=0 Jr=0

where stochastic integral J [Rpl__‘pk]gc 35

?

defined in accordance with (1.12) and

Rpl---Pk (t17 R tk) - K*(th SR ) Z Z C]k J1 H ¢Jz (tl) (2'233)

Jj1=0 Jr=0

—f%() &, p1.. o pr < 00.

At that, the follovvlng equation is executed pointwise in (¢, T)* in accor-
dance with theorem 10:

lim ... lim Ry, (t1,...,t) =0. (2.234)

P1—00 pk—>OO

Lemma 5. In conditions of theorem 9

im ... im M{‘J[Rpl___pk]%l

pP1—0 Pr—0

}:O, n € N.

Proof. According to (2.207) and (2.233) we have the following in all
internal points of the hypercube [t, T]*:

Rpl...pk (t17 R tk) =

k k=1 k=1 1
= H ( )(H 1{tl<tl+1} + Z Z H {ts;=ts;+1} H 1{tl<tl+1}>

=1 = Sryees s1= 1]=1
sp>...>81 l;ésl ..... sp

- Z Z CJk g H ¢Jz(tl) (2-235)

Jj1=0 Jr=0
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

Due to (2.235) the function R, p,(t1,...,t) is continuous in the do-
mains of integration of stochastic integrals in the right part of (2.227) and
it is bounded at the boundaries of these domains (let’s remind, that the
repeated series

00 00 k
2 o 2 Ciegy 11 63 (11)
51=0 jr=0 =1
converges at the boundary of hypercube [t, T]*).
Then, taking Ry, ,, (1, .., tx) instead of ®(¢1, ..., ;) in (2.229), (2.230)

and performmg the repeated passage to the hmlt lim ... lim wunder
p1—00 Pr—00

the integral signs in these estimations (like it was performed for the two-
dimensional case), considering (2.234), we get the required result. Lemma,
5 and theorem 9 are proven. O

Note, that in accordance with theorem 9 we may approximate the mul-
tiple stochastic Stratonovich integral J* [¢(k)]Tt using the expression

J* ™) Jri P = Zo ZOCM gt H le S DLy, PR < 0O. (2.236)
= Jk

It easy to note, that if we expand the function K*(t1,...,%) into the
Fourier series at the interval (¢,7") at first according to the variable ¢, after
that according to the variable ¢;_1, etc., then we will have the expansion:

K*(tlv s ) Z Z CJk g H ¢Jz(tl) (2-237)

Jr=0 J1=

instead of the expansion (2.208).
Let’s prove the expansion (2.237).
Similarly with (2.192) we have:

Vi (te) (1{tk1<tk}+%1{t“=tk}> > /w (tk) b, (te) dtedby (t), (2.238)

k=0,

which is executed pointwise at the interval (¢,7'), besides the series in the
right part of (2.238) converges when t; =t¢, T
Let’s introduce assumption of induction:

Z Z Pa(ta) /¢3 (t3) s (t3) - -

Jx=0 J3=0

./WW%mmmmﬁ%w=

tr—1
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2.7 Expansions of integrals of any multiplicity

k k-1 1
= T1t) TT (Liocin) + yLiomun)) (2.239)
=2 =2
Then
X Y i) /wz (t2) s t2) -
Jr=0 J3=0j2=0
T
[ et g5 (ta)dt . dt sz ¢ (1) =
J -
[ele} o0 1
= ... 2 i(t) (1{t1<t2} + El{tlztg}) P (t2) X
Jk=0 J3=0
T T k
x/%@m%@y”/dﬂmﬁ“@ﬂm”dmﬂfﬂmZ
ta tp—1 =
1 (o] o0
= 1(t1) (1{t1<t2} + 51{t1=t2}> Z o ha(ta) X
A
k
/¢3 (t3) By, (t3) - / Ui (tr) P, (t)dty, . . . dts 1H3 ¢;(t1) =
tp_1 =
1 k k1 1
= 1(t1) <1{t1<t2} + —1{t1:t2}> I:IQ@Dz(tz) H2 (1{tl<tl+1} + 51{7:,:7:,“}) =
k-1 1
~ T 0(0) TT (Lo + L1000 (2.240)

On the other 81de, the left part of (2.240) may be represented by ex-
panding the function

1(t1) /¢2 (t2)j, (t2) - / Ur(tr)dj, (tr)dty . . . dts

tr—1

into the Fourier series at the interval (¢,7") using the variable ¢; to the
following form:

Z Z CJk Ji H d’]z (tl)

Jk=0 =
where we used the following replacement of order of integrating:

T
[ r(t) / Va(ta) by, (t2) - / V() b5, (1)t - dtadty =
t tp—1
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Chapter 2. Expansions of multiple stochastic Stratonovich integrals

T t ty
/ (te) @), (tr) - /¢2(t2)¢j2 (t2) /¢1(t1)¢j1 (t1)dt1dty . .. dt, =
¢ ¢ ¢

- Cjk---j1'

The expansion (2.237) is proven. So, we may formulate the following
theorem.

Theorem 12. Assume, that the following conditions are met:

L. Yi(7); i=1,...,k — are continuously differentiated functions at the
interval [t,T].

2. {#j(x)}529 — is full orthonormal system of Legendre polynomials or
trigonometric functions at the interval [t,T].

Then, the multiple stochastic Stratonovich integral J*[?/)(k)]T,t of type
(1.2) is expanded in the converging in the mean of degree 2n; n € N,
repeated series

k

J*W(k)]T,t = 'Zo Z Jk---J1 H g, 7
= 1=0

T :
where CJ(IZ )= ¢;,(s)dw' are independent standard Gaussian random vari-
¢
ables for different i, or j; (if i # 0);

k
Cjk---jl = / K(tla ceey tk) ll:Il Qj)jl (tl)dtl ... dty,

[¢,T]*

158



Chapter 3

Expansions of multiple stochastic
integrals of other types, based on
generalized multiple Fourier series

In this chapter we demonstrate, that approach to expansion of multiple
stochastic Ito integrals considered in chapter 1 (theorem 1) is essentially
general and allows some transformation for other types of multiple stochas-
tic integrals. Here we consider the versions of the theorem 1 for multiple
stochastic integrals according to martingale Poisson measures and for mul-
tiple stochastic integrals according to martingales. Considered theorems
are sufficiently natural according to general properties of martingales.

3.1 Expansion of multiple stochastic integrals ac-
cording to martingale Poisson’s measures

Let’s introduce the following stochastic integral in the analysis:

Xk (b, Vi) - x1(t, y1) 7 (dty, dyy) . .. 0% (dty, dyy),
/ / / /

(3.1)
where " ¢ X i1,...,ir = 0, 1,...,m; v (dt,dy) — are independent
Poisson measures, which defines on [0, 7] x X (see sect. 7.6); 7% (dt, dy) =
v (dt,dy) — TI(dy)dt — are martingale Poisson measures; i = 1,...,m;

pO(dt,dy) € T(dy)dt; xi(r,y) = d(n)ay); wi(r) : [tT] = RY
oi(y) : X = RY xi(s,y) € Ho(IL [, T)), I = 1,...,k; — is a class of
nonanticipative random functions ¢ : [0,7] X Y X Q- §R1 for which

| [ M{le(t, y)P}TI(dy)dt < oo

159



Chapter 3. Expansions of multiple stochastic integrals of other types

(see sect 7.6).

Theorem 13. Assume, that the following conditions are met:

L. i(7); i =1, 2,...,k — are continuouse functions at the interval
¢, T].

2. {#;(%)}520 — is a full orthonormal system of functions in the space
Ly([t, T)) each function of which for finite j satisfies the condition (x) (see
p.41).

3. o) I(dy) <005 I=1,...,k; s=1,2,... 2k

X

Then, the multiple stochastic integral according to martingale Poisson
measures P[X(k)]T,t 18 expanded into the multiple series converging in the
mean-square sense

o0 k
1
PxPlre= > Cj.j <H o —
J1yeesJk=0 =
—lim. Z H Qb_]T 7-l /907' . Tlr? Tlr+1)7 dY))? (32)

N=00 (1, 1) €Gy r=1
Gk:Hk\Lk; Hk—{(ll,...,lk) . ll,...,lk_O, 1,...,N—1},

Lk:{(ll,...,lk)Z ll,...,lk:O, 1,...,N—1;
lg#lr(g#r); 9,7'21,---,79};

7r](-l’”) = tff ¢;(T)ei(y)0® (dr,dy) — are independent for different i, # 0
X

and uncorrelated random variables for different j;

k
Ciyys = / K(ty, ..., t) 11:11 b;, (t)dty ... dtg;

[¢,T]*

t). . k(te), ti < ... <t
K(ty,...,t) = {gl(%erwif:e( k), ket t €T

Proof. This theorem may be proven as well as theorem 1. Small differ-
ences will take place only in proving of analogues of lemmas 1 — 3 for the
considered case.

Lemma 6. Assume, that 1;(7) — are continuous functions at the in-
terval [t, T], and the functions ¢;(y) are such, that){ lor(y) [P TI(dy) < oo;

p=1, 2;1=1,..., k. Then, we have with probability 1:

- Jjo—1 k

P[ (k )]Tt _III& ZO ZOZH /Xl(TJHY) . )([TJHTJH-I) dY)a (3'3)
Jk Wi 1x
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3.1 Expansion of integrals according to martingale Poisson’s measures

where {7, }j\,[:_ol — 18 partition of the interval [t, T, which satisfies the con-
dition (1.7), 29([r,s),dy) = 09([r,s),dy) or vO([r,s),dy); the integral
Plx®z, dzﬁe’r’s from the integml Plx®z; by the fact, that in P[x®]r,
instead of ¥ (dty, dy;) stay v (dty, dy;); 1 =1,... k.

Proof. Using estimations of stochastic 1ntegrals according to Poisson
measures (see sect. 7.7), and the conditions of lemma 6, it is easy to note,
that the integral sum of the integral P[x*]r; under conditions of lemma 6
may be represented in the form of prelimit expression from the right part
of (3.3) and of value, which converges to zero in the mean-square sense if
N — 0. O

Let’s introduce the following stochastic integrals in the analysis:

N-1

. i f k
Lim. Z (I)(TjU' . TJk H /901 TJnle-H) dy) « [(I)]g“,w)ta
N—roo j17-";jk:0 I= ]-X

T to
/.../Cb(tl,... /<p1 )7 (dty, dy) . /gok o) (dty, dy) &

t t

where the sense of notations included in (3.3) is kept; ®(¢1,...,tx) :
[t, T]* — R! — is bounded nonrandom function.
Note, that if the functions ¢;(y); I = 1, ...,k satisfy the conditions of

lemma 6, and the function ®(¢1,...,t) is continuous, then for the integral
P[@]gﬁ 35 the equality of type (3.3) is reasonable with probability 1
Lemma 7. Assume, that forl = 1,...,k the following conditions are

executed: g/(7,y) = hi(7)oi(y); the functions hy(7) : [t,T] — R! satisfy
the condition (%) (see p.41) and the functions ¢(y) : X — R satisfy the
condition [ |pi(y)[PT(dy) < o0; p=1,2,3,...,2¥L Then

X

A ) k
11 [ [ au(s,y)7") (ds, dy) = P[®]7} wp.1, ®(ts,...,tx) = [] lu(ts).
=1

I=1% x

Proof. Let’s introduce the following notations:

N-—
W E o

\

T],y ([TJ7T]+1) dY)7 J[gl Tt — //gl S y (”)(ds dy)
0x t X

It is easy to see, that
-1

11 laiy = 11 Talee = (1L ades) (lal = Tates) (11 Tiadv)

q=Il+1
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Chapter 3. Expansions of multiple stochastic integrals of other types

Using Minkowsky inequality and inequality of Cauchy-Buniakovsky to-
gether with estimations of moments of integrals according to Poisson mea-
sures [2] (see sect. 7.7) and conditions of lemma 7, we get

(m{
where C;, < 0.
Since it is clear, that

k k

II Jlg)v — II J1ai)z,s

2}>§ = C’“é (M{J @y — Jalrd '}, (3.4)

N-1
Jan — Jalr: = Zo JIAG) 1705
q:

Tq+1

JAG ey = [ [ (@(ry) = ai(s, ) 7% (ds, dy),
Tq X

then due to independence of J[Ag] for different ¢ we have [27]:

Tq+15Tq

N—1 4 N-1 4
M{ ZO J[Agl]Tj_H,Tj }: ZO M {‘J[Agl]Tj+l,Tj| }+
J= J=

). (3.5)

Then, using estimations of moments of stochastic integrals according to
Poisson measures [2] (see sect. 7.7) and the conditions of lemma 7, we get,
that the right part of (3.5) converges to zero when N — oo. Considering
this fact and (3.4) we come to the affirmation of lemma. O

Proving of theorem 13 according to the scheme used for proving of theo-
rem 1 using lemmas 6, 7 and estimations of moments of stochastic integrals
according to Poisson measures (see sect. 7.7), we get:

N-1 9y J1
+6 5 M{[A05.[ | X M{|J1AGr
Jj= q=

M{(RE;7)"} < G Il [t () T(y)x

(Kt ot = 30§ 0 T30 -ty <

Jj1=0 Jkr=0

<G [ (Koot = 0 8 G T 64(0) dir - 0

[t,T]k Jj1=0 Jx=0
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3.2 Expansion of integrals according to martingales

if p1,...,pr — oo, where constant C depends only on k (multiplicity of
multiple stochastic integral according to martingale Poisson measures) and

k
R = Po¥lne = 3 o 3 o (T

71=0 J&r=0 =1

—Lim. 3 H ¢j,(7,) /SOr [Tlr,TlT+1),dY)>-
N=00 (1y,...0x) Gy r=1
Theorem 13 is proven. O
Let’s give an example of theorem 13 usage. When 41 # 19, 11,19 =
1,...,m according to theorem 13 using the system of Legendre polynomials
we get

//902 Y1 //@1 ya) 012 (dty, dyo) o' (dty, dy,) =
t X

T_t (1%1 27,2 ( ) (121) (17i1) (27i2)
—T< +121\/4@71(@ T )>

T
//901 (y1)? PAGY (dty,dy,) = VT — tﬂ_(()l,zl),
t X

J
orthonormal system of Legendre polynomials in the space Ls([t, T).

where 7 {T}g (D)ouy)p) (dr, dy); 1 =1, 2 {6;(r)}320 — is a full

3.2 Expansion of multiple stochastic integrals ac-
cording to martingales

Assume, that the fixed probability space (€2, F, P) is preset and assume,
that {F;,t € [0,T]} — is a non-decreasing collection of o-subalgebras F.
Through Ms(p, [0,7]) we will denote a class of F;-measurable for each
t € [0, 7] martingales M;, and satisfying the conditions M {(Ms — Mt)2} =
[ p(r)dr, M{|M, — My’} < Cy|s — t|, where 0 < ¢t < s < T; p(r) —
i
is a non-negative, continuously differentiated nonrandom function at the
interval [0,7]; Cp < co — is a constant; p = 3,4, .. ..

It is obvious, that the martingale from class Ms(p, [0, 71) is D-martingale
2].

Assume, that {7;}_, — is a partition of interval [0, T], for which

O=m<n<...<7y=T, max |7j;1 —7j| = 0 when N — oco. (3.6)
0<j<N-1
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Chapter 3. Expansions of multiple stochastic integrals of other types

In accordance with features of the function p(7) we will write the condi-
tion of membership of F;-measurable for each ¢ € [0,7] stochastic pro-
cess &;t € [0,7T] to the class Ha(p,[0,T]) (see sect. 7.5) in the form

(fM{\ftP}p(t)dt < 0.

Let’s assume the step random function ft(N) at the partition {Tj}j-vzo as

follows: ft(N) = &,,_, with probability 1 when ¢ € [1;_4,7;); 7 = 1,..., N.
In the section 7.5 (see also [2]) we defined the stochastic integral from the
process & € Hs(p,[0,T]) according to martingale. In accordance with it,
the stochastic integral according to the martingale M; € Ma(p, [0,T]) is
defined by the following equality

= (N) def r
Lim. M,  —M,)= dMz, 3.7
i €7 (M = M) < M, 0

where {7;};_y — is a partition of the interval [0, T, satisfying the condition
(3.6); ft(N) — is any sequence of step functions from Hy(p, [0, T), for which
T

IM{IEM — &2} p(t)dt — 0 when N — oo.

0

Using Q4(p, [0,7T7]) let’s denote the subclass Ma(p, [0, T]) of martingales
M;,t € [0,T], for which in case of some a > 0 the following estimation is

true:
g

where 0 < 6 < 7 < T g(s) — is a bounded non-random function at the
interval [0, T]; K4 < oo — is a constant.
Using G, (p, [0,T]) let’s denote the subclass Ms(p, [0, 7]) of martingales
My, t € [0,T], for which
"

where 0 < 6 < 7 < T; n € N; g(s) — is the same function, as in the
definition of Q4(p, [0, T7).

Let’s remind (see sect. 7.1), that if (&)™ € Ha(p,[0,T]) when p(t) = 1,
then the estimation [2] is correct:

"

/Tg(s)dMs
0

4 T
b< K [ lg(o)ds,
0

n
| <o

/Tg(s)dMs
0

[ed] L < (ot [ulePa 0<o<r <7 (38)
4 0
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3.2 Expansion of integrals according to martingales

Assume, that
to

Ty %dﬁf/wktk S n(e)dM M =0,1,. . m,
t

where M () (r=1,...,k) — are independent for different i = 1, 2,..., m.

Let’s prove the following theorem.

Theorem 14. Assume, that the following conditions are met:

L. Mlll € Q4(p7[t T]) Gn(p,[t,T]), n = 274a"'a2k; k € N7 URES
,...m;l=1,... k.

2. {gbj(x)}]o-‘;o — 45 a full orthonormal system of functions in the space
Lo([t, T)), each function of which for finite j satisfies the condition (%) (see
p.41).

3. Yi(r); 1 =1, 2,...,k — are continuous functions at the interval
¢, T).

Then the multiple stochastic integral J [¢(k)]£‘p/{t according to martingales
18 expanded into the converging in the mean-square sense multiple series

TP = S i (TTE0-

jh"':jk 0

—lim. Y ¢ (TZI)AM“l i, (T,k)AMM))
N=oo (1, . 1k)€EGk

where Gy, = Hi\Lrx; He ={(l,. .., k) : l1,...,[p=0,1,...,N — 1},
Ek:{(ll,...,lk)t ll,...,lk:O, ]_,...,N—l;
lg#lf‘(g#r)a gaT:17"'7k};

E (i) f(bj,( )dM &) — are independent for different iy = 1,...,m; | =

1,....k and uncorrelated for various j; (if p(t) — is a constant, iy # 0)
mndom variables;

k
Clpei = / K(t1, ..., tk) ll:Il ¢ (t)dty . . . dty;

[¢,T]*

t). . k(te), ti < ... <t
K(ty,...,t) = {gl(oﬁerwif:é k), t kot te €[, T).
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Chapter 3. Expansions of multiple stochastic integrals of other types

Proof. In order to prove theorem 14 let’s analyze several lemmas.
Lemma 8. Assume, that M" € My(p, [t,T)); 4 = 1,...,m; | =

ok, and Yi(1); ¢ = 1, 2,...,k — are continuous functions at the
interval [t,T.
Then
— Jo—1 k
Ty )]Tt = 1 i.m. Zo ZO ZHI i(7,) A lezl) w.p.1, (3.9)
OO ik

where {T;}_, — is a partition of the interval [0, T, satisfying the condition
JJ5=0

of type (3.6).
Proof. Since (see sect.7.5)

u ( 9/ sdes“’“))Z} - 9/ M{1&, "} o(s)ds
M{<9/ tuds) | < (r—6) 0/ V&, }ds,

where & € Hy(p,[0,T));t <8 <7 <T;4=1,....m; 1l = 1,...k,
then the integral sum of integral J [¢(k)]£‘p/{t in conditions of lemma 8 may
be represented in the form of prelimit expression from the right part (3.9)
and the value, which converges to zero in the mean-square sense when
N — 0. O
Assume, that
N-1 k
Lim. Y ®(r,...,7,) 11 AMT(f;il) W 711
=1

N—oo jla"'ajk:O

o~ —

, (3.10)

where {7} is a partition of the interval [0, 7], satisfying the condition
of type (3.6).

Lemma 9. Assume, that MY € Qup,[t,T)), G.(p,[t,T]); r =
2,4,...,2% 4 =1,...om; 1 =1,...,k, and g1(s),...,gx(s) — are func-
tions satisfying the condition (x) (see p.39).

Then

kT , k
I1 [ u(s)dM{ = I[®]F) w.p.1, ®(ty,... 1) = 11 :(t).
I=1% =1

Proof. Let’s denote
T

N-1 _ '
Hgly € Y ai(m) AMEY, Tglrs © /Ql(S)dMs(l’”).
J=0 4
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3.2 Expansion of integrals according to martingales

Note, that
k /l-1 k
lnl Taily - n Talre =3 (glf[gq]m) (Iatlw — Tlarlzs) ( 11 lf[gq}N).

Using the Minkowsky inequality and inequality of Cauchy-Bunyakovsky,
as well as the conditions of lemma 9, we get

i k 21y 2 k o
<M{z:1 [gl]N—ll;[lf[gl]T,t }) < Ckl:ZI(M{|I[gl]N_I[gl]T,t| D (311

where C), < oo — is a constant.
Since

N-1 Ta+l

I[gl]N_I[gl]Tat = Z I[Agl]Tq-i-laTq’ [Agl]Tq-‘rlaTq - / (gl(TQ) - gl(s)) dMs(l’il)a

q=0 Tq

for different ¢ we have [27]:

o

then due to independence of I[Ag]

N-1
M{ ZO I[Agl]Tj_H,Tj
7=

N-1 j—1
63 M {1ag),,..['} z M {1118g)nm [} (3.12)
j= q=

Then, using the conditions of lemma 9, we get, that the right part of (3.12)
converges to zero when N — oco. Considering this fact and (3.11) we come
to the affirmation of lemma. O

Then, using the proven lemmas and repeating the proof of theorem 1
with correspondent changes we get:

M {(Rg{%...,pk)?} < C / (K(t1, o ,tk)_

[t,T]*

Tg+15Tq

4 N-1
} = ZO M {‘[[Agl]TjH,Tj
j=

-5 zqmn%@ﬁmwpmmms

J1=0 Jx=0
2
(71" A% 5o
when py,...,pr — 00, where the constant Cy depends only on k (multi-

plicity of multiple stochastic integral according to martingales) and

Rpl’ Pk = J[ ] Z Z C]k J1<H f;l &

71=0 Jx=0
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Chapter 3. Expansions of multiple stochastic integrals of other types

—lim. Y ¢, (TZI)AM“I i, (le)AM(’”k)>
N—=oo (1 1:)€Ck

Theorem 14 is proven. O

3.3 Remark about full orthonormal systems of func-
tions with weight in the space Ly([t,T])

Let’s note, that in theorem 14 we may use the full orthonormal systems
of functions not only with weight 1 but with some other weight in the space
La([t, T1).

Let’s analyze the following boundary-value problem

(p(2)®'(2))" + q(2)®(2) = —Ar(z)P(2),
a®(a) + fP'(a) =0, v®(a) + §®'(a) = 0,
where functions p(z), g(z), r(z) satisfy the well-known conditions and «,
B, v, 6, A — are real numbers.

It has been known (V.A. Steklov), that eigenfunctions ®y(z), ®1(z),. ..
of this boundary-value problem create a full orthonormal system of func-
tions with Weight r(z ) in the space Ls([a,b]), as well as the Fourier series
of functlon Jyr(z)f(z E Ly([a,b]) according to the system of functions

V() Po(z), /r( <I>1 ), - .. converges in the mean to this function at this
interval, moreover the Fourier coefficients are defined using the formula

b
Cj = [ r(z)f(z)®;(z)dw. (3.13)
a
Note, that if we expand the function f(z) € Ly([a,b]) into the Fourier
series in accordance with the system of functions ®y(z), ®1(z),..., then
the expansion coefficients will also be defined using the formula (3.13) and
the convergence of Fourier series will take place in the mean with weight
r(z) to the function f(z) at the interval [a, b].
It is known, that analyzing the task about fluctuations of circular mem-
brane (common case) the boundary-value problem appears for the equation
of Euler-Bessel with the parameter A and integer index n :

r’R"(r) + rR'(r) + (\*r* —n®) R(r) = 0. (3.14)

The eigenfunctions of this task considering specific boundary conditions
are the following functions

J, (uj%), (3.15)
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3.3 Remark about full orthonormal systems of functions with weight

where r € [0, L], uj; j = 0, 1, 2,... — are ordered in ascending order
positive roots of the Bessel function J,(u); n =0, 1, 2,....

In the task about radial fluctuations of the circular membrane the
boundary-value task appears for the equation (3.14) when n = 0, the eigen-
functions of which are functions (3.15) when n = 0.

Let’s analyze the system of functions

V2

() = m%(%f); j=01,2..., (3.16)
where
Jn(z) = nifo(—l)m @)M : T(m+1DC(m+n+1))7"

— is the Bessel function of first genus and

o0

I'(z) = /e_’“'a:’z_lda:
0
— is a gamma-function; p; — are numbered in ascending order positive

roots of the function J,,(x), n — is a natural number or zero.

Due to the well-known features of the Bessel functions, the system
{¥;(7)},Z, is a full orthonormal system of continuous functions with weight
7 in the space Ly([0,T)).

Let’s use the system of functions (3.16) in the theorem 14.

Let’s analyze the multiple stochastic integral

T s
dMWdM®,

where )
MY = [ rafl;
0

fT(i) (¢ = 1,2) — are independent standart Wiener processes, 0 < s < T
M — is a martingale (see sect. 7.5), where p(7) = 7. In addition, M{
has a Gaussian distribution. It is obvious, that the conditions of theorem
14 when k£ = 2 are executed.

Repeating the proof of the theorem 14 when k£ = 2 for the system of
functions (3.16), we get

T s ~
[ [aMPaM® = 3 GG
00

2 )
J1,J2=0
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Chapter 3. Expansions of multiple stochastic integrals of other types

where the multiple series converges in the mean-square sense and

T
¢ = [wi(r)dm?
0

— are standard Gaussian random variables; 7 = 0,1,2,...; ¢ 1,2;

M{¢V¢PY = o;
T s
Cjzjl - /qujz(s)/qujl (T)deS'
0 0

It is obvious, that we may get this result using another method: we can
use theorem 1 for multiple stochastic Ito integral

T s
[ Vs [ vrdfDde?),
0o 0
and as a system of functions {;(s)}52, in the theorem 1 we may take

V2s )Jn(“j ); j=012....

= ——Jpl=s
T Jn1(k; T

As a result, we would obtain

9;(s)

T s 00
[V [ VraEDdE? = Y CidiGY
0 0

J1,52=0

where the multiple series converges in the mean-square sense and

T
G = [ gi(r)af)
0
— are standard Gaussian random variables; 5 = 0,1,2,...; 7 = 1,2;

M{G ¢} = 0;
T s
Cj2j1 = /\/§¢j2(5)/\/;¢j1 (T)deS.
0 0

Fasy calculation demonstrates, that

7 2(s — 1) 1 o
di(s) = (T_t)Jn+1(Nj)Jn (T_t(s—t)>, i=0,1,2,...
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3.3 Remark about full orthonormal systems of functions with weight

— is a full orthonormal system of functions in the space Ly([t, T1).
Then, using theorem 1 we get

T s 00 . ~(1) ~
/\/s — t/\/T — tdfT(l)dfs(Q) = Z 00j2j1<"7(11)<'](22)7
Y + J1,)2=

where the multiple series converges in the mean-square sense and
G = [ &i(r)dt?
t

— are standard Gaussian random variables; 5 = 0,1,2,...; ¢+ = 1,2;

M{GGY = o;

T s
éj2j1 = / VS — t(gjz(s) / VT — tQ;jl (T)deS.
t t
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Chapter 4

The exact calculation of mean-square
errors of approximation of multiple
stochastic Ito integrals

This chapter is based on results of chapter 1 (theorems 1 and 2) and
adapt this results to practical needs (numerical integration of Ito stochastic
differential equations). Using Parseval equality and relations for multiple
sums we derive the exact (not estimate) expressions for mean-square errors
of approximations of multiple Ito stochastic integrals. Exact formulas for
such mean-square errors for stochastic integrals of multiplicity 1 — 4 are
derived.

4.1 The case of any k and pairwise different i1, ..., =
I,....,m

At first, let’s build mean-square approximations of multiple stochas-
tic Ito integrals J[/®]r; of type (1.1) for pairwise different iy, ...,4; =
1,...,m (in this case they coinside with the correspondent stochastic
Stratonovich integrals) in the form of truncated multiple series, into which
they expand in accordance with the approach, based on multiple Fourier
series, converging in the mean (theorem 1).

Assume, that J[p®]%7 % — is approximation of multiple stochastic Ito

integral J [w( )}Tﬂf for pairwise different ¢,...,7; = 1,...,m, which looks
as follows
J[p® [Tyt = ZO ZOC]k i H CJ ; (4.1)
W Jk

where numbers ¢; < oo satisfy the following condition on the mean-square
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Chapter 4. The exact calculation of mean-square errors of approximation

accuracy of approximation:

M { (T g = Ty} <e, (42)

¢ — is a fixed small positive number.

Theorem 1 provides a possibility to calculate accurately the mean-square
error of approximation of multiple stochastic Ito integral of any fixed mul-
tiplicity k.

Let’s examine the case of pairwise different #1,...,7; = 1,...,m.

Lemma 10. Assume, that i1,...,1 = 1,...,m and pairwise different.

Then, the mean square error of approzimation (4.1) of the multiple
stochastic Ito integral J [¢(k)}T,t 1s detected using the formula

M{(J[w(k)]%,;”’q’“ —J[z/)(k)}T,t)Q} = [ K¥ti,....ty)dts .. dty—

[t,T]*

- Z Z Jk .71; (43)
J1=0 Jx=0
convergence in (4.3) takes place in the sense of limit when qq, . .., qx — 0o.
Proof. We have
X T to
MW 1)} = [wit) .. [wit)de .. di, =

t t

= [ Kty te)dts ... dt. (4.4)

[t,T]*

The Parseval equality in our case looks as follows

/K2(t1,...,tk)dt1...dtk_ lim Z 2 2

ok k700 =0 =0
Then
M{ (T — TP )} = M{ (T 0r) ) -

—oM ([P ]r TP + M{ (@) (45)
Since according to theorem 1 we have

o0

TPn={ £ =% S o TG0+ T

JireJk=0  j1=0 Jk=0
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

then )
M {0 ® o[ ®18%) = M{ (T @187} (4.6)
Substituting (4.4) and (4.6) into (4.5) we get

M {(J[zp(’f)]T,t - J[qp(’f)]%,;;"’qk)z} = [ K¥ti,...,ty)dts ... dty—

~M {(J[w(k)}%,%---an)Q} , (4.7)
Considering (4.7) and the relation
M{ (@)} = 20 Z Y
J1 Je=

which is reasonable for pairwise different ¢1,...,%, = 1,..., m, we come to
affirmation of lemma 10. The lemma is proven. O

4.2 The case of non-pairwise different ¢,....7 =
I,...,m

Proving lemma 10, we practically established the following formula for
any 21,...,0k =1,...,m:

M {(J[gb(k)]%,g“’q’“ — J[zp(’f)]T,tf} = / K2(ty, ..., tp)dty ... dtp+
7"
42 (M {J[»‘b(k)]%’;..,Qk})Q _M {(J[w(k)}g{;{..,Qk)z} . (4.8)

Hereafter, calculating the mean-square error of approximation of multi-
ple stochastic Ito integrals we have to calculate mathematical expectations
from multiple sums of random variables with complex multiindex coeffi-
cients. Accordingly, formula (2.224) will be useful.

We will demonstrate systematically, by the example of multiple stochas-
tic Ito integrals of 1st, 2nd, 3rd and 4th multiplicities, that there are no
any technical problems for getting the analogue of (4.3) for any 4y, ..., =
1,...,m (for simplicity hereafter we assume, that ¢; = p).

4.2.1 The case k=1

In this case according to lemma 10 we get

M {(J[¢(1)]3“t - J[¢(1)]T,t)2} = [ K*ty)dt — Z

[, T]" n=0
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Chapter 4. The exact calculation of mean-square errors of approximation

4.2.2 The case £k =2 and any %1, =1,...,m

When i; # i3 we get the required formula from lemma 10. Let 41 = 19 =
1=1,...,m.
We have

T t
M{(J[y } [ w3 (ta) / (h)dtrdty = [ K3(t1, ta)dtrdty.
4 [t,T)?
Since
M {JWJ@)]I%J} = 07
where ,
J[¢(2)}g},t = Z Cjz.h o ) _ Z leju
J1,72=0 J1=0

then, according to (4.8) we get

M {(JWQ)]% - J[¢(2)]T,t)2} = [ Kty ta)dtrdt; — M {(J[¢(2)]]%,t)2} :

?

[t,T]?
(4.9)
Then, using (2.224) we get
@ )2 S ’
M {(J[¢ }T,t) } {( Z CJ2J1CJ ]2 Z Cj1j1> } =
J1,J2=0 J1=0
q . . . .
= M{ Z Cj2]1CJZ_]ICJ;)CJ(Z)CJ(;)C;E)}_
jhj{:j%jé 0
p 2 2
_2< Z Cj1j1> (Z CJ1]1> =3 Z j1]1
J1=0 Jj1=0 J1=0
J2—1
+ ZO Z ( J2J1 + CJ21J2 + 2Cj1j1 Cjzjz + 2Cj2j10j1j2) (Z CJ1J1> . (410)
.71— .71—
Substituting (4.10) into (4.9) and considering, that
p j2—1 5
Z Jl]l + Z Z ( J2J1 + Cth) = Z th’
71=0 J2=071=0 J1,Jj2=0
J2—1 P P 2
Z J1J1 + 2 Z Z 0.71.710.72J2 = Z Cj1j10j2j2 = (Z lejl) )
Jj1=0 =07:=0 J1,72=0 J1=0
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

D 5 p J2—1 p
Z Cj1j1 + 2 Z Z Cj1j20j2j1 - Z lejzcjzju
71=0 J2=071=0 J1,j2=0

finally we get

M {(J[%b@)]?,t - JW(Q)]T,t)Q} = / K?(ty, ty)dtydty — Ep: Crj—
T]

2 J1,J2=0

p
- Z Cj1j20j2j1- (4°11)
.713.72:0
4.2.3 The case k=3 and any 1,i2,73=1,...,m

The case of pairwise different ¢1, %9, 23 is analyzed in lemma 10, that is
why we have to analyze 4 cases (it is assumed, that 41,419,713 = 1,...,m):
1. ’L-1:Z'27é7:3; 2. 2'175’1;2:2'3; 3. ’1:1:?:3752'2; 4. i1:i2:i3.

Let’s start from the first case:

M {(J[¢(3)]T,t)2} = [ Kty ty, ts)dtrdtadts; M{JP 1} =0,
[t.T]?

where
p N .
3 (i1) +(i1) »(i3) (i3)
T, = X Chpi ( i S S~ Yii=ia)Cs )
.715.725.7320
So, in our case we have

MO = T®,) ) = [ K (11,1, ty)dtrdtadts—M { (JwTh,) "}

[t,T]?
(4.12)
Further using of (2.224) we get

p . .
M {(J [¢(3)]]%,t)2} = M{_ 2 Gl Gty ( WG - 1{j1=j2}) X

.737.737.727.757.717,7{:0

(i) - (i) (i) 1(i5) | _
x (676" = Lgany) 676 } =

! ]
1 3
b b . . . .
= o (i1) ~(i1) ~(i1) #(i1)
- M{Z Z CJ3J231CJ'3]'§J'{ J1 gj{ 32 gjé -
]3:0.7'27.7-57.7'17]'{:0
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Chapter 4. The exact calculation of mean-square errors of approximation

—2 i (Z CJBJlJl) i (Z CJSJ131>2 -

J3=0 \j1 73=0 \j1
Ja—1 5
=3 Z Z( J3J1J1) + Z Z Z ( Jaj2d1 +CJ3J1J2
J3=0j1= =042=07,=0

3 CJWI)Q. (4.13)

1=

p
+2C41j1 Clsjaga + 2Cjajs Clgjnga) — ZO<
J3=0\j

Substituting (4.13) into (4.12) and considering, that

J2—1 P
2 ) _ 2
Z J3J1J1 + Z Z ( JsJj2Jt +CJ3JU2 T Z CJ3J2J17
J3,J1=0 J3,J2=0j1=0 J3,J2,J1=0
p o J2—l p
Z ]3]131 +2 _ Z Z Clajijr Clagajs = . Z Clsjiji Clisjoge =
J3,51=0 J3,J2=0j1=0 J3,J2,51=0

J3=0 \n=
J2—1 P
Z .73.71.71 +2 Z > CJ31132C]3]2]1 - Z Cj3j1j20j3j2j1?
J3,J1=0 J3,J2=0 j1=0 J3,J2,J1=0

finally we get

D) p
M@, = J®1r) = [ KAt b, ty)dhdbadts - Y. C2 -

[t T J3:J2,1=0
b - - .
iy Z ClisjrgCladoin (21 =13 # 23).
.737.727,71:0

In the 2nd and 3rd case similarly to the previous reasoning we corre-
spondently get

9 D
M{(J[qp(?’)]f},t— T[®)r,) }: | Kt t,ty)dtrdbdts — Y. CF -

[t. TP J3,J2,J1=0
Y4
iy Z Cj2j3j10j3j2j1 (21 #ip = 23).
.73).72:.71:0

D) p
M@, = J®1r) = [ KXt b, ty)dhdbadts = Y. C2 -

[t T3 J3:J2,1=0
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

P
- Z Clajaii Clrjas (11 =15 # 12).
.733.72a.71:0
In the 4th particular case when ;(s), 12(s), ¥3(s) = 1 with probubility
1 we have (see sect.6.2):

i1 s N3 3
oo = 5@ =0 (V) - 3¢V).

In more general case, when 1;(s), ¥a(s), ¥3(s) = (t — s); | — is a fixed
natural number or zero, with probability 1 we may right down (see section

6.2):
110171 1
]l(lll;,tz )= 6 ((

s(ivini) _ 1 3 (@D ) _ = v A
Ly, = E(T_t) (sz,t> , Iy, —JZOCJ'CJ' ,

.\ 3 )
[l(;‘,lt)> - 311(;’,13A1T,t> )

T T
where A;,, = tf(t — s)%ds, C; = {(t — 5)'pj(s)ds; {¢;(s)}32y — is a full

orthonormal system of Legendre polynomials at the interval [¢, T7.
If the functions ¢4 (s), ..., 1¥3(s) are different in the 4th particular case,

then calculation of the value M {(J (O, —J [¢(3)]T,t)2} becomes more

difficult then in all cases analyzed previously.
Nevertheless we will calculate the specified mean square error of appro-
ximation.

According to theorem 1 when £ = 3 and ©y = 12 = i3 = 1,...,m we
have:
J[d)(?))]T’t - Z OCj3j2j1 (CJ& CjoJé - 1{J'1=J'2}CJ'3 - 1{j2=j3}<j1 - 1{j1=j3}Cj2>
J1,J2,)3=

and correspondently

P
T = X |G (Cga CiaGis = L=} Gis = Lga=js}Cin — 1{j1:j3}Cj2),
J1:)2:)3=

where for the sake of simplicity we assumed, that CJ@ = ;-
According to (4.8) it is enough to calculate only M {(J [¢<3)]1},t)2}.
We have

p
M {(J [¢(3)}?,t)2} = 'V'{ > Clisads Cgnt Cir St G Gy i G } -
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Chapter 4. The exact calculation of mean-square errors of approximation

p p
-2 M{ Y. Chipi ngj;nglejojgéjé}—

jéZO j17j27j3ajé:0

!

j3=0 j17j27j37j{=0
D p
-2y M{ Yo ChiniiCitinit G GiaCis Gy

_]é:(] jlaj2aj37jé:0

p p
-2 M{ Y. Cijy jgjgj{lengngCj{}—
}+

p
+ Y (CipirCljiji + Cisjaji Chagoir + Clsings Civjoi +
J1,J2,73=0

+2Cj3j2j2 Cj1j1j3 + 2Cj3j2j2 Cj1j3j1 + 2Cj3j3j1 Cj2j1j2) .

According to (2.224) when k = 4 and k = 6 we have:

b
M { Z Cj3j2j1 Cjéjéj{ le CJi <j2 CJQ C]é C.Jé } -

jl ;]{ aj%jéaj&jé:()

Jja—1j2—1
=15 Z Chinis + Z > 2 2 CluppiChpint
J3=0 J3=072=0 j1=0 (j1,j1,J2,2,J3,3)

p J3—1
+3 Z Z Z C(j3j3j10j3j3j1)+

J3=0j1=0 (j1,41,J3,53,J3,J3)
p Js—1

+33% > > Clisiii Cisjign);

J3=071=0 (j1,J1,41,J1,J3,J3)
p
M{ > Gl jgjéjéleCthstg} =
J1,J2,53,J5=0
p p Jjs—1

Z isjsgs Cisgiy + Z > 2 CluiiChigyi

— =0751=0 (41,41,53,43)

'y
M{ > ngmlcjgjgj;Cﬁ@z@écﬁ} -

jl7j2>j37ji=0

Js—1
=3 Z C]3]3J3 J3J393 + Z Z Z 01333310331391)
Jj3=0 =071=0 (j1,51,J3,J3)

b
M{ > Chii jéjéjéCjICjQngng} -

jl 7j27j37jé=0

179



4.2 The case of non-pairwise different i1,...,7, =1,...,m

=3
j
where, as usual

(jb ) jk)a ne

p j3—1
Z CiaisjsC d4gsih T > > > C(j3j3110]§31]3)

3=0 J3=0J1=0 (j1,J1,3,J3)

y 2 . is a sum according to all possible derangements
J1y--50k
w symbol of type C;, ;C;

is1...j,) means, that performing

derangements the index of value Cy;, ;,Cj.,, ) is (1. . Jijis1.--Jx) =

(j1---,Jk), as, if we assumed ay;

In prinaple,
may be conside

Juejk) — C(j1---jl_cjl+1---jk)_ in (2'224)'
the mean-square error which is a subject of interest for us
red as found according to formula

M {(J[iﬁ(?’)]]%,t - J[¢(3)]T,t)2} = / K*(t1, by, t3)dt1dtadts—M {(J[¢(3)]g",t)2} ,

since the value

[t.T]?

M {(J [1&(3)]1}7,5)2} is calculated. For the avoidance of doubts

let’s right down the line of sums including in the obtained formulas in the

expanded form

. Z . C(jf’jljlcja‘jéjé) = Clgjujn Cj3jéjé + Cj3j1j30]1.72.7,+
(.715.71;.737.73)

+Cj3j3j1

Chigvis + CirgajsCiiisiy T Chugsin Chsisit, + CivgrgsCisgaiai

Z 0333131 CJéJé]l - Cj3j3j1 Cjéjéjl + Cj3j1j3cj§jéj1+

(J1,d15J
+CJ3J1J1

37.73)
013]3]3 + C]1J3J3 CJéJé]l + Cj1j3j1 Cj§j§j3 + Cj1j1j3 Cjéjéj:s;

> ClsisinCitjiiy) = Clisisis Citings + CisgrisCitinjnt

(jlajlaj

CJ3J1]1

>

+C?.

>

2
+C33]1J

37j3)
CJ§J333 + lejgyscjémg + lejzhcjéjug + Cju’m Cjémgv

C(j3j3j1 Cj3j3j1) - 2Cj1j1j3 Cj3j3j3 + 2Cj1j3j1 Cj3j3j3+

2
+ 2C}14335Cjsjrjs T 2C555141 Cisajs T Clajyjat

+ 20j1j3j3 Cj3j3j1 + 2Cj3i1j3 Cj3j3j1;

J1J3J3

2
+CJ33311

Clisjijr Cisinit) = 2C5jsi Cingugr + 2C55135 Crun+

+ 2C,5,5, Cirjsjs + 2C5515. Chijugs + 2C5.5555Cinjrjn +

1
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Chapter 4. The exact calculation of mean-square errors of approximation

2 2
+C.71.73.71 Cj1j3j1 C(j1j1]3 +C

J1j1js?

Z C(j3j2j1 Cj3j2j1) = 2Cj1j1j2 Cjzjajs + 20j1j1j2 Cj3j2j3+

+2Cj1j1j2 Cj3j3j2 + 2Cj1j1j3 Cj2j2j3 + 20j1j1j3 Cj2j3j2 + 2Cj1j1j3 Cj3j2j2+
0313211032%33 + 201112]'1 Cj3j2j3 + 2Cj1j2j1 Cj3j3j2 + 209'1]'3]1
CJ2J3Jz CJ1J3J1 + 2Cj1j3j1 Cj2j2j3 + 20j1j2j2 Cj1j3j3 + 2Cj1j2J3
C]1]2]2 CJ3J1J3 + 2Cj1j2j3 Cjzjljz + 20j1j3j2 Cj2j1j3 + 20j1j3]3

Q

J3J242 +

Q

J1J352 +

Q

JaJ1je +

Q

17352 CJlejz + 2lejzj3 Cj3j1j2 + 20j1j2j2 Cj3j3j1 + 203'1]'2]3

CJ .72.73.71+
+2C152j> Claaii + 2C50s3a Cingogi + 2C;j153j Clsioii + 2C51j05s

CJ

+2C;

Q

Jaj2J1 +

Q

ojii Chagsis T 2Ch031 1 Ciagngs T 2Chaj1g Ciagago + 2Cj0

jsivi Ciegsgs T 2Cs515 Clagajs + 205013 Clsings + 2Cjajugs
+2C,5152Cisisjr + 2Ch013s Chagain + 201 Clsiogi + 2Cjsugo
+2C5,5,55Ciojojr + 2C313. Clagain + 2C5jsj1 Chagogi + 2Cjaagy
+C2 i+ Cr i +Cr i +Ch s+ Cos 4+ Co

J1J3J2 J1J2J3 J2Jsi1 J2J1J3 Jaje1 J3j1J2"

J3J242 +

Q

J3jije +

Q

J3j2J1 +

Q

J3j2J1 +

We will make one remark concerning calculation of the mean-square
error of approximation for the multiple stochastic Stratonovich integral of
3rd multiplicity of the following form:

*t3 xto

[ [ dEPa e € i =1, m,
t t

\?%

Since

* (411213 110213 1 T i T ;
[O(SOT,t )= [(goom) + El{ilzb}//dsdf}( s) 4 1{12 %3}//dfs( Ddr =
t Y Y

L 1 3 : 1 :
— ](112213) + 71 i T —¢)2 < (is) + (13)> +
0007 4 {1—2}( ) o \/§C1
L ma (T = 0 (66— ) (4.19)
4 19=13 \/g Y



4.2 The case of non-pairwise different i1,...,7, =1,...,m

, T
where CJ@ = [ ¢;(s)dfD; {¢;(x )}520 — is a full orthonormal system of
¢
Legendre polynomials at the mterval [t,T], then

*(i10213) (i18213) 1 g
Iooéif P = 106027123 " Zl{ilzig}(T t) (Coz3 + 7C1z3 )

1 3 1 1
+11{22=23}(T )2 <COl - TCll ) ) (415)
where Iééloi;ff)p — is the approximation of multiple stochastic Ito integral
1§52, which has the following form:
p o
Iégl(;;ztg) = Z OCj3j2j1< J(fl) J(;z) J(3 V- 1{@1 zz}l{h J2}<J3
J1,J25)3=

(i1) (i2)
_1{i2=i3}1{jz=13}<j1 - 1{2'1:%'3}1{3'1:]'3}92 >
From (4.14) and (4.15) we finally get:

w(igisiy #(igini1)p) 2 izinin igiain)p\ 2
M {(100(037“,,5 ) - IO(gOST’t )p) } = M {(IO(O%T,t) [0(030Tt) ) } : (416)

It is obvious, that formula (4.16) will also be correct for trigonometric
system of functions.

4.2.4 The case k=4 and any 11,19,73,04 = 1,...,m

The case of pairwise different ¢1,...,74 is examined in lemma 10, so
we just need to analyze the following particular cases: 1. 11 = iy # 13, i4;
7:3 7é i4; 2. ’il = ’i3 7£ ’ig,’i4; ’iz # ’i4; 3. il = 7:4 ?é ’ig,i3; ’ig ?é ’i3; 4.
tg = 13 # 11,04} 41 # U4; 0. 92 = 14 # 11,13; 41 # U3; 6. 13 = 14 # 1, 19;
’i17£’5'2; 7.’i1:’i2:i37é’i4; 8.’5'2:2‘3:’&'47&2‘1; 9.’i1:'i2:'i47é’i3; 10.
’il = 23 = i4 7'é ’i2; 11. ’il = iQ = i3 = i4; 12. il = ’ig 7é ’Lg = i4; 13.
?:1:7:3#7;222'4; 1421:7,47522:’53

Let’s start from the 1st particular case. According to theorem 1 we have:

Tl = X Ciunn (GGG = 142076

jl 7j27j37j4:0

(1) ~(i1) ~(is) »-(ia)
T, = > Ocmsjzjl ( POU LSS BATele) )
J1,725)35)4=
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Chapter 4. The exact calculation of mean-square errors of approximation

Since M {J [1[)(4)]1},,5} = 0, then according to (4.8) for calculating
the mean-square error M {(J [y W, = J [¢(4)}T,t)2} we need to calculate

M{ (T @)}
Using (2.224) when k = 4 we have:

= i M i C: O 'C(Zl) C(i:l) C(i:l) C(i:l) .
JagsJ2in ™ jajsdzit S (ju) TS ()Tt 5 (j2) Tt S(j5) Tt

J3,J4=0 J1,31J2,45=0

q q
— Y CiuipoisChigsitit = 2 ChaisingzCijagpiy+

j27j37j47ji:0 j27j37j47jé:0

q
+ Y Cisiei2Cisjaisis =

j27j37j47jé=0

=y (Ml S G G (8@ i 1
J4J33291 949332315 (1) T, S(31) Tot S(j2) Tt > (55) Tt

J3,J4=0 J1,J1,92,55=0
2
(Z CJ4J3J2J2> ) =

Jj2=0

p Jo—1
_ 2
o Z ( Z .74]3]1.71 + Z Z ( JajajeJu + C]4.73J1]2+
J

J3,J4=0 1=0 Jj2=0j1=0

2
+20j4j3j1j1 Cj4j3j2j2 + 20j4j3j2j1 Cj4j3j1j2> (Z CJ4J3J2J2> ) =

Jj2=0

b 'S
— 2 . . . . . . . .
- Z C]4]3]2J1 + o Z CJ4]3J1]20]4J332J1°
J1,J2,J3,J4a=0 J1,J2,33,J4a=0
Therefore

M{ (T D, — T W)ra) "t = [ K3, ta)dt . dts-
T

p b
o Z CJ4]3]2J1 T Z Cj4j3j1j20j4j3j2j1 (21 =iy # 13,145 13 7 Z4)-

J1,J3,J2,51=0 Ja,33,J2,J1=0

For particular cases 2-6 we get in the complete analogy:

M{ (T D8, — JW)r) = [ K3t ta)dt . ds—

[¢,T]*
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

p b
o Z CJ4]3J2J1 T Z Cj4j3j2j10j4j1j2j3 (Zl = 13 # 19, 1%4; 12 F 14),

J1,J3,J2,51=0 Ja,J3,J2,j1=0

M{(T D, — T W)r) ) = [ K3t ta)dh . dta—

[¢,T]*

D p
— > Ciiii— 2 CiiisieinCirsjegas (11 = 14 # 9, 13; 12 # 13);

Ja,33,32,J1=0 Ja,33,J2,j1=0

M{(J[w(‘l)}%t—J[w(‘l)}T,t)z}: [ K(ty,... ta)dty . dta—

[¢,T]*

b b
= X Ciiiin— 2 CijspiCiujsjy (2 =13 7 11,145 01 # da);

J1,J3,J2,51=0 Ja,J3,J2,51=0

M{(J[w(‘l)]’},t—J[w(‘l)]T,t)Z}: [ Kty ta)dty . dts—
it

p V4
o Z CJ493]2J1 o Z Cj4j3j2]10J233J4J1 ( = U 7é 11,135 1 7’é '53)7

Ja,J3,J2,J1=0 Ja,33,J2,j1=0
2
M{(J[zp( B, — Tl } K2(th, ..., t)dt ... dta—
[t,T]*
P 9 P . . .. .
o Z CJ4J3J2J1 . Z Cisjsjois Cisjsjois (Z3 =i F 11,12, U1 F 22)'
J4,J3:J2,J1=0 J4,J3,J2,J1=0

For the Tth particular case (i; = 19 = i3 # i4) we have:

, i ~
JWWh, = Y Cijuni (leCjojsCﬁ — L=} GisGia—

jl aj2 aj3’j4:0
-1 {71 =J'3}Cj2 Gis — 1{j2=j3}<.j1 Cj4> )
rae Y = ¢ =GV = ¢, ¢ =5

P
M {(J [¢(4)]1:7“,t)2} = Z M{ Z Cj4j3j2j1 J4J§J§J{CJ1CJ1C]QCJ2CJ3CJ3}

j4:0 j17j17j27j27j37j3 0
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Chapter 4. The exact calculation of mean-square errors of approximation

p p
-2 X M{_ 2 Clhijaioin Ciads s s Sin Cjzéngjg}—
J3,Ja=0 J1:J2,43,5=0
p p
-2 X M{_ 2 Cligaings Caigis s Cin CjQngst}—
J3,J4=0 J1:J2,43,35=0
p p
-2 > M{_ 2 Ciugugei Chigsst s Cin GG Cj{}+
J3,j4=0 J1,J2,43,41=0
p
+ X (CiiinioioClhsgsinis + Clisgssois Ciniinin T Cingajain Cladodois T
J1,J253,J4a=0
+2Cj4j3j2j20j4j1j3j1 + 2Cj4j3j2j20j4j1j1j3 + 2Cj4j3j2j30j4j1j1j2) 5

Then, according to (2.224) when k = 6 and k£ = 4 we have:

p
M{ > Cisjsingr Ciaiisit Cin CjiCJijst3ng} =
jl;ji,j2,jé;j3;jé=0
p Jz3—1lja—1
=15 Z Hivieis T 2 2 2 Yo Cliujsioir Chagaoi) T
73=0

J3=072=0 j1=0 (j1,51,J2,42,]3J3)
p Jjs—1

+3 Z Z Z C(j4j3j3j10j4j3j3j1)+

J3=0J1=0 (j1,J1,J3,3:J3,J3)
p Jj3—1

+3 > > > Cliaisiuir Claisinir);

33=0 j1=0 (j1,j1,j1.J1.J3.J3)

D
M{ > ijy‘mCjugj;jéleCjojsté} =

j17j27j37jé:0

p Jjz—1
=3 z C]4J3J3J3Cj4]3j2]2 + Z Z Z C(J4J3]131034J31232);
]3_0 .73_0 -71:0 (.715.715.737.73)

D
M{ > ijjzjlcjuéjéjé@lCjzﬁjsté} =

j17j27j37jé=0

p Js—1
=3 Z Clagajsgs Ciagyaiy 2 2 2 Clingadan Ciniginst);
j3=0 J3=07j1=0 (j1,41,J3,J3)

y4
M{ > Cj4j3j2j1Cju'éjéjigjlgjzgjégji} =

j17j27j37j{:0
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

p Jz—1
=3 Z C]433J3J3CJ433J3J3 + Z Z Z C(J4J3J3chj4j§j§jl)'
j3=0 J3=071=0 (j1,j1,73,3)

Combining obtained equalities we calculate the mean square error of
approximation, which is of interest to us, using the formula:

M{ (T, = TWr) ) = [ K3t ta)dty . dta—

[¢,T]*

M{(T)} (4.17)

For the 8th particular case (i9 = i3 = i4 # 4;) we have:

T, = i Ciijaiain (Cj24j3€j45j1 = L= GG~
J1,J2,33,J4=0
L5250y CinGi — 1{j3:j4}Cj25j1>,
where () = ¢®) = ¢ = ¢;, W = ;
{5} = S ML S G GGG )

j1:0 j27j27j37j37j47j4 0

p p
—2 Z—O M { z Cj4j3j2]1 CJiJéJéJl CJ2 st Cj4 Cjﬁ } -

j2aj3aj4aj!1:0

p
M{ > CmsjzjlCjijéjijlgjzgjscﬂcié}_

j2aj33j47jé=0

|
M~

jlajzlizo
p D
-2 > M{ > Cj4j3jzj1Cjijijéjlgz(jscﬂ(jé}+

J1,51=0 J2,J3,J4,J5=0
p
+ o Z (Cj4j2j2j1 Cj4j3j3j1 + Cj4j3j4j1 Cj2j3j2j1 + Cj4j4j2j1 Cj3j3j2j1+
J1,J2,3,ja=0
+2C},5354i2 Cisingein T 2C5ugajoir Ciaisgain T 2Chujajoir Ciaingai) -

Then, according to (2.224) when k = 6 and k£ = 4 we have:

p

M{ Z Clagsjis CJiJéthJz Cjé Gl Cjé Gl Cji} =

]27]27.737.737.747.74 =0
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Chapter 4. The exact calculation of mean-square errors of approximation

p Ja—1lj3—1
=15 Z AR I > Cljsioir Cagainin) T
Ja=0 J4=07J3=0 j2=0 (j2,52,J3,43,]4,j1)
p Ja—1

+3 Z Z Z C(j4j4j2j10j4j4j2j1)+

j4:0 ]2:0 (jQ,jQ ,j4;j47j47j4)
P Ja—l

+3 Z Z 2 C(j4j2j2j1Cj4j2j2j1);

J4=0J2=0 (ja,j2,J2,2,J4,]a)

p
M{ > Clagsjois 34133311@2@3@4@4} -

j27j37j47j!1=0
P P Ja—l

Z Jajajaj 34333391 + Z Z Z CJ4J2]2JICJ4.73.73.71)

=0 J4=0 j2=0 (j2,j2,j4,j4)

b

M{ Z Cj4j3j2]1 J4J3J4J1C]2CJ3CJ4C33}
j2aj3aj;l35j4:()

D p ja—1

Z Jajajaj .74.74]4]1 + Z Z Z CJ4J2]2]1C]4J4J4J1)

=0 J4=072=0 (j2,j2,4,J)

p

M{_ Py Cj4j3j2j1Cjijijéjlcﬁgkcﬂcjé} =
J2,J2:J3,J4=0

p Jja—1

Z Jajajadr J4J4J491 + Z Z Z CJ4J432J1034J432]1)

=0 J4=0 j2=0 (j2,52,j4,j4)

Combining the obtained equalities and using (4.17) we will get the mean
square error of approximation which is of interest to us.
Let’s analyze the 9th particular case (i; = 1o = 14 # 13):

p ~ ~
T69%e = % Cvuinn (GGG = Limanudiom
J1,J2,33,54=0
_1{J'1=J'4}Cj2<j3 - 1{j2=j4}CJ'1 st)a
where g}“) = CJ@?) = CJ("‘*) = (j, gj@) = Ej;
(4) P 9 D D
M {(J[¢ ]T,t) }: Z M{ Z Cj4j3j2.71 J4J3.7231C.71CJ2CJ4CJ1ChCJ4}
J3=0 J1.J1552,0%5:94,54=0
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

+

-2
—2
—2

p

>

D
, M{ > Cj4j3j2j1Cjajgj;j;leCjoﬁCja}—

j35j2:0 j47j27j15j!1:0

M~

P P

> 'Vl{ > ijmlCjajsjéjaélehCﬁCjé}—
j3)j111:0 j15j27j4ajé:0

P

D
> M{ Y. Clisjoin j;jsjAjileCjoj4Cji}+

jz,bj3:0 ]'1;].2;].47]'1:0

(ClajsgnizCisjaingr F CijainisCivjajoin + Cisjajai Cingajoii +

jl aj?aj37j4:0

+2C},4032js Clsjsinir + 2Cudaiais Cirjsinge T 2Cjujajujs Clajsina) ;

"

—152

b

> Cliagagois Citis bt Cir GaGin G ngng} =
jl)j{)jZ)jé)j‘l)jz’l:O

P Jja—1ljx—1
J4J3J4J4 + Z z Z Z C(j4j3j2j10j4j3j2j1)+

~74 =0 -72_0 ]1:0 (.71).713.72).727]47.74)

Ja—1
+3 Z Z Z C(j4j3j4j10j4j3j4j1)+

J4=071=0 (j1,J1,J4,J4,]4,)4)

p Jja—l1
+3 Z Z 2 C(j4j3j1j1Cj4j3j1j1);

.74 0.71_0 (j15j13j17j15j43j4)

D
M{ Y. Clisoin jajzjéjéleCjzﬁana} =
jlaj2aj4ﬂj411:0

p Ja—1
3433J4J4 94133292 + Z > > CJ4133111CJ43332J2)
4 0]1 0 (.713.715.743.74)

¥4
M{ > Chiisioin CitsisiiCin Cjoyijé} =
jl)j2)j4ﬂjé:0

p Ja—l
CiugsgsisCtsiais T 22 22 22 Cliagainir Ciginiait);
J4=051=0 (j1,j1,j4,j1)

¥4
M{ Yo Chigagois Citaingt Cir Cin i Cj{} =
j17j27j47ji=0
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Chapter 4. The exact calculation of mean-square errors of approximation

p Ja—1
=3 Z CJ433J4J4C]43314J4 + Z Z Z C(J4J3]131034'1]314J4)
j1=0 Ja=031=0 (j1,j1,j4,Ja)

Similarly in the 10th particular case (i1 = i3 = i4 # i2) we have:

, i i
T, = Y Cijui (CJ1CJ3CJ4CJ2 ~ L=} Cin i~

J1,52,J3,J4a=0
— 123G — Ligs=ia}Cin Cj2>7
where QJ@I) = CJ%) = CJ(“) = (j, gj(’é) = Ej;

p
M { > Ciajsinir Ctt iais Cin Sy Cis S5 Cia St } -

jl 7ji7j37jé;j47j411:0

<
—N
N
=~
<
S
BE
Nule
[\
——
I
=

p p
-2 'Vl{ > Cj4j3j2j1Cjijéjzjécjlfjschgjé}_

jéanZO j1:j37j4;j111:0

p p
-2 M{ Y. Clisoin jajéjw'alestCané}—

J2,J4=0 J1,J35J4,J5=0

p D
-2 > M{ > Cj4j3jzj1Cjéjijzjigjlgjzchgji}+

ji;j2:0 j17j3)j4aji:0
b
+ o Z (Cj4j3j2j3Cj4j1j2j1 + Cj4j3j2j4cj1j3j2j1 + Cj4j4j2j1 Cj3j3j2j1+
J1,J2,53,54=0

+2C4j3523s Cisirioin + 2C50uings Crgagois T 2Cisagnis Clsgriods) ;

b
M{ > Clisgsioir Ot jait Cin CﬁC%ngCthg} =
jhj{:jiiajéaj‘lajz’i:o
p Ja—1lj3—-1
=15 Z J4J4J2J4 + Z Z Z Z C(j4j3j2j1 Cj4j3j2j1)+
Ja=0

.7420 .73:0 ]1:0 (jlajl aj37j37j47j4)
Ja—1

+3 Z Z Z C(j4j4j2j1 Cj4j4j2j1) +
J4=0 j1=0 (j1,j1,J4,J4,J4,4)
p Ja—1
+3 Z Z 2 C(j4j1j2j1 Cj4j1j2j1) ,

J4=071=0 (j1,j1,J1,J1,J4,]4)
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4.2 The case of non-pairwise different i1,...,7, =1,...,m

p
M{_ 2 Cj4j3j2j1CjijéjzjéCj1Cj3Cj4Cji} =
]17.735.745.71,1:0
Ja—1

p
Z JajaJ2Ja J4]3]2]3 + Z Z Z CJ4J1]2J10.74.73.72.73)

J4=071=0 (j1,1,54,J4)

P

M{- Z CwsjzylCJiJéJzJ4C11€J'3CJ'4CJ'é} =
]1).73;.745Jé_0

p p Ja—1

Z Jajajaja J4J4J2J4 + Z Z Z CJ4J4121103431]2J4)

=0 J4=071=0 (j1,j1.J4,J4)

D
M{ > Cj4j3j2j1Cjijijzj{CﬁC%CﬂCj{} =

j17j37j47j{=0
P Ja—l
=3 Z ClujsgeisCitgigain T 22 22 22 Clisjaiois Ciiiioin)-
]4 =0 .74 0.71_0 (.715.715.747.74)

Let’s go to the 11th—14th particular cases. Using theorem 1, we will take
the expression for approximation in this cases. For the 11th particular case

(i1 = dg = i3 = iy):

P 4
JWhi= ¥ Cigpi (11—11 Ci = L1323 Cin v = Linmio}$iaGin =

T jiyj2,d8,ja=0
—145,2311CiaCis — Liiu=4s}Cir Cis — Lia=3a}CinCis — Liss=ia} Cin Gt
1=} L s=jad + Li=js} Ligo=ja} T 1{j1=j4}1{12=j3}>a (4.18)

where CJ@I) = CJ@) = gj(i3) — Cg@) = (-
For the 12th particular case (i; = is # i3 = 14):

p . . .
JW(@]I%,t - Z OCj4jsj2j1 (ngfl)cgl)g(;g)g](zi ) 1{31 JZ}CJ CJ4
J15J25)35J4=

1{J3_J4}CJ CJz +1{31_J2}1{J3_J4}>

For the 13th particular case (i; = i3 # i = i4):

p . . .
Ty = ¥ Cj4j3j2j1< RGN = e GG
J1,2,J3,54=0
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Chapter 4. The exact calculation of mean-square errors of approximation

1{J2—J4}CJ Cyz + 1{31_J3}1{J2—J4}>
For the 14th particular case (i; = i4 # 19 = 13):

J[¢(4)]]ZI)",t = Z Cj4j3j2j1 (C;II)C_7(41)C_7(22)CJ(3 ) 1{31 J4}CJ €J3

jl 7j27j37j4:0

_1{32 J3}CJ CJ4 +1{]1_J4}1{J2_J3}>

Due to some bulkiness we will not examine these particular cases and
will make several remarks (it will not be principally difficult to analyze
particular cases 11-14 in comparison with the previous).

It is easy to see, that in the 11th—14th particular cases the following
expression is executed:

M {J[w(‘”]’%,t} = 0.
Within the frame of 11th particular case when 1 (s),...,¥4(s) = 1, as

we mentioned before, with probability 1 the following formula is correct
(see sect.6.2):

1910101 (T t) 1 1)) 2
T = ign = .7 ((6) =6 (7)) +3).
In more general case, when 91 (s), ..., ¢4(s) = (t—s)'; | — is a fixed nat-
ural number or zero, with probubility 1 we may write down (see. sect.6.2):

L 1 4 -\ 2 2
Tl = 1™ = o (1)) = 6 (1) B3 (4n)°)

i w(ivining 1 .\ 4
J [¢(4)]T,t = Izl%;?“m - 2 (Il(;,lt)) 3
T

[th Z Cj CJ“ Ath - /( S)Qldsv
t
where in the next-to-last formula we propose, that the expansion of stochas-
tic integral is performed using Legendre polynomials.
It is obvious, that the main difficulty which will be met in the 11th—14th

particular cases when calculating M {(J [10(4)]5’1’,5 —-J [@/1(4)]“)2} or, accord-

ing to formula (4.17), when calculating M {(J [¢(4)]1%,t)2}, it will be con-
nected with calculation of the following mathematical expectation (11th
particular case):

p

M{ Z CJ4.73.72.71 JiJéJéJiChCh ChCJzCh CJ3CJ4CJ4}
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4.3 Some peculiarities of calculation of mean square error of approximation

According to (2.224) when k = 8 we have:

p

M{. p> Cliagssei Ciibibit G St CjojéCj3ngCj4Cja} =
Ji1

p p ja—1
—_— 2 . . . . . . . .
=105 Z Cj4j4j4j4 + 15 Z Z o Z o C(J4J4J4JICJ4J4J4J1)+
Ja=0 J4=071=0 (j1,51,54,J40,J4,]4,]4,J1)
p ja—1
+15 Z Z Z C(j4j1j1j10j4j1j1j1)+
Ja=071=0 (j1,41,41,51,01,41,J4.]4)
p ja—1
92 > 2 Cliui Gt
.74=0 ]120 (.717.717.715.715.747.747.745.74)
p Ja—1j2—1
+3 Z Z Z Z C(j4j4j2j1Cj4j4j2j1)+
.74:0 .72:0 -71:0 (jhjl 7j27j2 7j47j47j47j4)
p Ja—1ljx—1
+3 Z Z Z o Z o C(j4j2j2j10j4j2j2j1)+
Ja=072=0 j1=0 (j1,j1,52,J2,J2,J2,4,J4)
p Ja—1lj3—1
+3 Z Z Z Z C(j4j3j1j10j4j3j1j1)+

p Ja—1j3—1j2—1

+ Z Z Z Z Z O(j4j3j2j10j4j3j2j1)'

According the scheme proposed above we may, increasing metodically
the multiplicity & of the multiple stochastic Ito integral and separating
various particular cases which correspond to various combinations of in-
dexes #1,...,4 = 1,...,m, calculate accurately the mean-square errors of
approximations of the multiple stochastic integrals, obtained in accordance
with theorem 1.

4.3 Some peculiarities of calculation of mean square
error of approximation for the systems of poly-
nomial and trigonometric functions

Using the example we will demonstrate, that for the case of trigonomet-
ric system of functions the approximation on the basis of formula (4.1) may

be developed in such manner, that the error M {(J [p®]%, —J [w(Q)]T’t)z}
(41 # 19) will turn out to be significantly less, than the right part of (4.3).
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Chapter 4. The exact calculation of mean-square errors of approximation

Assume, that the following trigonometric system of functions is taken
as the system of functions {¢;(s)}3,

1 when 5 =0

1 27r(s ;
(5) = V2sin =7 when j =2r — 1, 4.19
bi(s) = ——— s (4.19)

when j = 2r

where r =1, 2,...
Using the theorem 1 for the system of functions (4.19) to the multiple
stochastic Ito integral of type

T s
6272 //df7('l2)df§“)a i17i2 - ]-) e, My ’1:1 7é i2,
t t
we get

241 1 1 2)
I(%;,t)zi( —t)[Coi ¢+ = Z { SR — ¢ i+

+\/_(CQr 16 = e 1) }] (4.20)

T N
where C dof tf ¢;(s)dfD; £ (; = 1,...,m) — are independent standard

Wiener processes. At that, the series (4.20) converges in the mean-square
sense.
According to (4.1) it is necessary to write down

1211)q 1 11 12
Io(oTt) —5( _t)[CO + — Z { or 27’ 1 Czr 1 2r
‘H[(Czr 1Go” Co“ 2r—1> }] (4.21)
From (4.20) and (4.21) when iy # 42 we have:
(i2i1) (1221) 2 _ 3(T - t)2 7T2 4.1

It is easy to see, that the right part of (4.22) may be decreased three-
fold, if instead of the approximation of type (4.21) we take the following
approximation [23]:

201 1 i1 P 1 41
I(%qft) _§(T—t)[§éi )Cé”Jr;T_E_JlT{ (r o 1 C2r 1 27’
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4.3 Some peculiarities of calculation of mean square error of approximation

+v2 (C2r 16 = G 1)} + g\/OTq (ﬁé’“é‘ém - C(gil)féiz’))], (4.23)

where

: 1 X1 w41
0 — —_ =D~ N(0,1); =— =) —
gq ,—aq r:§|-1 r CQr—l ( ) )7 Oy 6 = 7’2.
At that, the Gaussian random variables ¢\?, ¢§9, ¢{ EDir=1,...,¢
1 =1,...,m are independent in total.

From (4.20) and (4.23) when i1 # 42 we get
(i2i1) (i2i1)q) 2 _ (T — t)
w{(fy - 1)} = S (- S (4.24)

i.e the right part of equation (4.24) is tree-times less then the right part of
equation (4.22).

The given method of advancing approximations of multiple stochastic
integrals [23] is generalized for the case of integrals of third multiplicity
[24]. Apparently, analyzing stochastic integrals of higher multiplicity, than
the third one, we cannot propose the universal method for introducing
additional random variables as it was made in (4.23). As a result, in each
case we have to act individually.

You may omit it selecting the full orthonormal system of Legendre poly-
nomials at the space La([t, T]) as a system of functions {#;(s)}52,.

Let’s remind, that in chapter 2 using the system of Legendre polynomials
for i1 # 19 we got the expantion:

(i1d2) __ T =] i) i) | &2 1 (i1) ~(i2)  +(i1) »(i2) ]
Ioo,, = 5 [Co Co +i221m{@_1@ Gi Cz‘—1}7

which doesn’t require perfection, as in the case of trigonometric system of
functions.
It is easy to see, that

(i) _ pliniaie)*] _ M(E 1 )
M {(Ioom — ooy, ) } = 5 ; : . (4.25)
From (4.24) and (4.25) we get:
7:27:1 2211 )q 2 T - t 2 o0 1
M{(Iéom) 1) }: T=07 s 1

< (T—t)? Tdz (Tt

A qx2_ 2m2q q

(4.26)
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Chapter 4. The exact calculation of mean-square errors of approximation

and (T )2 .
(i) _ plinin)g\?| _ (L —8)" &
M - 1) =5 3 e S
(T-t)*F 1 (T —t)? 2 ‘ (T —t)?
de = — In|1— C! 4.97
=2 Ja 1™ g Mg | sC - (420)

correspondently, where Cy, Cy — are constant.

Since the value T' — t plays the role of integration step in the numer-
ical procedures for stochastic differential Ito equations, then this value is
sufficiently small.

Keeping in mind this circumstance, it is easy to note, that there is such
constant Cj3, that

) 1.0 2 162 12 2
M {(I,‘fij;j;,’t — L) } < CsM {(Ié&fj I§5;) } . (428)
where Il(fijf;)tq — is the approximation of multiple stochastic integral
Il(f‘l_:[:;)t from the class (5.1), which has the form (4.1) forgy = ... =g = ¢

and 41,...,0,=1,...,m; k> 2.
From (4.26), (4.27) and (4.28) we finally get:

M {(Iffi:i;?t — ) }< o=t ; b (4.29)
where C' — is a constant.

Note, that the estimation (4.29) is general enough, and at the same
time it is rather rough. Significant part of this chapter has been devoted to
obtaining the exact expressions for the left part of (4.29) when k =1, ...,4.
These exact expressions provide a possibility to minimize the length of
sequence of standard Gaussian random variables, required for combined
approximation of multiple stochastic integrals.
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Chapter 5

Approximation of specific multiple
stochastic Stratonovich and Ito
integrals

In this chapter we give huge practical material about expansions and
approximations of specific multiple Ito and Stratonovich stochastic inte-
grals using theorem 1 and systems of Legendre polynomials and system
of trigonometric functions. Considered multiple Ito and Stratonovich inte-
grals are included into stochastic Taylor expansions (Taylor-Ito and Taylor-
Stratonovich expansions). Therefore, results of this chapter may be very
useful for numerical solution of stochastic differential Ito equations. Expan-
sions of multiple stochastic Ito and Stratonovich integrals of multiplicity
1 — 5 using of Legendre polynomials and expansions of multiple stochastic
Ito and Stratonovich integrals of multiplicity 1 — 3 using of trigonometric
functions are derived.

5.1 Approximation of specific multiple stochastic in-
tegrals of multiplicities 1-5 using Legendre poly-
nomials

In this chapter we provide considerable practical material (based on the-
orems 1 — 7) about expansions of multiple stochastic Ito and Stratonovich
integrals of the following form:

T t2 . .

L = [ =) [t —t) e dEY, (5.1)
t t

O = [—)h [ (= t)haf Y,
t t
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

where 11,...,0.=1,...,m; ly,..., [ =0, 1,....
The full orthonormal system of Legendre polynomials in the space
Ly([t, T]) looks as follows

G @) =2 (o= ) 7). 62

where Pj(z) — is a Legendre polynomial. It is well-known [28], that the
polynomials Pj(z) may be represented for example in the form

This representation, as we know, is called an equality of Rodrigues Note
some well-known features of polynomials P;(z):
Pi(1)=1; Pjy1(-1)=—-Pj(—1); 7=0, 1, 2, ...,

dPjii(z)  dPj_(x)
dx dr

=2+ 1)Pi(z); j=1, 2,...,

1

0 ifk+#j
Pa:P-a:da::{z N R
JP@PREdr =1 2 eyl
U+ D)P(z) +iPia(z)
P; = 9 =1 2,...
L ](x) 2]+1 Y .7 ) b b
m
Pn(.fU)Pm(.ﬁC) = Z Km,n,k‘Pn—{—m—Qk‘(x))
k=0
where
A kOkOp— 20+ 2m — 4k + 1 (2k — )N
K. . .= . N C k) L
o,k Artr—k 2n+2m — 2k + 1’ @k g =

Considering these features and using the system of functions (5.2) we
get the following expansions of multiple stochastic Ito and Stratonovich

integrals: . '
I = VT — ¢, (5.3)

, T — t)3/2 . 1 .
) _ ( (i) (u))j 5 4
11y B o —\/ggl (5.4)
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

R e

f3fiia) = [co“ ¢l +Z \/T{C(“)C(“)—C@-(“)Cz-(fﬁ)}], (5.6)
B — T2 Ioé““)—(T;t)Q[ VAR

B e N
pi = Lt - E oo,

+i§‘; ( ‘ +\/1()2?+ 9;2'& +( 2-5;2225;))@@ IRCS El(l;g% )+ 3) ﬂ - B8

i1i2 1122 1 ilig 7,17,2 1
11(0T,t) [1(5 )+11{i1=i2}(T_t)2; I(ng,t) 101( )+11{i1=i2}(T_t)27 (5.9)
. 1
I*(217,27,3) —_ _
0007, T _¢

]- 7 7,17,2 127:1
L1 (1 — 1) -

s [1 (1) (is) [ ~(is iy L G,
(-0} [5676 (67 +VE - o) +

(I( )I élzh) —l—[é )]1(31223)> +

1 s
+ZD(T’;”’3)] (5.10)

or in general form:

fS‘é’olT’i“) - Z OJBthC(“)CJ(?)CJ(?);
J1,J2,J3=0

T s S1
Ciagsin = [ 65s(5) [ #1(51) [ 6 (s2)dsodsds,
t t t
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

1rs

i1i2i3 % iligig 1 i3 1 21 21
I(SOOT,t) = [OéOT,t ) + 1{@1212}51( ) - 1{i2=i3}§ ((T )[(g ) + [1( ))
(T — t)3 l i2) ~(i1)

_|_

(7’ + 2) (Z + 3)@ Cz“ (Z + 1)(7’ + Q)Czw Cz+3_i_
V(2i 4+ 1)(20 + 7)(2i + 3)(2i + 5)

T —
]—052122) — _( y ) Io(()“m . (T . t)[01(117,2) n

+3 Co 22"‘2(

(i +i = 3)GHG" — (243 — GG
' \/(22+1)(2z+3)(2z‘_ 1)(2i 1 5) ) : (5.11)
1199 T — 1112 i16s T — 3 i 3
B, - 4 2k Iooh? — (T — )i + ( gt) L),\/gg0 G

(s 264G — (1+2)(+3)GYC |
V(2i 4+ 1)(20 + 7)(2i + 3)(2i + 5)

(43 — GG — (@ +i— 3)@“2%5.’:%)
V(20 4+ 1)(20 + 3)(2i — 1)(2i + 5)

L (iy) iy
g s &

1=0

, (5.12)

1112 T lllz T 2112 1122 T_t 3 ]- ’il ’L'2
I1§ )Z—( 1 )Ioé - ( 5 )(Ilé )+101( )>‘|‘( )l—ﬁ( )C1( s

o (4 1)(i+3) (¢3¢ — (¢
; ( V(20 +1)(2i + 7)(2i + 3)(2i + 5)

(i 4 1)2 (¢l — ¢l el
(¢ D))

5.13
V(20 +1)(20 + 3)(20 — 1)(2i + 5 (5-13)
(iri2) __ px(iri2) 1 3. gplinia) _ px(ini2) 1 3
IOQT,t 102 _61{11212}(T_t) 3 I20T,t ]20 —61{11222}(T—t) , (514)
. e (iis 1
]1(?11;? = 111(;; )~ L, —iny (T — 1), (5.15)

6
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

: —)7/2
[?E;lz _ _(T 4t) (C()“ 3f 11 + 762“ \/74-321 ) 7 (516)

*(ivinigia) _ 1 - o i) #(62) ~(is) (ia)
Toooor, ~ = 1131_%%- , Z ClissiinCir Sia Sis S
J1:J2,J3:§4=0

(’il, 7:2, ’i3, ?:4 = 0, 1, <y m);

T s S1 S2
Ciagsinis = [ 631(5) [ dia(s1) [ 61.(s2) [ 85, (s3)dsadsadsuds,
t t t t

D(hlz%s) _ & N K. C C i2) (i3)_|_
i=1,/20 k=i Ll NS W R | J Sk
2i>k+i—j>—2; k+i—j — even
x il (i1 ) ~(i3)
+ i:%':o ]El Niji By ik 0G0 GG —

2k>k+i—j>—2; k+i—j — even

w .
- > NijiK, ey () ) i) _
i=1,j=0,k=i+2 Uk i1k~ I—ZC C C
2i+2>k+i—j>0; k+i—j — even
S (i1) q(ia) o(is)
N PRy NijeKy_q 1 b= GG G —
i=1,j=0 k=1 P

2k—2>k+i—j>0; k+i—j — even

> NijeKi_y oy sis (VP -
i=1,j=0k=i—2,k>1 WETH-LEL k
2i—2>k+i—35>0; k+i—j — even

%  iZ3 (i1) #(i2) »(i3)
— oz Nige K141 p0=G GG+
i=1,=0 k=1 =17
2+2>k+i—j>0; k+i—j — even
0.0 . .
(i1) #(i2) ~(i3)
+ i=1j§0k=i NijiF;_q - 1,k GGG
2%>k4i—j>2: k+i—j — even
x il (i1) (i) ~(43)
+ . IZ 0 kZI Niijk_l,i_l,—l’“+2"*'_1<i Cj Ck ) (5'17)
1= ’J: =

2k>k+i—3>2; k+i—j — even
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

where
Ny — 1
RN (2k 4+ 1) (25 + 1) (20 + 1)
Kmnk_am kQkOn—k 2n+2m —4k+1 (2k—1) Cm<n
v Gmtn—k on+2m—2k+1’ k!
Let’s analyze approximation Ioéllzf")q of multiple stochastic integral
IOéZleZ , obtained from (5.6) replacing oo on g.
It is easy to prove, that
(i112) #(inin)g\ 2| _ i t)2 <1 — q 1 )
M {(100 S poy ) }_ Rt T (5.18)
Then, using lemma 10 we get:
2 2
M {(Ilé““’ L) } M {(101‘““) — L) } _
T —t)* (5 a1 a 1
G Ly R N
16 \9 “Sd2—1 = (20— 1)2(2i +3)
d , + 2 4+ 1
—~ (i+2)"+ (64 1) (5.19)
£ @i+ 1)(2i+5)(2i + 3)?

We proposed i; # iz in formulas (5.18), (5.19). Let’s examine (5.7), (5.8)
for il = ’ig .

r = () +
S 1 i1) ~(ix 1 i1)) 2
Z:o{\/(2z’+1)(2z'+5)(2i+3)gi( G - (2t — 1)(2i + 3) <Ci( )> }]
(5.20)

’Llll T_t2 il 2 1 il il
rg = - + 20"

& 1 ir) »(ia 1 i) 2
+i2=:o{_\/(2z'+1)(2z‘+5)(2z‘+3)d Eh (20 —1)(20+3) (6") H
(5.21)
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

from which, considering (5.3) and (5.4), we get

T —t)? N2 1 G
( 5 ) ((Cézl)) + %Céh)cl(h)> ]é )1'1( 1) W p. 1.
(5.22)

Obtaining (5.22) we supposed, that equations (5.7), (5.8) are executed

with probability 1. Complete proof of this fact will be given in this chapter.
Note, that it is easy to get equality (5.22) using Ito formula and formulas

of connection between multiple stochastic Ito and Stratonovich integrals.
Direct calculation using (5.20), (5.21) gives:

2 2
M { (1 = rigen) b = mf (55 - i) =
2

(T - )

16

]15““) + 1_01(““) = -

0 1 0
B+ @ )P i @i— 1)@+ )

+<¢:§+1 (21 — 1)1(22' + 3))2 ’

where 101(““) Ilé““ detected from (5.20), (5.21) replacing co by g.

On the other side, formula (4.11) provides a possibility to get more
comfortable expressions from the practical point of view, but for multiple
stochastic Ito integrals:

.. 2 . 2
m{ (e = 1) = m{ () - 162} =

1
(20 — 1)%(2i + 3)?
(5.23)
In tables 5.1 — 5.3 we have calculations according to formulas (5.18),

(5.19), (5.23) for various values of ¢g. In the given tables € means right
parts of these formulas. It follows from (6.36), that

+

(T-vt(1 1 g
- 16 ( 2(2z+1)(2z'+5)(2z'+3) g

*(41%1) ( 1(;12>
[11 — T, W. P. 1. (524)

In addition, using the Ito formula we have:

(T —t)3

3 w. p. 1,

Iy + Iyt = Iop Tty —
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

from which, considering formula (5.14) we get:
L g™ = (1) w. p. 1. (5.25)

Let’s check whether formulas (5.24), (5.25) follow from (5.11) — (5.13),
if we suppose 71 = 19 in the last ones.
From (5.11) — (5.13) when i; = i3 we get:

T 1101 1101 i1i1
_7( ) Ioo( )_(T )(Ilé )+]01( )>‘|‘

2
T -2 ;. T —
[1 (1111) _ ( t) [ (1121) 3 (1-1(1111) [0(1111)) +

1T,t - 4 OOT,t - 2 0 1

Rl (5.27)

It is easy to see, that from (5.26) and (5.27), considering (5.22) and (5.3)
— (5.6), we actually obtain equalities (5.24) and (5.25), and it indirectly
confirm rightness of formulas (5.11) — (5.13).

On the basis of presented expansions of multiple stochastic integrals
we can see, that increasing of multiplicities of these integrals or degree in-
dexes of their weight functions leads to noticeable complication of formulas
intended for mentioned expansions.

However, increasing of mentioned parameters lead to increasing of or-
ders of smallness according to T — ¢ in the mean-square sense for multiple
stochastic integrals, that lead to sharp decrease of member quantities in the
expansions of multiple stochastic integrals, which are required for achieving
acceptable accuracies of approximation. In the context of it let’s examine
the approach to approximation of multiple stochastic integrals, which pro-
vides a possibility to obtain mean-square approximations of the required
accuracy without using common expansions of type (5.10).

Let’s analyze the following approximation:

]2(5““) + 102(ml) =

% C(gh)) \/—C;l COZl ) ) (5'26)

NG

4

q1

[ 3 Ckﬂ(g“ ¢l
i,J,k=0

(i3) (i1) (i2)
iy L=y G — Yimip L=0}G . — Li=ig} Li=}§ ) (5.28)
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

where 41,179,723 = 1,...,m and

z

Crji = [ ¢r(2) [ 6;(v) /y ¢i(x)dwdydz =

t t

_ V(@i + 1)(2j8+ D(2k+1) (T — t)32Chyi;

Crji = /Pk /P )/yPZ-(a:)da:dydz;
1

P(z); i=0, 1, 2,... — are Legendre polynomials.
In particular, from (5.28) when i # s, iy # i3, 11 # i3 we get:
(l11223) & z1 (7’3)
IoooTt = Y CriG C C (5.29)
0,J,k=0
Note, that due to the results obtained in chapter 2, the right part of the
formula (5.29) determines approximation 105“1223)‘11 of multiple stochastic
Stratonovich integral Ioémm but for any possible 41,439,733 =1,...,m :

q1

100(61;2;3) = Zk: OC]{:_]’LCZZI C C(m) (1,149,333 =1,...,m).
z’J,

We will remind, that formulas for mean-square errors of approximations

of type (5.28) obtained at the beginning of chapter 4 for various combina-
tions 71, 19, 73 are look as follows:

2 _(T-1)° @
w{ (i - i) = T2 S G i i £ £ )

6 i,k=0
(5.30)
1119919 11420 2 T — ¢t 3 q1
M {(IéooT,f) Iiooe. ") } -y 5 LS Crji—
i,,k=0
a1
— 2 CiiCrji (11 # 12 = 13), (5.31)
i, =0
i . 2 T — ¢ 3 q1
P
i,,k=0
a1
— 2 CwiCijp (11 =13 # 12), (5.32)
i, b=0
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

ilig’i 212212 2 T - t 3 &
L e
ZJJ’ =

q1
- Z Ckljcka ( 11 = 12 7é 33) (5.33)
i,J,k=0
For the case 77 = i3 = i3 = ¢ it is comfortable to use the following
formulas:

i) _ 1 1 N (i)
]oogﬂ = 6( ) (Co ) Iozozéﬂ = 6( t) ((Co ) —3Coz) w. p. L.
(5.34)
In more general case, when 1;(s), ¥(s), ¥3(s) = (t — s); | — is a fixed
natural number or zero, with probubility 1 we may write down

Gi) _ 1 (70> _ 370
[llth — 6 ((IZT,t> 3IlT,tAlT,t> ’
T

1 3 ;
Illﬁ:i) = (T 1) Iz(;,)t Ith Z CJCJ s A, = [(t—s5)%ds.
6

t

T
where C; = [(t — s)'¢;(s)ds; {¢;(s)}32 — is a full orthonormal system of
i

Legendre polynomials at the interval [¢, T7].
Now, it is clear, that for approximation of stochastic integral Ié%;?f) we
may use formulas (5.28) — (5.34) instead of complex expansion (5.10). We

may act similarly with more complicated multiple stochastic integrals. For

example, for the approximation of stochastic integral I, (i1 izésis) according to
000074

theorem 1, we may write down:

a2 .
R = 3= Cuga( ¢ (-
1,5,k,1=0

—1{i1=iz}1{i=j}</§i3)@(i4) — Lpiy=igy Limn GG =
~ L= L= G G = Lmig =m0 G =
_1{i2=i4}1{j=l}@“ 1:3 — 1{i3=i4}1{k=z}Ci“ th +
+1g, =i} L= Lis=i) Lik=1y + Lii=ind L{i=ty L{in=i) L =03+
=i L=y jo=js) 1{j=k}> )

205



5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.1: Check of formula (5.18)
2/(T—t)2  0.1667  0.0238  0.0025  2.4988-10~* 2.4999 105

q 1 10 100 1000 10000

Table 5.2: Check of formula (5.19)
16c/(T —t)* 03797  0.0581  0.0062  6.2450-10~* 6.2495-10~5

q 1 10 100 1000 10000
where
T Uu z Y
Cuji = [ du(w) [ 6u(2) [ 6;(v) [ di(a)dedydzdu =
t t t t

_V(@2i+1)(25 + 12(% +1)(20+ 1) (T - 1)*Cus

1 y
Cirji = [ Pu / Py(z / P(y) [ Pi(z)dzdydzdu.
1 ~1
On the other side, according to the theorem 7, for the approximation of

multiple Stratonovich stochastic integral I&%Oi;i:”i“) we may write down:

g2

LSz e = 3 O™ (i, . i =0, 1,...,m).
i jkd=0

In chapter 4 we obtained accurate formulas for the mean-square error
of approximation M {(J [¢(4)}‘112,t —J [1/;(4)]:,1,,5)2} for various combinations of

indexes 1, i2, i3, 24. Considering in these formulas, that ¢1(7),..., (1) =1
we will get M { (7652 — 1)}
The case when ¢; = ... = 194 = ¢ in chapter 4 was analyzed partly,

however in this case there are the following representations:
iy _ (T =) (1 @) 0% iy _ (T =1)? 1 (i)\4
[ogééﬂ = on (Col ) —6 (Col ) +3 Ioo%;t = on (Col ) w. p. 1.

In more general case, when ¥;(7),...,%4(7) = (t —7)}; | — is a fixed
natural number or zero, with probability 1 we may right down the following:

[%2 _ % (([ﬁl)‘l 6 ([};’1)2 Ay, +3 <A1T,t)2> ,
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Table 5.3: Check of formula (5.23)
16e/(T —t)* 0.0070 4.3551-107° 6.0076-10~% 6.2251-10~" 6.3178-10~

q 1 10 100 1000 10000

Table 5.4: Coefficients C_'ojk

E=0 k=1 k=2 k=3 k=4 k=25 k=6
_ 4 -2 2
. 2 —2 4
] = 04 15 E 105 0 0 0
. _ 2 2 —2 2
J= = i3 08 3% 708 0 0
. -2 2 2 -2 8
J=3 0 3% 3 315 iR %93 0
. —8 2 2 —2 10
j=4 0 0 315 53 503 £ To87
. —10 2 2 —2
j=5 0 0 0 593 %9 To87 3
. —4 2 2

l T

i 1 : i
]ll%ﬁ) 24 (Il(T)t) ) Il(;)t Z JQ] ) AZT,t = t/(t - S)Qlds,

where in the next-to-last formula we propose, that the expansion of stochas-
tic integral is performed using Legendre polynomials.

Assume, that ¢; = 6. In tables 5.4-5.10 are given the exact values of
coefficients C_’kﬂ- when 7,7,k =0,1,...,6.

Calculating the value of expression (5.30) when ¢; = 6, i1 # i9, i1 # 13,
13 # 19 we get the following approximate equality:

o 2
M {(Igglg;fj) Iigore) } ~ 0.01956(T — t)°.
Let’s choose, for example, g2 = 2. In tables 5.11-5.19 we have the exact

values of coefficients Cjj;; ¢, 5, k,1 = 0,1,2. In case of pairwise different
11, %9, 13, 14 we have the following equality:

11928384 19243174 2 (T_t)4 2
M{ (1 — o) ) =S - X Che (639
i,5,k,1=0

Note, that it is easy to check correctness of the following equalities (see
(5.7), (5.8), (5.11) — (5.13)):

< a0 o (T—1)
2. Cji =20 =——F"

> > T (5.36)
j= j=
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.5: Coefficients C|

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j= 2 = 0 = 0 0 0
j=1 2 0 = 0 = 0 0
i=2 3 08 0 T 0 fiss 0
i=3 3 0 718 0 sigs 0 5009
j=4 0 = 0 v 0 ot 0
j=5 0 0 = 0 o 0 =32
j= 0 0 0 ot 0 = 0

Table 5.6: Coefficients ézjk

k=0 k=1 k=2 k=3 k=4 k=5 k=
j=0 0 = 0 = 0 0
=1 0@ 0 g0
i=2 & 0 0 0 = 0 003
j=3% 0w 0 ER
j=4E 0 g% 0 @ 0 g
ji=5 0 = 0 . 0 s 0
j= 0 0 = 0 =18 0 ses

Table 5.7: Coefficients C_'3jk

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j= 0 o= 0 o 0 o 0
ji=1 = 0 =2 0 T 0 So05
=2 E @ 0 s 0 g o
i=3 35 0 Er i 0 5909
i=4 F g5 0 o5 O ww O
i=5 @ 0 s09 O g O 785965
J=06 0 % 0 % 0 7&527225 0
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Table 5.8: Coefficients Cyx

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j= 0 0 = 0 = 0 T
j= 0 = 0 e 0 = 0
i=2 13 0 7 0 a0 75045
i=3 & s 0 i O ww O
j= = 0 = 0 0 0 T
i=5 3 oo O g O e O
J= % 0 ﬁ 0 ﬁ 0 1859255

Table 5.9: Coefficients Cs

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j= 0 0 0 = 0 TS 0
j= 0 0 T 0 o 0 e
j=2 0 e 0 o 0 e 0
i=3 0 rerr R g O 53905
i=4 % o O g 0 mm O
i=5 g 0 w0 om0 T
j=6 % ;11_5 0 755?72(?5 0 41g7801 0

Table 5.10: Coefficients C’sjk

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 0 0 0 0 T 0 5Ti5
j=1 0 0 0 5005 0 e 0
j= 0 0 o003 0 e 0 e
j= 0 5205 0 T 0 o 0
j=4 g 0 g O wm 0 o995
J= % % 0 761527265 0 ﬁ 0
j= 2= 0 T 0 s 0 0

Table 5.11: Coefficients Cogi
=0 =1 =2

— 2 =2 2
k=0 3 5 15
— =2 2 —2
k =1 15 15 21
— =2 2 2
k=2 15 35 105
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.12: Coefficients Cjgp

=0 I=1 1=2
_ 2 —2 2
k=0 3 5 35
_ -2 2 —2
k=1 & 35 Ve
_ —2 2 2
k=2 3 5 315

Table 5.13: Coefficients Coog

I=0 =1 1=2
_ -2 2 —4
k=0 o1 105
_ 2 —4 2
k=1 5 105 708
_ 4 —2
k=2 45 05 0

Table 5.14: Coefficients Cy

=0 =1 =2
_ 2 —2 —2
k=0 & ™ 105
_ 2 -2 2
k=1 4 105 315
_ -2 2 —2
k=2 3 315

Table 5.15: Coefficients Cj1;

=0 =1 =2
_ 2 —2
k=0 T 35 0
_ 2 —2
. — 2
k=2 5 05 0

Table 5.16: Coefficients C_'g()kl

1=0 I=1 1=2
— 2 2
k=0 T 35 0
_ 2 —2
k=1 = 0 315
_ —4 2
k=2 4 05 0

Table 5.17: Coefficients Coy

=0 =1 =2
_ 2 —2 2
k=0 3 il 315
_ 2 2 —2
k=1 35 315 25
_ —2 2 2
k=2 25 Ti55




Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Table 5.18: Coefficients Ciop
=0 =1 l=2

— =2 2 =2
k=0 35 45 105
— 2 =2 2
k=1 63 105 225
— 2 —2 —2
k=2 105 225 3465

20 3 11 02 (T T t)3
>0 =XC;i=3C : (5.37)
i= j=0 j=0 6
where
0 / ¢;(z) / é; )dydz

Cjj = /fﬁg (t— ) [ ¢i(y)(t — y)dydz,
€2 = [ 4,(x) [ d5(w)t — v)’dyda,

€% = [ gy(@)(t - ) [ 65(u)dyds,

{#;(z)}32o — is a full orthonormal system of Legendre polynomials in the
space Lo([t,T]).

Note, that equalities (5.36) and (5.37) together with the theorem 1 when
k = 2 and formulas (5.9), (5.14), (5.15) confirm formula (??) for multi-

ple stoclhastlc Stratonovich integrals Ilé“”) 16‘1(2,1;2), I;éi}f), Ifl(iTl’fQ), 13‘5’;?);
21, 22 = m.

Let’s analyze approximations for the following four multiple stochastic
Ito integrals:

q3 . .
s = 5 oy CREREEE
Z7.77

(i3) (i1) (i2)
—Li=i =30k — Yi=is} 1 =1G = Lfi=is} L{i=1} G >,
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

q4
i = > (e -

1,7,k=0
L= L=t = Lt Lg=m G — 1{i1=i3}1{i:k}CJ(i2)>;
qs
Hog = > cip(c¢H -
1,7,k=0

(i3) (i1) (i2)
—Lpi =i} L= — Yap=ig) L=yGi " — Liiy =i} L{i=k}G; )

..... qde . . . . .
I(gz)lozé(z]g;;w)% = k; OCrlkji (Cag%)CZ(M)CIEB)C;ZQ)Q@I)_
7/7]7 7 7T=

L L= GG - 1{i1=i3}1{i=k}CJ(i2)c(i4)Cr(i5)_

1 imig La=n G P — 14, miy Lamn (PGP ¢ -
Ly L= G ) — 1,y 1o GG ) -
_1{i2=i5}1{j=r}Cz'(il) 1§i3)Cl(i4) - 1{i3=i4}1{k=z}§(i1)€}i2)éﬁis)—
~Lmigp LG GG = Ly Lpan GG G+

1 (i, Limgy Lmin L=y G + Liming L=y Limio) L=y G+
+1 it Limgy Liamis) L=y G+ Liymiy Limi L inmin 1= 6+
+1(5,ig) Lzt Lirmin) L= G + Lismi) Limiy Lismin Lo=n G +
L firmiay L) Liaminp L =068 + Lirmia it Liamin L= G4+
+1{i1=i4}1{i=l}1{i3=z‘5}1{k=r}C](,i2) 4+ 1{2'1:2'5}1{i=r}1{i2=i3}1{j=k}Cl(i4)+
1 =it o= Lz L= G+ L=t L= Liamio L=+
1 i,y Ljmiy Liaminy L=y G+ Liamiay L= imin) Loy G+
+1{z‘z=z‘5}1{j=r}1{¢3:i4}1{k:z}C¢(il)> :
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

where

8 = (6= 0x() [ 60 | v =
_ /(@2 + 1)(21; 1)(2k + 1)( Hico,
Ry = /(b Zt_ )65y / i(z)dwdydz =
_ /(@2 + 1)(21; 1)(2k + 1)( Hico,
Cigt = /¢ / t/yt—xgbl Vdzdydz =
_ /(@2 + 1)(21; 1)(2k + 1)( Hicw,
Crge = / 0 [ 0) [ ) [ 050) [ o)yt —
_V@2i+ 125+ 1)(21;24r D2+ 1)(2r +1) (T — )G
where ) . )
O = —_/1 Pk<z>_/1 Pj<y>_/1 Py(x)(z + 1)dedyd>
0=~ [ PG [ P+ 1) | Plo)dsa
o - —Z R+ ) [ B0) [ Ple)dsdya:
Cou :Z P [ A [ P | Pj<y>_/j Py(x)dadydzdudy

Assume, that g3 = g4 = ¢5 = 2, g¢ = 1. In tables 5.20-5.36 we have
the exact values of coefficients 0,89}, C’,?}?, O,QJO}, i, 7,k = 0,1,2; Cupji;
1,7, k,l,r=0,1.
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.19: Coefficients Chop;

=0 =1 =2
k=0 & 51 0
_ 2 =)
k=1 315 0 1155
_ 2
k=2 0 3465 0

Table 5.20: Coefficients C%}

0jk
k=0 k=1 k=2
- 14 —2
- —2 —2 6
J=1 3 5 35
_ 2 —22 )
- 5 105 105

Table 5.21: Coefficients C%}

15k
k=0 k=1 k=2
P — =6 22 =2
J=0 5 45 105
=1 =2 =2 26
= 9 105 315
_ 22 38 “2
= 105 315 315

Table 5.22: Coefficients C%9

2jk
k=0 k=1 k=2
— =2 2 4
5 21 105
i=1 % 1%
j=2 0 = 0

Table 5.23: Coefficients C199

0jk
k=0 k=1 k=2
_ =2 2 2
- 3 15 15
— =2 —2 2
- 15 45 35
_ 2 =2 —4
- 15 35 105
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Table 5.24: Coefficients C1%9

1k
k=0 k=1 k=2
T —2 2 2
J=0 5 45 21
L =2 =2 4
J=1 15 105 105
2 =2 =2
35 63 105

Table 5.25: Coefficients C3%
k=0 k=1 k=2

S =2 =2 4
J=0 15 105 105
P — =2 =2 2
J=1 21 315 105
_ =2 =2
= 105 315 0

Table 5.26: Coefficients C910

0jk

k=0 k=1 k=2
_ —4 8
= 3 15 0
o —4 8
J=1 3 0 705

4 —16 0

15 105

Table 5.27: Coefficients C10

15k
k=0 k=1 k=2
— —4 4 4
- 5 15 105
=4 4 4
15 105 105
j=2 4 =8 0

35 105

Table 5.28: Coefficients C9}0
k=0 k=1 k=2

-4 4 4
= 15 105 105
- _ 4 4 4
J=1 21 105 315
e -4
j=2 105 0 0

Table 5.29: Coefficients Coggr

r=0 r=1
_ 4 —8
_ —4 8
=1 705
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.30: Coefficients Coygsr

r=20 r=

_ 4 —16
1=0 45 315
— —4 4
I=1 315 315

Table 5.31: Coefficients Ciyg;r

r=20 r=1
_ 8 —2
=0 @ 7
I=1 315 315

Table 5.32: Coefficients Co;1r

r=20 r=1
_ 8 —4
1=0 315 32T5

Table 5.33: Coefficients Cogr

r=20 r=1
_ 4
=0 08 %

Table 5.34: Coefficients Ciggr

r=20 r=1
_ 8 —4
A
l=1 315 5

Table 5.35: Coefficients Cigyr

r=20 r=1
_ 4
=0 ? 08

Table 5.36: Coefficients Ciq1,

r=20 r=1
_ 2 _g
I=0 125 945
I=1 945 0




Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

In case of pairwise different i1, ..., %5 from tables 5.20-5.36 we have
(i2inis) (ivisin)as\ 2] (T—t)5 a3 002
M (B = ) =g - X ()

~ 0.00815429(T — t)°,

i inia)an 2 (T—t)5 A 9
w{ (i - ) b= S 3 (o) e
@,J,k=0

~ 0.0173903(T — t)°,

.. L. 2 T — 1t 5 qs 9
M {(I(gf)lf;?) _ ((]611112113)(15) } — ( n ) _ | Z (C](c)?zl) ~
i,5,k=0

~ 0.0252801(T — t)°,

5
M { [ lisiaisiais) _ jlisisisinas\ 2| _ (T =1)° i‘*: 2~
000007 000007 - 120 rlkji ™
i;jakalar:()

~ 0.00759105(T — t)°.

5.2 About Fourier-Legendre coeflicients

As we can see from the results of this chapter, the most labor-intensive
work while building approximations of multiple stochastic integrals is con-
nected with calculation of coefficients

k
Cioir= [ Kt 1) lf[l ¢, (t)dty . . . diy; (5.38)
[T =

k k-1 _
151 Yi(tr) lgl Yctyy ik >2

YP1(t) ifk=1
Here (t1,...,t) € [t,T]%; {¢;(z)}52, — is full orthonormal system of
functions in the space Ly([t, T7).

K(ty, ... t) =

217



5.2 About Fourier-Legendre coefficients

The aim of this section is to identify some features of calculation of
Fourier coefficients C}, j;, (k — is fixed) for expansions of multiple stochas-
tic integrals from the stochastic Taylor-Ito and Taylor-Stratonovich expan-
sions (see sect.7.8) when using the system of Legendre polynomials.

For classical Taylor-Ito and Taylor-Stratonovich expansions [22], [24])
(see sect.7.8) in (5.38) it is necessary to assume, that ¥1(s), ..., ¢¥r(s) =
and for unified Taylor-Ito and Taylor Stratonovich expansions [43] [4
[48]) (see sect.7.9) — ¥ (s) = (t —s)o;q=1,....k;1,=0, 1, 2,...

So, we will calculate the integrals

4]
1,
6],

Jk g1 /¢Jk tk /¢Jk 1 tk 1 /d’]l t1 dtl dtk_ldtk;

T to
it = [t = )i (ta) . [(t = t1)" 5, (1)t ... dty,
t

t

where {¢;()}32, — is a full orthonormal system of Legendre polynomials
in the space Ly([t, T]).

We have .
_ (T-1t) k&
Cgkjl = T 11:11 V 2i1+1- AJle)
where
1 tr to
Ajo g = [ Pi(ts) [ P (ts) .. [ Py(t)dts .. dtyadty;  (5.39)
el 1 1

{P,(z)}r>y — is a full orthonormal system of Legendre polynomials in the
space Lo([—1,1]) :

"2, (5.40)

(=1)"(251 — 2q1)!
' — @) — 2q1)!

1
X / (tp)e 20 / (t) =20 dty . .. dty.
1
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

So, calculation of éjk---jl reduces to calculation of integral

Pk--P1

,l_\\,_.

ta
(te) ... [Pty dt; pry-- o pe=0, 1, 2,.... (5.41)
-1

Now, examine CJZ; lfl We have

k
o (DD b o (D) g\t
CJk Jkl = ok II v2i+1- IJk Jio

=1 2

where

1

to
IJlllc le1 - /(1 + tk)lkpjk(tk) .- /(1 + tl)llpjl (tl)dtl Lo dty =
21 1

sp=0 s1=

Ik 1 to
=3 . z G [ ()™ Pyt - [ ()7 Py ()t - dt,

where C¥ — is a binomial coefficient.
Further t
2

o [ ) Pty . dty =

I—‘\I—‘
w

B 1 [3] [3] l_k[ (=1)2(2j; — 2q,)!
20+t =0T =iz @l (G — @) (G — 2q)!
1 to
x [ (et () dy
1 1

Consequently, calculation C’Jl}c '/, again reduces to calculation of integral
(5.41). Calculation of integral (5.41) is not a problem:

1
I, = 1— (=17,
D1 I +1 ( ( ) )
1 1 —1)ptl
i = (1- () - CUED (1 ey
p1+1\p1+p2+2 P2+ 1
I _ 1 ( 1 < 1 (1 _ (_1)p1+p2+}73+3) .
PP g+ 1 \pr+p2+2 \p1 +pa+p3+3
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5.2 About Fourier-Legendre coefficients

(_1)p1+p2+2

P (1= )

p3+1

(_1)p1+ ( 1 (1 . (_1)P3+P2+2) _

p2+1 \p3+pr+2

)

p3+1

Actually, the integral of type I, , may be calculated for various values
k using computer packs of symbol transformations of type DERIVE or
MAPLE.

It will not be easy if we use trigonometric functions instead of Legendre
polynomials. It is connected with the fact, that integrals

Jk g1 — /¢Jk tk /¢3k 1 tk 1 /d)h tl dtl dtk_ldtk;

T to
Civh = [t =) i (tn) ... [(t = t2)" @y, (t1)dtr ...ty
t t

where {¢;(z)}72, — is a full orthonormal system of trigonometric functions
in the space Lo([t,T7) :

. 1 for =0
¢i(s) = = \[stW when j =2r — 1.
vi—t ﬁcos%;(_t ) when j = 2r
r = 1, 2,... "ramify intensively” for various combinations of indexes
J1,---,Jk 1.e. in cases of various combinations of indexes 7j1,...,7; the

mentioned integrals are calculated using significantly different formulas,
moreover the number of these formulas grows abruptly with the growth
of multiplicity of stochastic integral. It is obvious, that even when k = 4,
calculations become very complicated.

Let’s explain the mentioned idea using an example.

Using trigonometric functions, for example, there could be a necessity
to integrate the product of the following form:

. 2nr(s—t) . 2mq(s —t)

>
sin—r — —sin—>— (r,q > 0),

which equals to
1 2m(r + —t
( oS (r+q)(s—1)

2

2n(r — q)q(s — t)
T _ ¢ + cos T4
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

It is clear, that integrating the last expression the following cases may
occur:
l.r4+qg#0and r —q # 0;
2.r+qg#0and r—q=0;
3.r+g=0and r—q=0.

In each of three cases, the primitive function will be calculated using
”its own formula”.

If we use in previous reasonings the system of Legendre polynomials,
then there are no different cases and integration will be more simple.

Since the product of two polynomials is a polynomial and integrating
polynomials we actually use only the formula of primitive function from
the power function with non-negative degree index.

5.3 Approximation of specific multiple stochastic in-
tegrals of multiplicities 1-3 using the trigonomet-
ric system of functions

Let’s examine approximations of some multiple stochastic integrals of
the following types

T to '
1zl lkz:‘t /t_t /( _tl)lldft(fl : dft )
t
O = [ =) (=) dfy
t t

obtained using theorems 1 — 4 and using the trigonometric system of func-
tions:

1§ = VT =1¢", (5.42)

[ iy V2741 ) ,
() _ 7(21 ;42(;21 + \/C‘quéll)ﬂ; (5.43)
r=

N

y T ¢
ff;fq = _% Co

201 1 1 2
IO(g”):ﬁ(T_t)Col z + = Z {r 27’1 C2r12r

g\/@ (Rl cé%;”))], (5.44)

‘H[(Cm« 160" Co“ i 1)}+

221



5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

s (1 iy 6is) (i a N P
Iigors " = (T—t)z(écé“)cé”)cé“)+2v o (6676 - 6067 ¢Y)

gV (GG = P0G + ) +

1%[ {Cz 10C Cz 10C)}+
2\/_r 1 " "

]- ’il ig ’L3 13 21 7/2
+t—53 2{ ar G0 Go —2@ Co o +C2 Co C }] +

mwer
1 a 1 il 7:2 7,1
+2 9 7«121 |"f’2 l2{ ér) 2(l )CO CO 2l
r;él

+ C2r 1 21 1Co23 - Co“ Czr 1 21 1} C2r 1 0 2 )1] +

g
-I-ZLL—{ Ve — i P el - PSP+ e C(gl)}
mr

r=1

82y {34% 1 2r2 1 ol3 +C2 r C 6C2r 1 2r 1 ézz)+

+3§2r 1 2r 1 0 2C2 2r sz +C2 27' C(gil)}] +

4\[7T{zq:[ [CQ g2m12m+<2r12r€2?11+

rm=1
‘|‘C2r 1 2m 2(m 1— Czr 1 2m 1] +
1 ) ~(is)
+m(r+m) [ CQ (m+r) 7' 2m C 1(27' 1 2m

_CQ (m+r) 1<2 CQ +C2 (m+r) <-2r 1 2m 1”+

a q 1
t T S NS e
mZ:1 l:§+1 m(l —m) [CQ 2(1—m)—1621—1 2

_§2(Z(})—m)—1C§;2)C2(:731)—1 + Cz( CQl 1 2m 1] +
1 3 .
(1 —m) [ Cz +C2 —1C§2n)—1 :23)—

Gl 168 6 — G ycilac) | 1), (5.45)

_|_
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

1211 1 1 i 11 7/2
R = (7 = 02 ~56" 4 - S e+
1 ) ) , .
(ig) ~(i1) _ (i1) (i2)
o5 Vo (2uq " = uG™) +

1 a 1 (i1) ~(i2)
+—F= [_—{ r— - Cr r T e S82r r— }+
2\/52 C2 1 0 \/* 2r—1 2 \/5 2 2r—1

1 2 1 3 1 1) (12
+7r2'r2< ( )Cl ‘|‘2C0Z 2r ——2\[ (r)l ér)l o) 2(:«) éi«)ﬂ*‘

1 4 1 (in)
+27‘(’2 2 12 — k2l - _CZk 1 2l 1]) (5.46)

k=1
kAl

1211 (1) 12 1 1 i i1 i i2
i1) (i1) +(i2)
f \/Bq< Rl Ol >+
1

72[ { Co“ o 1 Czr 1 ol2 +7{C2r 1 27‘ g«l) 2(:*2—)1}}+

+7%( GG — G+ =, 53«2)1+4\1f et +
I e} (5.47)
=
Iy = (T—t)%[%ﬁgil) + \[1 2(2; T—icéiﬂ + Bquffl))Jr
L) e
where
fé = \/—a_quq;rl— C2r 1, Og = %2 —;:74—12; ,U((]i) = Lﬁqré—lé C2(?;
R T e LCTL



5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

6;(s) has the form (4.19); ¢¢”, ¢57), &5 1, €0, s r =1, qri=1,...,m
— are independent standard Gaussian random variables; 71, %9, i3 =
1,...,m.

Note, that from (5.46), (5.47) it follows:

Z Cj) = Z o = — (Z ; t)Q, (5.49)

where

oy = [ f 8,(4) (¢t — y)dyda,

@1/@ vw/ﬁ@@m
t

Let’s analyze the mean-square errors of approximations (5.44)—(5.47).
From relations (5.44)—(5.47) when i1 # ia, 12 # 13, i1 7 i3 we get

2

* (2201 *(19%1 2 T — t 2 ™ 1
M {(loém R } _r=Y (E -3 ﬁ) (5.50)

272

. 9
(gt -

1 [/m? 1 1 55 (mt 7 1
( ) 472\ 6 E r2 + 3274\90 [Tt +
) 514 + 4rt — 3l27°2}

7“212(7'2 _ 12)2 (551)

(st = ) § = (= 0! (G~ 2 )+

g 12+ k2

S — 52

(klzl klzl) k2(l2 - ]f/'2)2}7 (5 ) )
k£l k£l

ini1 i2i1)q ) 2 1 (72 1
m{ (e - g = - ot (G - X )+



Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

(et R | [ LS

kAl k£

It is easy to demonstrate, that relations (5.51), (5.52) and (5.53) may
be represented using lemma 10 in the following form:

(l lzll) (l 127,1) 2 _ 3 4 1 1 ]'
M {(foo%T,t = Togor., ) } =(T'-1) {E - 4—7r2,§1ﬁ -
N R 5l4+4r4—37'2l2} (5.54)
327‘(’4 = ’l"4 4ﬂ.4 2 7‘2l2 (TQ . l2)2 ) .
r#l
*(i201) *(i201)q 2 . (T_ t)4 1 1 i1
M{(Imm _IloT,t ) } - 4 5_2—71-2T:1ﬁ_
5 4 1 9 k2412
__7 B S — 5.55
8t ;= kl L [2 (l2 k2)2}7 ( )
[
*(12i1) *(ivin)a\ 2| _ (T — t)4 1 _ i . i_
M {<[01T,t ~ otz ) } 49 2r2or?
Bgloag PR (5.56)
8t r=1 ré 4 k=1 k2 (l2 — k2)2 .
[

Comparing (5.54)—(5.56) and (5.51)—(5.53), note, that

00 I2 +k2 00 12 + k2 71_4
= o3 = o 5.57
MZ_I k2 (12 — k?)° k,,z_l 22— k2)> 48 (5.57)

k£l kAl

o 514 4 4t — 3r2]2 B 9t
22z —12)° 80

r#l

(5.58)

We will mention approximations of stochastic integrals Iiké?fl), 101(““)

and the conditions of selecting the number ¢ using the trigonometric system
of functions:

21’&1 1
pgn = (L

C(g“)) 2 \/* \/—g ’L1 z1 2\/7 5 /Bq,u Coh
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552 [ 2r>co<ﬁ>-%< gegﬂ%(gﬂ)z) Lo+
2 D) ZZQ 1/62[ ) 21 __Czk 1 21 1])

k=1
k£l

1101 1 i1 2 1 i1) ~(i1 1 i1) ~li1
Gl = (@ 175 (&) — gV 6 — S B 6+

+2\1/§§:1 LrQlfr? (2\3/5( g«l—)1> + F( (“)) - 27‘ Co“) - —C2r 1 0 ]

1 q

+27T2 z; l2 [ CQ]C 1 2l 1+§2 ])

k£l

Then we will get
(i1i1) #(irin)g 2 (i141) *(irin)q) 2
M (Tt = T ) 1 =M (T = ) =

_(T—t)4[2<7r4 a 1>+1<7r2 Zl>2+
4 \90 ‘S rt) 7w\ 6 2

r=1T
1 0 q l2 + k2
Tt (Z - Z) m} (5.59)
k#£l k#£l

Considering (5.57) we will rewrite relation (5.59) in the following form

M{ (15050~ 16) b =m (g - B =

JTootar Ll 2y
! 240 372/ 7= r? ot
1 /4 1\2 1 4 PP+k
+F(,§lﬁ> 7T4Zk2(z2 k2)?

k£l

(5.60)

In tables 5.37 — 5.39 we check numerically formulas (5.54) — (5.56),

(5.60) for various values g. In tables 5.37 — 5.39, € — means the right parts
of mentioned formulas.

Formulas (5.57), (5.58) appear to be very interesting. Let’s confirm nu-
merically their rightness (tables 5.40, 5.41; €, — is an absolute deviation of
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Table 5.37: Check of formula (5.54)
g/(T —t)3 0.0459 0.0072 7.5722-107%  7.5973-107° 7.5990 - 10~°

q 1 10 100 1000 10000

Table 5.38: Check of formulas (5.55), (5.56)
4e/(T—t)* 00540  0.0082  8.4261-10% 8.4429-10~° 8.4435-10°

q 1 10 100 1000 10000

multiple partial sums with the upper limit of summation p for series (5.57),
(5.58) from the right parts of formulas (5.57), (5.58); convergence of mul-
tiple series is regarded here when p; = ps = p — oo, which is acceptable
according to theorem 1).

Using the trigonometric system of functions, let’s analyze approxima-
tions of multiple stochastic integrals of the following form:

*To

*8
T = [ [ dwi . dwli),
t

T1
t

Wherew(i)—f(i);izl mlf)\l—landwg)—Tif)\l:O

It is easy to see, that approximations J /\w/\zll%t, J()fz‘qj\l;;i)) Tt of stochastic

*(i281) *(igi2i1)

integrals J(/\ MIT 8 J(/\g doA)T,¢ ATe detected by the rlght parts of formulas

(5.44), (5.45), where it is necessary to take CJ( = fgbj( Ydw@; 4y, dg, i3 =
0, 1,....m
Since

| 0_ [vI—t ifj=0
[ 6i(s)aw _{ 0 ifj#£0"

then it is easy to get from (5.44) and (5.45), considering, that in these
NT .
equalities C]@ = [ ¢;(8)dw; iy, iy, i3 =0, 1,...,m, the following family
¢

of formulas:

Table 5.39: Check of formula (5.60)
4e/(T —t)*  0.0268 0.0034 3.3955-10* 3.3804-107° 3.3778-107°

q 1 10 100 1000 10000
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5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

Table 5.40: Check of formula (5.57)
Ep 2.0294 0.3241 0.0330 0.0033 3.2002 - 1074

q 1 10 100 1000 10000

Table 5.41: Check of formula (5.58)

& 10.9585 1.8836  0.1968  0.0197  0.0020
q 1 10 100 1000 10000
(i0g _ 1 s[ ), V2(& 1 )
J(iO)Z?,t_i(T_t)Q_CO +7<r 1; 1+\/ a i )|,
. 1 s [ s \/5 7 1 T
021 2 11 2
- e (e )

(00in)g _ 21 ) 1 (&1 (in)
Jooyrs = (T'—1) léCo +2\/§7r2 (2 ﬁCQT + VBapg " |+

+ 1 <zq: 1@(1'1)1_*_\/&—5(@'1))]
2\/57‘(’ r=1T " 1> ’

0i20 s[1 (i) 1 L1 2
Toe, = (T - 2 - ﬁﬂ(g 62+ B,

300 s[1 s ia
J((100)¥,t:(T_t)2l6C(g : 2\/_7r (Z C2 "‘\/Eq/h(z )>_

—ﬁ(; G+ ),

#(0igiy L (1) A(is 1 i) A (ia
J(O(ll)T,)tq = (T—t)2<—(é ¢ H‘ﬁ@f& 1P
v S VP68 — 2 )+

1 1 (ir Ly
+2—\/§7§1 C2r10 2—7,2{21«4 G }

J 1
+27r2 z,rg_lglér) + C2 2l )1‘|+
r,l=1
r#l
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i[ {2r 27‘1 C2r12r}+

r=1

+87r1 {3C2r G+ Ve }Da

et = (T—t)2<éc(§“)€é’ \f VEER

1 N o
/ (i3) ~(i2) o (i) ~(i3)
+2\/§’/T2 IBC] (:u’q CO 2IU/q CO >+

"’ﬁZl_—Czr 16" 7r1 { 242 C% + C }]4‘

r=1

[
2 l (r)l 20— 1+C2 21 ]"'

7‘l1l2
r;él
’*‘Zl { r)12r +C2r12r }+

+8 12 2{3C2r 1o 1‘|‘C2 o }D,

#(i0i1)g _ o1 (1) (i) 1 ) is)  p(is) A00)
Jaoyr: = (T —1) <6C0 G+ Zﬁwvaq (féz '¢" —583)40 )—I—
1 . , . .

(i) ~(i3) | (i) ~(00)
+ogmVBa (MG + ) +

+%§il {Czrlo C2r10 }+

r=1

+#{2(T)Cl3+C2 C }] Z C2 211

Tl 1
r;él

_iél

{3C2r 1y + Ve })
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5.4 Convergence with probability 1 of expansions of stochastic integrals

5.4 Convergence with probability 1 of expansions of
some specific multiple stochastic integrals

Let’s address now to the convergence with probability 1. Let’s analyze
in detail the multiple stochastic integral of type:

(i2)

Wt 3 e e - ().

When 41 = iy from (5.61) we get the following equality:

(i) _ Ly (i)
which is correct with probability 1 and may be obtained using the Ito

formula.
Let’s examine the case i; # %5. First, note the well-known fact.
Lemma 11. If for the sequence of random values &, for some p > 0 the

number series

Ipgn? = =gl (5.61)

g:lMﬂw}

converges, then the sequence &, converges to zero with probubility 1.
In our specific case:

st = 5[4 + 32— {6 - e +
T i1) ~(i2) ir) (i
& = ngﬂm{@ G - R

(T -t)? 1

5.62
> Zaeo1r %)

M{|&. %} = / R2(ty, ta)dtydty =

[T
%0 2 Co
r=—-In|l— <N o< 5.63
m+14z2 n/ 4" 2n+1‘ i o<, (563)

T t2

LY 5 t/ t/ Ry (t, to)df ™ dfl™) =

t17t2

= [ Ru(ty, ta)df M df; Ro(ty, 1) = 0.
[, 7]2
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Chapter 5. Approximation of specific multiple stochastic Stratonovich and Ito integrals

Therefore, taking p = 2 in lemma 11, we may not prove convergence of
&, to zero with probability 1, since the series

gww}

will be majorized by the divergent series of Dirichlet with index 1. Let’s
take p = 4 and estimate M{|&,|*}.

According to (1.45) when k£ = 2 and n = 2, (5.62), (5.63) there will be
such constants C, C} < oo, that

.
M{JEa "} < cg [ R t)dndn) < =
t.T]? n
o 00 1
> M{l&.["} < G > (5.64)

Since the series in (5.64) converges, then according to lemma 11 &, — 0
*(1112)’” *(217,2)

when n — oo with probability 1 = Iyg,," — ooy,
probubility 1.

when n — oo with
Let’s analyze stochastic integrals 1‘3&?), Iiké;l,zz) whose expansions look
as (5.7), (5.8). It is obvious, that the case i; # i is analyzed absolutely
similarly to the above mentioned arguments.

When i1 = 4» from expansions (5.7), (5.8) it is clear, that M{|&,|*} <
02/7?,2.

It means, that for proving of convergence with probubility 1 we may use
p =2 in lemma 11.

Expansions (5.3)—(5.5), (5.16) for integrals Ié;l’z, Il(zT{z, 12(;1’2, [35;12 are ini-
tially correct with probability 1 (they include 1, 2, 3 and 4 members of
sum, correspondently). Apparently, using the proposed scheme we may
prove convergence with probability 1 of multiple stochastic integrals of

multiplicity & > 2.

5.5 About the structure of functions K(ty,...,t),
used in applications

The systems of multiple stochastic integrals (7.26) — (7.29), (7.16),
(7.20), are included in the stochastic Taylor expansions (unified and clas-
sical), described in chapter 7.

In the context of theorems 1-7, the systems (7.26), (7.27), (7.16) when
k=1, 2, 3,..., the systems (7.28), (7.29) when k£ = 1, 2, as well as
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5.5 About the structure of functions K (ty, ..., )

stochastic integrals of type (7.28) and (7.29) (I; = ... = l; = 0) when
k = 3, 4 are to be of some interest.

The functions K(ty,...,%), included in the formulation of theorem 1,
for the family (5.1) look as follows:

=t -t < <t e
K(t, ... t) = {07 W) .t € [LT).

(5.65)
In particular, for stochastic integrals Il(’TI,Z, Ié’;j, 10(61;2), Iégg;’f), Iézf,ﬁi),
Il(f)lji), I(gf]l(jd;‘ft), I%lji), Iﬁfi), Iééﬁi); i1,...,04 = 1,...,m the functions
K(t1,...,t;) of type (5.65) correspondently look as follows:
Ki(t) =t —t1, Ko(t)) = (t —t)%, (5.66)
. 1, t1 <t . 1, t1 <ty <3
Koo(ta, t2) = {O, otherwise ’ Kooo(t1, ta, t5) = {0, otherwise ~’ (5.67)
. t— 1o, t1 < to . t—11, 11 <t9
Kou(t,t2) = {0, otherwise ’ Kio(tr,12) = {0, otherwise ’ (5.68)

KOOOO(tl,tz)Z{ Chorwice 4,Kzo(t1,t2)={( )% <ty

0, otherwise 0, otherwise ’

(5.69)

t—t)(t—ts), t1 <t P ) b <t

0, otherwise 0, otherwise ’

(5.70)
where t1,...,t4 € [t,T].

It is obvious, that the most simple (with a finite number of members of
sum) expansion into the Fourier series using the full orthonormal system of
functions in the space Ls([t, T']) for the polynomial of finite degree will be its
expansion according to the system of Legendre polynomials. The polyno-
mial functions are included in functions (5.66) — (5.70) as their components,
so, it is logical to expect, that the most simple expansions into multiple
Fourier series for functions (5.66) — (5.70) will be their expansions into
multiple Fourier-Legendre series when l% +...+ l,% >0.Ifly=...=1;=0
(see functions Kyy(t1,t2), Kooo(t1, t2,ts), Koooo(ti,- - -,t4)), then we can ex-
pect, that in this case expansions of the mentioned functions into multiple
Fourier series using trigonometric functions and Legendre polynomials will
be of the same complexity.

Note, that the given assumptions are confirmed completely (compare
formulas (5.4), (5.5), (5.7), (5.8) with formulas (5.43), (5.48), (5.47), (5.46)
correspondently). So usage of Legendre polynomials in the considered area
is an unquestionable step forward.
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Chapter 6

Other methods of strong
approximation of multiple stochastic
Stratonovich and Ito Integrals

This chapter is devoted to other methods of mean-square approxima-
tions of multiple stochastic integrals. For example, we examine Milstein
method in comparison with method of multiple Fourier series (theorem 1),
combined method, which is hybrid of method of multiple integral sums
and method based on theorem 1, method of multiple integral sums. Also
we make a comparison (by computational experiments) between the effec-
tiveness of different methods of mean-square approximations of multiple
stochastic integrals. We demonstrate, that system of Legendre polynomials
gives decreasing of computational costs in comparison with trigonometric
system of functions.

6.1 Milstein method of strong approximation of mul-
tiple stochastic integrals

6.1.1 Introduction

G.N. Milstein proposed in [23] the method of expansion of stochastic
integrals based on expansion of Brownian bridge process into the trigono-
metric Fourier series with random coefficients.

Let’s analyze the Brownian bridge process

¢
fi— <fa, t€[0,A], A>0, (6.1)

where f; € R™ — is a standard vector Wiener process with independent

pomponents ft(i); 1=1,...,m.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Let’s also analyze the componentwise expansion of process (6.1) into the
trigonometric Fourier series converging in the mean-square sense

2nrt . 27rrt>

A + b; rsin A (6.2)

; t 1
ft(l) _ K é) — 5%0 + Tz:l <a@ rCOS——

2 /A<f<@-> 269 cos2Ir% 2 f( * 69 sn 22" s
a,”—AO o A LA cos A ”—AO A sin A S;

r=01,....i=1,....m
It is easy to demonstrate [23], that random variables a;,, b; , are Gaus-
sian ones and they satisfy the following relations:

M{ai,bi,} =MA{ai,bir} =0, M{a;rair} =M{bi,bir} =0,
A

2 2
M {ailﬂ“a’izﬂ‘} =M {bilﬂ’biz,?’} =0, M {ai,r} =M {b@ r} 972 7,27
where ’i, ?:1, ig = 1,...,m; T 75 k; ?:1 7522

According to (6.2) we have

1
f()— (0 + azo+z<a”cos

2rrt . 27r7't>
A A A )

A + b ,sin A (6.3)

where the series converges in the mean-square sense.

6.1.2 Approximation of multiple stochastic integrals of 1st and
2nd multiplicity

Using the relation (6.3), it is easy to get the following expansions [23],
converging in the mean-square sense:

/dft = —fA + a,0+ Z (awcos

2nrt . 27r'rt>
2

A + b; ,sin (6.4)

A
*t*T
t A X1 2mrt 2mrt
/ df()dT——fé)—l— alo—i——z {a”sin i < o )},
0

o

2A 27 =
(6.5)
b T *t T
// drydfl —t/ df? 0/0/ df i dT——fA)—}—t;:l{a”cos2Zt+
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6.1 Milstein method of approximation of stochastic integrals

. 27t A X1 . 2mrt 2mrt
+b; rSin—— A } o 2 - {amsmT — by (cos A 1)} , (6.6)
*t *xT 1 ( ) *t *xT 1 *t ( )
(ll) (ZZ) — i1 (22) = 19
| [ deindet) = A | | dndf®) + 2%0/ el +
00 0 0 0
tr
+_7r Z r (ah,?“biz,r bzl rQiy r) +
A r=1
e 4mrt
+Z 72 (@i, r@iyr — biy rbiyr) (1 — cos—¢ ) +
4rrt
(ai, rbiy r + bi, rai, ») sin Z +
2 . 2mrt 27rt
+;f22) (% rSIN—— A + bzl,r (cos A 1)) } +
2 (k+r m(k—r)t
00 00 cos (7A ) ( X ) k
+3 Y klag,aik —|— +
Se=iopry || 2k+T) 2k—r) k-1
sin (LUCAM)t) sin <2”(kA_T)t)
+ai1 Tbiz k + +
Tk ok + ) 2k —1)
cos (271'(/2—7")7?) cOS (27r(kA+r)t) ,
b;. ,b; _ .
+ 11,r%2, 2(]{?—7") 2(k+7') k2—7'2 +
. A ) sin <27r(k'A+7')t> sin (27r(kA—r)t) (6 7)
o 0iy rQi, — . )
o TR T (k4 ) 2k — 1)

It is necessary to pay attention to the circumstance, that the double
series in (6.7) should be appreciated as a repeated, and not as a multiple
(theorem 1), i.e. as a repeated limit of the sequence of double partial sums.

It is connected with the fact, that iterated substitution of expansions of
Wiener processes into the multiple stochastic integral results in repeated
taking of operation of passage to the limit.

Note, that the multiple series is more preferable, than the repeated one
when it is presented approximately by the repeated partial sum, since the
convergence of such approximations is provided with any method of jointly
convergence to infinity of upper summation limits of repeated partial sum
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Chapter 6. Other methods of strong approximation of stochastic Integrals

(for clearness we denote them as py, ..., pg; see theorem 1). In particular,
in the most simple case we may assume, that p; = ... = pp = p — .
At the same time the last condition in the strict sense doesn’t guarantee
convergence of repeated series with the same partial sum as for considered
multiple series.

Hereafter, we will see, that usage of G.N. Milstein method for approx-
imation of simple stochastic integrals of minimum 3rd multiplicity is con-
nected with the problem described before. Note, that in [24] nevertheless
the following condition is used not quite reasonable: py = ps = p3 =p — ©
[24] (p. 202, 204).

Assume, that in relations (6.4)—(6.7) t = A (at that double partial sums
of repeated series in (6.7) will become zero).

As a result we will get the following expansions converging in the mean-
square sense:

AN
[ at? = £, (6.8)
0
AN 1 '
[ [ dtdr = 5A (fg> + am) , (6.9)
0 0
*A xT 1 _
[ [ dndf® = A (£ - aip), (6.10)
0 0 2
VAN 1 1
(i1) gelia) _ Telin)e(2) L ([ olin) o(ia)
0/ O/ deIdf) = CHVEY - (amofA ai, of )+
+7 Z r (ail’,«biw« — bil,raiw) . (611)
r=1

Deriving (6.8)—(6.11) we used the relation

00
a;o = —2 Z Qi r, (612)

r=1
which results from (6.2) when ¢t = A.
The explanation, that the obtained expansions converge right to the
correspondent stochastic Stratonovich integrals is given in [24].

6.1.3 Comparison with method based on multiple Fourier series

Let’s compare expansions of some multiple stochastic Stratonovich inte-
grals of 1st and 2nd multiplicity (here we mean, that integration according
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6.1 Milstein method of approximation of stochastic integrals

to Wiener processes in the multiple stochastic integrals is performed two
times, maximum), obtained by G.N. Milstein method and method, based
on multiple Fourier series according to trigonometric function.

We will introduce the following standard Gaussian random variables in
our analysis:

& = ﬁa Piyr = Kﬂ-ra’i,h Niyr = Kﬂ—’rbiﬂ“’ (613)

wherei=1,...,m; r=1, 2,....
Due to (6.12) we get

© 1
a;0 = —V 2A Z ;pi,r- (614)
r=1

Substituting the relations (6.13) and (6.14) into (6.8)—(6.11), we get the
following converging in the mean-square sense expansions:

*A
[ at? = VAg, (6.15)
0
* A 5T
. 1 s 2 = 1
[ [ dt@dr = —Ai(& V2 S Zp; ) (6.16)
1 2 T =17 ’
0 O
YA o
1 2 = 1
/ / drdfl?) = —AE(@ + V2 3 —pi,r), (6.17)
0 0 2 T p=1T

*A *xT

dfg/l)df;(‘b) = 5 l€l1£Zz + - Z - (pil,rniz,r - nil,rpi2,r+
Typ=1T

O

SENR

+V2 (piy ki, — ph,r&b))] : (6.18)

Considering notations taken by us previously for multiple stochastic
integrals we may write down

*A
[t = L0 = Tk (6.19)
0
AN o
i *(1 *(4 * (20
[ [ dtDdr = AR + 1Y) = Jik o, (6.20)
0 0
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Chapter 6. Other methods of strong approximation of stochastic Integrals

*A 5T
[ [ anaro = 10 = s, (621
0 0
*A *T ..
/ [ delinagle) = g = g, (6.22)
0

Substituting the expansions of integrals IOQ), 1 1&, IOOZ:? , obtained be-
fore using the method based on multiple Fourier series according to trigono-
metric system of functions into representations (6.19)—(6.22), with accuracy
up to notations we get expansions (6.15)—(6.18). It testifies, that at least
for analyzed multiple stochastic Stratonovich integrals and trigonometric
system of functions, the method of G.N. Milstein and the method based
on multiple Fourier series give the same result (it is an interesting fact,
although it is rather expectable).

In the next section we will discuss usage of G.N. Milstein method for

multiple stochastic integrals of 3rd multiplicity.

6.1.4 About problems of Milstein method in relation to multiple
stochastic integrals of multiplicities above the second

We mentioned before, that technical peculiarities of the G.N. Milstein
method may result in repeated series (in contradiction to multiple series
taken from theorem 1) taken from the product of standard Gaussian ran-
dom values. In case of the simplest stochastic integral of 2nd multiplicity,
this problem was avoided as we saw in the previous section. However, the
situation is not the same for the simplest stochastic integrals of 3rd multi-
plicity.

Let’s mention the expansion of multiple stochastic Stratonovich integral
of 3rd multiplicity obtained in [24] by the method of G.N. Milstein:

s(ivisis) _ L px(in) p*(0isis) | 1 ) Lo ) lis)
J(lillz)ﬁg,o = _J(1)“A, J(Oli)% Ao T %,OJ 1; ZABO + 27Tb J(i)A,OJ(l)%A,o_

A
*(i2) 1 3
_AJ(l()Z 1113 + AJ <§Az’1i2 — Ci2i1> + AgDi1i2i3, (623)
where . ,
* Oizi * iQ
Jortian = gJu()A),oJ( A WAJ obi+
1
+AB;; — Aa%oJ( e +3 Ab R0+ A2, + §A2A,-2i3,

238



6.2 Representation of stochastic Ito Integrals using Hermite polynomials

T o0
Ai2i3 = K Z r (ai2’rbi3’r - bi?;rai3ar) )
r=1
1 X X r
Ci2i3 _Z Z Z 2 12 (Tai2,'rai3al + lbi?arbif}:l) )
I=1r=1(r#0) 7" —
1 X o0 1
Bi2i3 - A Z (aiz,ra’i3,’f' + biz,rbi3,’f') Z - 27’7
2 r=1 r=1T
D'il'izig =
T o XX
3 2 ) ) ) ) ) ) ) ) ) ) ) )
2A3 Z Z l<az (a23 l+rb11 r — Q4 rbi3 l+r) + bin (ail rQig 1 T bil rbi3 l+1‘)>
2 j=1r=1
e
2 .25 ) ) ) P W ) o ) ) [ o ) [
+2A3 Z Z l<az l (azl rbz3 l—r + Qg rbz'l r) bizl (az'l rQis l—r bil rbig l r))
2 |=1r=1

:]
8
8

2A Z Z l<a12 (ai37r_lbi17T - a/i177-bi3,7-_l)+bi27l (ailaTai37T_l + bilarbi37T_l)>;
2 |=1r=Il+1

we met all other notations in the previous section.

From the form of expansion (6.23) and expansion of integral J(O(ﬁl)ﬁ o We
may conclude, that they include repeated series. Hereafter in the course
of approximation of examined stochastic integrals in [24] it is proposed to
put upper limits of summation by equal p, that is according to arguments
given before is incorrectly.

We may avoid this and other problems (see introduction of this book)
using the method, based on theorem 1 (theorem 4).

If we propose, that the members of expansion (6.23) coincide with the
members of its analogue, obtained using theorem 1 and formulas of con-
nection of stochastic Ito and Stratonovich integrals (this, as we saw in the
previous section, is actual for the simplest stochastic integrals of first and
second multiplicity), then we may replace the repeated series in (6.23) by
the multiple ones, as in theorem 1, as was made formally in [24]. However,
it requires separate and rather complex argumentation.

6.2 Representation of multiple stochastic Ito inte-
grals using Hermite polynomials

In the previous sections of this chapter we analyzed the general the-
ory of approximation of multiple stochastic Ito and Stratonovich integrals.
However, in some particular cases we may get exact expressions for multi-
ple stochastic Ito and Stratonovich integrals in the form of polynomials of
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Chapter 6. Other methods of strong approximation of stochastic Integrals

finite degrees from one standard Gaussian random variable. This and next
sections will be devoted to this question. The results described in them
may be met, for example, in [29].

Let’s analyze the family of constructing polynomials H,(z,y); n =

0, 1,... of type:
H,(z,y) d’ az—3z0’y
z,y) =——e€
n Y y da{n

It is well known, that polynomials H,(z,y) are connected with Hermit

polynomials h,(z) by the formula H,(z,y) = (%)% hy, (ﬁ) , where h,(z)

a=0

is Hermit polynomial.
Using the recurrent formulas

dh,,
dz
hn(2) = 2zh,—1(2) = 2(n — Dh,_9(2); n=2, 3,...,
it is easy to get the following recurrent relations for polynomials H,(z,y) :

0H,

(2) =2nh,_1(2); n=1, 2,...,

52 (z,y) =nH,_1(z,y); n=1, 2,..., (6.24)
0H, n nx
I )= L Ho(zy) — 2 H,_(z,y): n=1, 2,.. ., 6.25
oy (z,9) % (z,) 2 1(z,9); n (6.25)
H, -1
aay (a:,y) - _%Hn—ﬂxay); n=2,3... (626)
It follows from (6.24) — (6.26), that
0H, 10%H,
— =0 n=2 R .2
9 (¢,9) + 555 (@y) =0 n=2,3, (6.27)
Using the Ito formula with probability 1 we have
t t 2
0H, 0H, 10°H,
_Hn ) = q_ \Js S T \Js a a9 .9 \Js )
H,(f,t) (0,0) 0/ o (fs, s)df +0/( 9y (f s)-l—2 57 (f 8)) ds

(6.28)
where f; € R! — is a standard Wiener process.
According to (6.27) and H,(0,0) = 0; n = 2, 3,... from (6.28) with
probubilty 1 we get

t

Hy(fot) = [ nHoa(for8)dfs n=2, 3,...
0
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6.3 One formula for multiple stochastic Stratonovich integrals

Hereafter, in accordance with induction it is easy to get the following
relation with probability 1

def

to

1
/dftl... b= Ha(fit); n=1,2,.. (6.29)
) !

O\ﬂ-

Let’s examine one of extensions [29] from formula (6.29):
t
1
J,E")dé(]/ /¢t1dft1... df, =~ Ha(0n A); =1, 2,...,  (6.30)

where . .
def def
5 E [ dfy; AE [lds;
0 0
1y — is non-anticipating stochastic process, which satisfy the conditions of
existing of Ito stochastic integral in the mean-square sense (see sect. 7.1).

It is easy to check, that first eight formulas from the family (6.30) look
as follows

T = %@, I = % (62— A,), Y = % (63 — 36:2)
JY = % (67 — 6620 4 3A2), J = % (62 — 1063 A, + 156,02,
JO = é (69 — 1561 A; + 4562A2 — 15A3)
I = % (67 — 2167 A, + 10583 A2 — 1056,A)
J& = é (65 — 2860A; + 21061 A2 — 42062A% + 105A)

with probubility 1

6.3 One formula for multiple stochastic Stratonovich
integrals

Let’s prove with probability 1 the following relation for multiple
Stratonovich integrals [24]

™= ft, " é/ / df,, ...df, w.p. 1. (6.31)
0
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Chapter 6. Other methods of strong approximation of stochastic Integrals

At first, we will examine the case n = 2. Using theorem 11 we obtain:
. L
r®—=7® 5/dt1 w. p. 1. (6.32)
0
From the relation (6.29) when n = 2 follows, that with probubility 1
1., 1]

Substituting (6.33) into (6.32), with probability 1 we have @ = f2/2..
So, formula (6.31) is correct when n = 2.
Assume, that the formula (6.31) is correct when n = k, i.e. with proba-

bility 1: ;" = ¥ /k!, and examine f I* Vdf, ¥ kD,
From sect.7.2 and inductive hypotheses with probablhty 1 we get

Flan / dfT 5 / fkl dr. (6.34)

Let’s introduce a stochastic process & of type & = fF+1/(k + 1)! and
will find its stochastic differential using the Ito formula:

k 1

d¢; = E dt + It dft (6.35)

2(k—1)!
Since & = 0, then from (6.34) and (6.35) it follows, that I; """ =
ftkH /(k+1)! with probability 1. So, relation (6.31) is proven in accordance
with induction.
It is easy to see, that formula (6.31) admits the following extension:

w1,
Jr = 0%, (6.36)

where J1 4 Fye,) [ (), - s b= [ () a6(5) < [0,6] =

R is some contmuously differentiated function.
6.4 Usage of multiple integral sums for approxima-
tion of multiple stochastic Ito integrals

We noted in the introduction, that considering the modern state of
question about approximation of multiple stochastic integrals, the method
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6.4 Usage of multiple integral sums for approximation of stochastic integrals

analyzed further is unlikely of any practical value. However, we will analyze
it in order to get the overall picture.

Note, that in several works (see, for example, [23]) it was proposed to use
various variants of integral sums for approximation of multiple stochastic
integrals. In this section we will analyze one of the simplest modifications
of the method of integral sums.

Let the functions ¢;(7); [ = 1,..., k satisfy to Lipschitz conditions at
the interval [t, T] with constants C:

|¢l(7-1) — ¢1(T2)| S Cl|7'1 — T2| fOI' all T, T2 € [t, T] (637)

Then, according to lemma 1 with probability 1 the following equality is
reasonable

— J2—1

[, =Lim. b8 znwzm) w.

Oojk(] =01[=1

Here the sense of formula (1.8) notations is kept.
We will represent the approximation of multiple stochastic Ito integral
J[¢®]r; in the following form

Ja—1

N-1 k
J[@b(k)]iljy,t => ... 1II @bl(sz)AW%i)- (6.38)
Jk=0 J1=01=1

Relation (6.38) may be rewritten in the following form:

- Ja—1

‘][ } Z Z H(ATJZ) ¢l(TJl) 7 (6'39)

Jx=0 J1=01=1

where u(-i) o (WQr1 — (i)) J(AT))2;i=1,...,m — are independent when

i # 0 and various j standard Gaussian random values: u( ) = — (AT))7.
Assume, that

r=t+i0; j=0,1,...,N; 7w =T, A >0. (6.40)
Then the formula (6.39) will be as follows:

- Jo—1 k

TP, = A% N5 Mate+ ia)u®, (6.41)

Jr=0 J1=01=1
i) def /(i i :
where ug-) = (WEJZ(J-H)A—WEJRJ-A)/\/Z;zzl,...,m
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Lemma 12. Assume, that functions ¥;(7); | = 1,...k satisfy to Lip-
schitz condition (6.37), and {Tj}j.v:_ol — is a partition of interval [t,T] of
type (6.40).

Then, for sufficiently small value T' —t there exists such constant Hp <

oo, that: 2
Hy (T —
M { (T, — T 1)} < D7

Proof. It is easy to see, that in case of sufficiently small value T — ¢,
there exists such constant Cj, that

M {(J[Tp(k)h’,t — J[qp(k)]:,]\{t)?} < M {(«][w@)}T,t _ J[¢(2)hj\{t)2} :

3
JpPry — T, = 3 S¥,
j=1

where
N-1 Tttt
=3 [ (t) /¢1 (tr)dwiy dw?);
J1=0 Tjp Tj
N N—1 T+l . )j1_1 Tjo+1 i),
=X | (alts) — a(r3,)) dwiy’ > [ wi(ty)dwy,;
N=U 15 J2=Y Thy
J —1 Tip+1 1)
ZO¢2(731)AW DY ] W) - () dwsy
1 J2=V 75,

Therefore, according to Minkowsky inequality we have:
P2 %
(M{ (Tl — T@ 1)) < > (m{(sM)’})".
]:

Using moment features of stochastic integrals (see chapter 7) let’s esti-
mate values M {(va )2} ;1 =1,2,3. To do it let’s examine four cases.
The case 1. 41, i3 # 0 :

M{(s)°} < 3T - sup {3()¥t(s)).
M{(s)"} < 5 =17 ()" sup {43()),
M{(s)"} < 5@ =27 ()" sup {43(s)).
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6.4 Usage of multiple integral sums for approximation of stochastic integrals

The case 2. 11 #0, 15 =0

M{(S2)?} < 3T~ 1) sup {v3(s)¥3(s)}

s€(t,T]
M{(sY)*} < (T - 1) (02)2821[11;] {¥i(s)},
M{(s5)’} < ST -1y (01)232}1% {v3(s)}.

The case 3. 19 #0, 11 =0
M{(sV)’} < 8T - 1) sup {Ui(s)vie)},
M{(s)*} < (T - 1) <cz> sup {13(s)},

s€[t,T]

M{(S5)) < 4T — 1) (C1)? sup {¥3(s)}.

s€[t,T]

The case 4. 11 =15 =0:

M {(S{V)Q}

V)

IA
b

(T —)* sup {¥3(s)¥i(s)},

B se(t,T]
M{(s)°} < 50 -0 (@) swp {)},
M{(S3)’} < $5(T — 1)! (01)2321[;1;] {v3(s)} .

According to obtained estimations and condition (6.37) we have

M{ (T @y — Tl ®R) ] < B(T - 1)A = %—’5)2

where Hj < co. The lemma is proven. O
It is easy to check, that the following relation is correct:

2
(i2i1) (i2i1)N) 2| _ (T —1¢)
M{<[00Tt - 155") }— N (6.42)
where 41,70 = 1,...,m and Iéml) — is the approximation of stochastic

integral 1532;;) from the family (5.1), obtained according to the formula
(6.41).

Note, that the method, based on multiple integral sums, converges in
the mean-square sense significantly slower, than the method based on the

multiple Fourier series (see. (6.42), (5.18), (5.50) and table 6.1, 6.4).
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Table 6.1: Values guig, Gpot; Lirigs Lo,

trig» -+ pol*
T—1 279 26 27 278 279 210
Ghrig 3 4 7 14 27 53
Gpol ) 9 17 33 65 129
Tii, sec 4 5 7 10 16 30
T, sec 3 4 7 13 23 45

pol»

6.5 Comparison of effectiveness of Fourier-Legendre
series, trigonometric Fourier series and integral
sums for approximation of stochastic integrals

In this section we will compare effectiveness of usage of polynomial
and trigonometric functions in the course of approximation of multiple
stochastic integrals. In addition, we will compare effectiveness of usage of
methods, based on multiple Fourier series and multiple integral sums.

Let’s examine stochastic integrals Iéilr,)t, I(%er,)t, which may be met, for
example, while realizing the strong numerical procedure of order of ac-
curacy 1.0 for stochastic differential Ito equation [23], [24], [46]. We will
approximate them firstly using the trigonometric system of functions (for-
mulas (5.42), (5.44)), and then using Legendre polynomials (formulas (5.3),

(5.6)).

The number g = gy in the first case we will select from the condition

(T _ t)2 (7.(-2 Gtrig | >
— ==Y << 6.43
272 6 ,;1 r2) =% (6.43)
and number g = g0 in the second case we will be selected from the condi-
tion: )
(T _ t) <1 dpol 1 )
e < 6.44
o o Zwe—g)=® (6.44)
where girig and gpo1 — are minimal natural numbers, satisfying to the con-

ditions (6.43) and (6.44) correspondently. |
In table 6.1 the values gig, oot When ¢ = (T'—¢)?, T —t = 277;

Jj =5,6,...,10 are given. The values T¢,,, T correspond to the computer
(1)

time, consumed on 200 independent numerical modellings of integrals ;. ,

I(%Bt according to formulas (5.42), (5.44) when ¢ = gy, and according to

formulas (5.3), (5.6) when g = gpo1. At the same time, each fixed model-
ing according to formulas (5.42), (5.44) and (5.3), (5.6) correspond to the
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6.5 Comparison of effectiveness of Fourier series and integral sums

same realization of the sequence of independent standard Gaussian random
variables.
Note, that formula (5.44) was used here without a sum member

1 2 . . . .
(T - t)%\/@ (&™) - e
which requires the certain computer time for its numerical modeling.

From the results given in table 6.1, it is clear, that when T —¢ > 277,
the polynomial system is a little bit better, than the trigonometric one
according to consumption of computer time. However, even when T' — ¢ <
278 usage of the trigonometric system provides an insignificant advantage.

This picture changes cardinally when analyzing combinations of more
complicated stochastic integrals.

Let’s analyze stochastic integrals

](glqvl’za [1(;1,27 1662;;)7 [(gz)?bz;,ltl)a ila i?a 7’3 = 1) <., M. (645)
which may be met, for example, while realizing the strong numerical pro-
cedure of order of accuracy 1.5 for stochastic differential Ito equation [23],
24], [46].

Let’s present the numerical result, which provides a possibility to see,
that modeling the set of stochastic integrals (which is necessary for realiza-
tion of strong numerical method of order of accuracy 1.5 for the stochastic
differential Ito equations [23], [24], [46]) with using of the polynomial sys-
tem of functions provides the advantage in computer time in more than 2
times in comparison with the trigonometric system of functions, at least, in
case of not very small 7' — ¢ (note, that in this section we will also analyze
more general situation in which the polynomial system of functions pro-
vides the advantage in three times in comparison with the trigonometric
one within the limits of the considered question).

At first, let’s examine the simplified set of stochastic integrals Iég?t,

]égg;l‘
In case of polynomial system of functions we will be looking for numbers

g,q1 in the approximations 13323, 1333231, defined according to formulas

(5.6), (5.28), on the basis of following conditions:
T—-t)*1 & 1
T—r(1_g

2 =421

) < (T -1t)*, (6.46)

r-i(5- & ) < (-0, (6.47)

i,5,k=0
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Table 6.2: Values ¢, q1, Ty, Tty (polynomial system)

Tt 0.08222  0.05020  0.02310  0.01956
q 19 51 235 328
TYop, sec 5 12 92 73
TTo, sec  13.5 36 181 225

Table 6.3: Values q, q1, Tfy, 1%, (trigonometric system)

T—1 0.08222  0.05020  0.02310  0.01956
q 8 21 96 133
TV, sec 12 24.5 105 148
1o, sec 44 88 411 660

where

J@2i+1)(25 +1)(2k + 1)

. 1 z Y
Ciji = [ Pu(2) [ Piy) [ P.(x)dzdydz;
-1 -1 -1

P;(z) — is a Legendre polynomial.

In case of trigonometric system of functions we will use formulas (5.44),
(5.45) when i3 = 3, io = 2, i1 = 1, and we will be looking for numbers ¢, ¢1
from the conditions:

inin inin) ) 2 T—-t)(n* 41
M {(I(gom) - (goT,t)q> } = u(g - —2> <&, (6.48)

i ii211) 00 2 4 1 Qo]
M (I - T )} = @ -0 - g X -

55 & 1 1 m5ﬂ+4#—3ﬁﬂ}
<e.

L=t Tél r2i2 (r2 — [2)?
T#l

(6.49)

In table 6.2 we can see minimal values of numbers ¢, g, satisfying the
conditions (6.46), (6.47) for various values T'—¢. In table 6.3 we can see the
values of the same numbers for conditions (6.48), (6.49) when ¢ = (T —t)*.
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6.5 Comparison of effectiveness of Fourier series and integral sums

Let’s provide 100 independent numerical modellings for various values
T —1 of set of stochastic integrals Iég,?t, 15332, defined using formulas (5.6),
(5.28), obtained using polynomial system of functions.

In table 6.2 we can see the values of computer time 77,, consumed for
solving of this task with various values T — t.

Let’s repeat this numerical experiment for approximations (5.44), (5.45)
when i3 = 3, 19 = 2, 21 = 1 which were obtained using trigonometric system
of functions. Its results are inserted in table 6.3.

Let’s note, that hereinafter in this section formulas (5.44) and (5.45)
were used without members

1 V2

S(T =)=y (66" - ¢e)
and 5 1 R N (s
-0 (5 5V (67676 - €0V ) +
B (1656 -
—2PIG VG + G
correspondently.

It support numerical results specified in tables 6.2 and 6.3.

Comparing obtained results we come to the conclusion, that within the
limits of numerical experiment when modelling correspondent collection of
stochastic integrals, the polynomial system of functions gives the advantage
in two times in computer time in comparison with the trigonometric system
of functions.

Let’s extract approximations 10%3?;?3, defined by (5.29) in an explicit
form when ¢ = 1,2, 5, 6, taking into account their practical importance (in
theorem 4 the formulas given below correspond to approximations I&%ﬁ“)q
in case of any possible 4;,42,i3 = 1,...,m and ¢ = 1,2, 5,6 when replacing
their upper index (123) by index (#132i3) and upper indexes (1), (2), (3) by
indexes (i1), (i2), (i3) correspondently):

123)1 3 1. a 1 .1 2 1 ). 3
I(gooTl = (I'—t)> l((éfo( - mﬁ( )> C(g )+ 2—0C1( ¢ )> C(g +
+ ((Lgm _ i<(1)> @ 4 idl)g@)) c("’”]

4\/§ 0 10 1 0 20 0 1 1 9
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3 1 1 1
15 = =0} [{(56 - 1t + s &+

1 1 (1)) 2) ( L) I w1 (1)) (2)} (3)
+<20<1 o) A (g s + ) @)
1 @ 1 <1>> ) (i (1) 1 (1)) ®)
+{<—4\/§C0 10(1 G + QOCO 14\/56 G+
L 1 <1)> <2)} (3)
+—— + —— +
(Cavid 7))

1 1 (1)) (2) ( 1 1 (1)) @)
+{<12\/3C0 42@ G+ 4\/ECO 14\/5C1 G+

1 1) .2 3
+0d )} % ’] ,

1 1 1

701235 _ 7(123)2 T_tgH (1) 2 (_ (1 (1)) (2

0007, = ooy, +(T—t) 10 /—2143 G+ 4\/£C3 +28\/5C4 G+
(_ V3

20~/7
L I o 1 1 (1)) 2)

+l——=G+ —= ¢ - —— +
( 21\/5C2 12ﬁ€3 308C4 12\/HC5 G

) I o, 1 <1)> (2)} (3)
G+ —— + — +
( oo+ o+ el ) &)

1 1 1 a 1
G+ g0

(1) (1) I ) @
+ — + +
CHE? T80 Tyt Tovmt ) &

L w2, 1 0@ ( L 1 (1)) 2)
+ + + (- + +
{20 T+ et s+ o) ¢
V3 ) 1 19 ) .o
+ + — +
(20\/7CO 3\/10542 220\/591 s

L ) 23 ) 8 <1)> 2)
+ (-G — ) - —— +
< 701 220\/21&” 91\/§C5 G

(- o + ) €

42+/33 364+/33
1 @ 1 <1>> @ (1 .o 1 o 5/3.a0).0
+{<84\/5C2 5% ) %0 T 1gp% 55\/ﬁC3 562 )T

I o 1 1 (1)) 2)
+—=¢ — =G+ +
<28ﬁ<0 132 286\/5<4 G
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1) 19 2 1 (1)) 2)
+—=¢" — = +
(12ﬁ<° 92201/21 2145 156ﬁ€5 s

L 1 (1)) 2)
+—¢ — +
(308% 5724/5 G2 ) G

A+ G+

L 37 ) 1 1 (1)) <2)} (3)
ol ———" - — +
( 12\/ﬁ<° 364\/5Cl 78ﬁC3 18562 )& p G

I o 1 (1)) 2) ( L 5 (1)) )
1 —=" - — + | — - +
{<36\/ﬁg3 5315 | <0 21\/165C2 364\/Z§C4 G
L 37 2 (1)) 2)
— - — '+ +
+ (14\/165<1 468\/385C3 819\/5C5 G2

L 29 1 (1)) 2)
4 - —— G+ —— +
<9ﬁ<° 234\/38542 156\ﬁC4 G

L 8 L) 1 <1)> 2)
+<12mC° 91\/551 +156\/ﬁg3 T oo )

L 1 1 (1)) <2)} (3)
+<468C0 819\/5C2 18564C4 GGt

I o 1 1 (1)) 2)
+ — G+ +
{ (20@ G~ 5o 36ﬁ<5 %

L L 1 (1)) 2)
+<1o\/ﬁco 12\/105@ 55\/ﬁc“ Gt

L 1 L 37 (1)) 2)
+ — 4 - +
(zL\/:)EC0 12\/5Cl 186\/5C3 468\/385C5 ¢
L I 2 (1)) 2)
+<180€0 372\/3C2 T ot )6t
L ) 23 . 4 1 <1)> (2)
+< 12ﬁ¢° +220¢2TC1 21255 +156ﬁ<5 G

5 ., 19v5 1 o) o).
p(=—2 0y ZIVO ) +

L ). ( L 1 (1)) @ 1 .o
e + (= + - +
{84\/5<4 % 12\/105@’ 21\/165C5 G~ 3% @

L 1 L 29 (1)) 2)
- - - —
< 4\/£C° 3\/10541 372\/5<3 234\/385C5 G
I o, 1 0 1 (1)) 2)
+ (- + (G - ——— +
( s+ el = =)l
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H (-t + et - ) e

42+/33 46877 8195
123)6 123)5 3 1 1 1 a 2
I(gooT?t = (gooT?t + (T'—1)> H (m@i - %Cé )> &+
5 (1) 1 (1)) 2)
+—= = +
(132\/273&” 30\/429<5 G

5 ) 19 1 (1)) 2)
+ - + +
(462\/EC2 924\/@64 561\/5C6 G2
V143
G ) 6P+

o o
39613 ' 84157

1 1
G+ —Qﬁ”) G+

5 )
_I_ e
(66\/27341
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6.5 Comparison of effectiveness of Fourier series and integral sums
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Let’s demonstrate, that in some situations the advantage of polynomial
system of functions in relation to the trigonometric one in terms of com-
puter time for modelling of collections of multiple stochastic integrals turns
to be more impressive.

The fact is, that when solving practical tasks we often have to model
several stochastic integrals of the same type taken for various combinations
of upper indexes at each step of integration. In this case it is useful to reduce
the total number of modeled integrals using the following relations

I3+ 151 = 1801 w1,

,t

(i) (i) (inivis) (inigin) (igiait) (igivia) (i1) 7(is) 7(is)
11113 +Iz@3z _{_11113 _I_Izz3z +Iz3zz +Iz3zz i Iz I?

0007 0007 0007 0007 0007 0or, = Lor,Lor, Loy, W- P- 1,

where i1, i, 13 — are different; 41,149,435 € {1,...,m}.
In accordance with mentioned, let’s analyze the following collection of
stochastic integrals:

1), T Toores Tooges Tores Tovorss Touomss To00res Zooorss Tooogss (6-50)
where 1 =1, 2, 3.

Let’s make independently 100 models for various values 7' — ¢ of the
set of stochastic integrals (6.50) using formulas (5.3), (5.4), (5.6), (5.28).
In table 6.2 we can see values of T}, consumed for solution of this task
with various values T' — t. Let’s repeat this numerical experiment using
approximations (5.42)—(5.45). Its results are inserted in table 6.3.

Comparing the obtained numerical results we can note, that in this case
the polynomial system of functions gives advantage in 3 times it terms of
computer time when modelling the collection of multiple stochastic inte-
grals.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Note, that generally speaking the set (6.45) includes m3+m?+2m of var-
ious multiple stochastic integrals. When m > 3 the number m3 +m? 4 2m
may turn out to be significantly bigger, than in case (6.50) (in (6.50) m = 3
and the multiple stochastic integrals with two coincidental upper indexes
from three ones are not considered) and as the author suppose, the ad-
vantage of polynomial system of functions will be even more essential. We
may expect the same effect when analyzing more complicate collections of
multiple stochastic integrals than in (6.45), which are necessary for build-
ing more accurate strong numerical methods for stochastic differential Ito
equations [23], [24], [46].

Apparently, the mentioned tendency is connected with the fact, that the
polynomial system of functions has a significant advantage over the trigono-
metric system of functions for approximation of multiple stochastic inte-
grals where not all weight functions of type (7) = (t—7)51=0, 1, 2,...
identically equal to 1, that corresponds to [ > 1 in the given representation.
In order to understand it is enough to compare formulas (5.4), (5.5), (5.7),
(5.8), obtained using Legendre polynomials with their analogues (5.43),
(5.48), (5.47), (5.46), obtained using trigonometric system of functions.

Finally, we will demonstrate, that according to computational costs on
modeling of collection of multiple stochastic integrals, the method based
on multiple Fourier series is signficiantly better, than the method based on
multiple integral sums.

Let’s examine approximations of multiple stochastic Ito integrals, ob-
tained using the method based on multiple integral sums:

IOTt \/_zgj, (6.51)

IOOTt A Z gg Z 67, ) (652)
where 5]@ = (ft(?( JHDA — ft ia)/ VA \/_ ; ¢ = 1,2 — are independent standard
Gaussian random values; A = (T'—t)/q; [OOT O I(gT)t are approximations
of integrals Iéﬁﬁt, I(g;?t.

Let’s choose number ¢, included in (6.51), (6.52) from the condition
@) _ g2 _ (T —1)° 3
M {([oom - fowf) } =y S (T —t)".
Let’s make 200 independent numerical modellings of the collection of

stochastic integrals I(%Bt, 1Y using formulas (6.51), (6.52) when T' — ¢t =

O,
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6.6 Multiple stochastic integrals as solutions of systems of linear equations

Table 6.4: Values ¢ and T, (method of integral sums).

sum

T —t 9-5 9-6 9-7
q 16 32 64
T* . sec 26 93 391

sum?’

27J; j =5,6,7. In table 6.4 we can see the time T,
for performing of this task.

Comparing tables 6.1 and 6.4 we come to conclusion, that the method,
based on multiple integral sums even when T — ¢t = 277 is more than
50 times worse in terms of computer time for modelling the collection of
stochastic integrals I(%i)t, Ié;)t, than the method based on multiple Fourier
series. ’ ’

Not difficult to see, that this effect will be essentally bigger, if we con-
sider multiple stochastic integrals of multiplicity 3, 4, ... or choose value
T — t smaller.

Demonstrated numerical experiments provides a possibility to get
sketchy idea about ”good” and ”bad” numerical methods, but we can see
rather well-defined picture.

which was necessary

6.6 Multiple stochastic integrals as solutions of sys-
tems of linear stochastic differential equations

G.N. Milstein [23] proposed an approach to numerical modelling of mul-
tiple stochastic integrals, based on their representation in the form of sys-
tems of linear stochastic differential equations. Let’s analyze this approach
using the following collection of multiple stochastic Ito integrals as an ex-
ample:

S S T
= [dt®, 15 = [ [ degagl) (6.53)
t t ot
wherei|,io =1,....m;0 <t <s<T, fT(’); 1 =1,...,m— are independent

standard Wiener processes.
Then we have the following representation:

(i1) (41) ;

I, 0 0\ I, : 10 £i1)
d :( ) dfé@h)-}-( >d< s. ) 6.54
(I(gllh)) 1 0 ([(glllz)) 0 0 fs(’t2) ( )

It is well-known [23], [24], that solution of the system (6.54) may be
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Chapter 6. Other methods of strong approximation of stochastic Integrals

represented in the following integral form:

I(gll) ) s <(1) 8) ( gli2) _ (12)) ( 1 0) (f(h) )
iin) | = J € d{ %1, (6.55)
()= o o)\

A A def

k§ A¥/kl; A — is a square matrix;
0

where e — is a matrix exponent: e

AT isa unity matrix.

Numerical modeling of the right part of (6.55) is unlikely simpler task
than the jointly numerical modeling of the collection of stochastic integrals
(6.53). We have to perform numerical modeling of the collection (6.53)
within the limits of this approach by numerical integration of the system
of linear stochastic differential equations (6.54). This procedure may be
realized using the FEuler method [23], [24]. Note, that the expressions of
more accurate numerical methods for the system (6.54) [23], [24], [46] con-
tain multiple stochastic integrals (6.53) and therefore they useless in our
situation.

Assume, that {7;};_) — is a partition of the interval [t, s], for which
7, =t+3A; 5 =0,1,...,N; 7y = s. Let’s write down the Euler method
[23], [24] for the system of linear stochastic differential equations (6.54):

(i1) (i1) Af(“) .
Y 12
( yé)l-”;;l)) - <y(€1i2)> + ( Af is) ) aY(()l V= =0 y(l i2) _ =0, (656)

Yp+1 p
where yg}) def I(fl); y%”'Z) def yi(fliQ) — are approximations of multiple

stochastic integrals Iéi;?t, I ég”t, obtained using the numerical scheme (6.56);
ARD = £ £ =1,

Tp+1
Iteratlng the expression (6.56), we have

(. N-1 ( ) N-1qg-1
= 3 Ay = 3 3 AFPAER), (6.57)
=0 q=0 =0

where 2@) def 0.

The formulas (6.57) are the formulas for approximations of multiple
stochastic integrals (6.53), obtained using the method, based on multiple
integral sums.

Consequently, the effectiveness of methods of approximation of multiple
stochastic integrals based on multiple integral sums and numerical integra-
tion of systems of linear stochastic differential equations using the Euler
method turns out to be similar.
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6.7 Combined method of approximation of multiple stochastic integrals

6.7 Combined method of approximation of multiple
stochastic integrals

In this section we build the "hybrid” of methods of approximation of
multiple stochastic integrals, based on multiple Fourier series (theorem
1) and multiple integral sums (hereinafter referred to as the combined
method). It appears, that when storing the required relation of one method
impact on the other, we may achieve some advantages over the ”clean”
usage of the method, based on the multiple Fourier series.

Namely, it is explored, that the combined method of approximation of
multiple stochastic integrals provides a possibility to diminish significantly
the whole number of coefficients of multiple Fourier series which are nec-
essary for approximation of the considered multiple stochastic integral.
However, in this connection the computational costs for approximation of
the mentioned stochastic integral slightly increase.

6.7.1 Basic relations

Using the property of additivity of the stochastic Ito integral we may
write:

Ig) = N Z % w.p. 1, (6.58)
. N-1, . .
=y (Iﬁ;lw —A?’/Zkggf,;)) w.p. 1, (6.59)
k=0
mz N —1k-1 N—lj(z'liz) 1 6.60
OTt Z Z ]gzo OOTk-i-l*"'k w. p. 1, ( . )
Jliviais) _ A3/2 —1k-11-1 .
0007 Z > ZC@k 01 +
=0 [=0¢=0
\/7N —_ Z17»2 7,27,3 7,11,27,3 1- 6 61
z; oTllTl—i-Co 007, 1.7, —I—Z 00, - WP 1; (6.61)
1, r=1,....m T —t=NA; Tk—t-l—kA

Tk+1
G AT [ dwld;

Tk

k=0,1,...,N — 1; N < oo; the sum according to empty set is equals to
ZEro.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

In the formulas mentioned above we examined stochastic Ito integrals
from the family (5.1).
Substituting the relation

1 A3/ 1 1
I](.f'ki-ly‘l'k - _T ( (gk) + % l(lk)> w. p. 17

into (6.59), where Céf}g), Y}g) — are independent standard Gaussian random
values, we get:

i A3/2N2_1<(1 +k>€ W ’“) 1 (6.62)
Ly = \\2 0,k 2\/— Lk p

Let’s approximate, using the method of multiple Fourier series according
to the Legendre polynomials, the following multiple stochastic integrals

i) plivia) zggg;jﬂ%, included in the right parts of (6.60), (6.61).

00"'k+17"'k Tk+1:Tk
As a result we get

—1k-1

Iy ™ = A z > GRG z o, (6.63)
=0 =0 Dk’
1(111223) qg . A3/2 Zl kzl lzl C '
0007, 0,k 01 0
=0 1=0 ¢=
/ —Lk] 1122 (1) (i2is)qn Nt (i14213) g2
tVA Z Z (CO 074107, - COJ IOOTk+1’Tk) + Z IOOOTk+1’Tk7 (6'64)
k=0 1=0 k=0
where approximations Io(f)l: ;jir : Io(al(fﬁ)quk are obtained using the method of

multiple Fourier series (theorem 1) according to Legendre polynomials.
In particular, when N = 2, the formulas (6.58), (6.62)-(6.64) will look
as follows :

i = A3/2<

T,

i1 3 i1 1 i1 11
QC(,O) + _C(g,1) + F (Cl(,o) + d)ﬁ)) w.p. 1, (6.66)

I(gloqui) = ( Co +IOM2) +I(%i2)q)a (6.67)

"'1 0 72:71

I(g?]l()%;l:) g2 \/Z< (gfi)lé&@z:h + CO 1213)(11) _{_1(111213)% _I_I(l1%213) (6 68)

T2 1 Tl 0
where A = (T —t)/2; . =t + kA; k=0,1, 2.
Note, that if N = 1, then (6.58), (6.62)-(6.64) transfer to the formulas
for numerical modeling of mentioned stochastic integrals using the method
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6.7 Combined method of approximation of multiple stochastic integrals

of multiple Fourier series. So, we may claim, that the method of multiple
Fourier series is a particular case of combined method when N = 1.
Note, that later we will demonstrate, that modelling of multiple stochas-

tic integrals IéTz, Il(Tz, I(gf)qui), Ié%;ff) using formulas (6.65) — (6.68) results
in abrupt decrease of the total number of Fourier coefficients, which are
necessary for approximation of these integrals using the method, based on
theorem 1.

At the same time, each right part of formulas (6.67), (6.68) include two
approximations of multiple stochastic integrals of 2nd and 3rd multiplicity,
and each one of them must be obtained using the method based on theorem

1. Obviously it results in increasing of calculation costs for approximation.

6.7.2 Calculation of mean-square error

Let’s calculate mean-square errors of approximations, defined using the
formulas (6.63), (6.64). We have

N-1 2
def 12 i1i2) N, 192 12
exva S W (1) — )] < gy“@&wfmgg}:

2

G-t -GGt w) 6o

=1

(&) |

2
def i12i3) (i1i203) N.q1,q2 —
ENg1.q2 — M {( 0007, — ]oooTt =

k=0

S (2, — 1))+ Ha, — 1)) | =

Tk+1:Tk Tk+1Tk Tk+1Tk Tk+1:Tk

Tl+1 T

(1) ( +(inis) (iinis) 2
11 I 1213 z2z3 q1 l1%2%3 ] 111213)q2 —
+<07l ( 00Tk+1,Tk Tk+1 Tk)) _I_ Tk+1 Tk OOOTk+1,Tk> }

Nz_l / Z i3 i142) (i142)
- {< (C ( " _100172 qi>+
=0 0.k 1+171
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(iis) zzz @ (hizi) _
+AM{<<IOOTk3+1,Tk - T]Z.l Tk) Z CO ) } ka‘]Z 3) o
NS A
=0 =0 Tl+1 u 007!+1’Tl

(i2i3) (i2i3)q1 iviniz) |\ _
kAM{ (I Orjrim ]007k+1’7'k> } + 5k 42 ) T

Nl ) ( ) 2 ( . )
s, i)}t

k=0 Tk+1 Tk Tk+1:7k
N-1 A2 4l 1
2#A 1 wm) _
kZO< 2<2 l:2314l2_1>+ ke

= A3 5 —_—

NUV—U(l a1
=R |

B

1 1 1\/1 o 1
= —(T — 3(— — —> <_ ) i1iai3) )
2( t) N N2)\2 2141 2_1) " Z 5’“12 ’ (6.70)

where
(i14213) -M (i14213) (i19213)g2 2
5’%612 = { <IO Tk:—i—l Tk o IOOOTk+1,Tk> }’
i1 # i21n (6.69) and not all indexes i1, 49, i3 in (6.70) are the same (otherwise
there are exact relationships for modeling of integrals I((]f)l;i), Ié%;?)).
For definiteness, assume, that iy, 49,43 in (6.70) are different. Then

7,11223 1 & Clzl
5k - A3<6 _ _;O AJ3>’ (6.71)
1,),0=

where

J@2i+1)(25+1)(20 + 1)

Clji = 3

A3/26_(lji7

Yy

Clﬂ_/Pl /P ) | Pi(w)dzdyds;
-1

P,(z) — is a Legendre polynomial.
Substituting (6.71) into (6.70) we get

1 1 1\/1 @ 1
evae = 5T ="\ § ~ 32 2 lzzl w_1)"
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6.7 Combined method of approximation of multiple stochastic integrals

Table 6.5: T —t = 0.1.

N q Q1 g M
1 13 — 1 21
2 6 0 0 7
3 4 0 0 5

Table 6.6: T — ¢t = 0.05.

N q ¢ q M
1 50 - 2 7
2 25 2 0 26
3 17 1 0 18

+(T—t)3<1 % (2i+1)(2j+1)(21+1)éi2ji>'

N2 \6 % 64

Note, that when N = 1 formulas (6.69), (6.72) pass into the corre-
sponding formulas intended for mean-square errors of approximations of
the integrals Iég;i), [é%;’lf), obtained using the method of multiple Fourier
series (theorem 1) according to Legendre polynomials.

(6.72)

6.7.3 Numerical experiments

Let’s analyze modelling the integrals Iél;z, I(%Tii). To do it we may use

relations (6.58), (6.63). At that, the mean-square error of approximation
of the integral Iéf)l;i) is defined by the formula (6.69) using Legendre poly-
nomials. Let’s calculate the value ey, for various N u ¢ :

32 ~ 0.0167(T — t)?, €93~ 0.0179(T — t)?, (6.73)
16~ 0.0192(T — t)*. (6.74)

Note, that the combined method (formulas (6.73)) requires calculation
of significantly smaller number of Fourier coefficients, than the method of
multiple Fourier series (formula (6.74)).

Assume, that the mean-square error of approximation of the stochastic
integrals I(%l;i), [é&)l;zf) is equals to (T — t)%.

In tables 6.5-6.7 we can see the values N, g, qi, g2, which satisfy the
system of inequalities:

{ eng < (T —t)*

ENge < (T —1)* (6.75)
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Table 6.7: T — t = 0.02.

N q Q1 g M
1 312 - 6 655
2 156 4 2 183
3 104 6 0 105

and the total number M of Fourier coefficients, which are nesessary for
approximation of the integrals [33;’?, [333;? when T'— ¢ = 0.1, 0.05,0.02
(numbers g, g1, g2 were taken in such a manner, that number M were the
smallest one).

From tables 6.5-6.7 it is clear, that the combined method with small NV
(N = 2) provides a possibility to decrease significantly the total number of
Fourier coefficients, which are necessary for approximation of the integrals
Iég;i), Ié%;ff) in comparison with the method of multiple Fourier series
(N = 1). However, as we noted before, as a result the computation costs
of approximation are increased. The approximation accuracy of stochastic
integrals for the combined method and the method of multiple Fourier

series was taken similar and equaled to (T — t)*.
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Chapter 7

Stochastic integrals and stochastic
differential equations

7.1 Stochastic Ito integral

Assume, that (2, F, P) — is a fixed probubility space and f;; ¢ € [0,T] —
is standard Wiener process, defined at (€2, F, P). Let’s analyze the collection
of o-algebras {F;, t € [0,T]}, defined at (2, F,P) and connected with the
process f; in such a way, that:

1. F, CF; CF for s < ¢;
2. Process f; is Fi-measurable for all ¢ € [0, T7;

3. Process fian — fa for all A > 0, ¢ > 0 is independent with the events
of g-algebra Fa.

Let’s analyze the class Ma([0, T) of functions £ : [0, 7] x Q — R, which
satisfy the to conditions:

1. The function £(¢, w) is a measurable in accordance with the collection
of variables (t,w);

2. The function &(t,w) is Fy-measurable for all ¢ € [0,7] and &(7,w)
independent with increments fi an — fa for A > 7, ¢ > 0;

3, ;flvl {(€(t,w))?) dt < oo;

4. M {(f(t,w))z} < oo for all ¢t € [0,T].

For any partition {Tj}j-vzo of the interval [0, T] such, that, 0 =75 < 7 <

. < v = T, we will define the sequense of step functions ¢ (t,w) :
EM(tw) = ¢ (TJ(N),LU) with probubility 1 for ¢ € [T;N),T}ivl) ), where j =
0,1,... N—1.N=1,2,....

Let’s define the stochastic Ito integral for & € Ms([0, 7)) as the following
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mean-square limit

N-1 T
lim 3 €M) (frhe) - " 0) € [ed, (1)

where ¢™V)(t,w) — is any step function, which converges to the function
£(t,w) in the following sense

lim [ M{[eM(t,w) - £(t,w)[ } dt = 0. (7.2)

N—oo 0

It is well known [2], that the stochastic Ito integral exists, doesn’t depend
on the selecting sequence ¢ (t,w) and has the following properties:

1 m{Jedr} =0
2. M ([ &df,)? = [M{E2)ar;
3. ] (0 + B) dfy = @[ dfy + 5 [ nedf, w. p. 1
4 M{T&df, [oedf, | = (M (&, dr.
Also . )
0/ E Lt (7)dfr & / &-df,

where 1p, ,,1(7) = 1 for 7 € [to, 1] and 1y, 4,1(7) = 0 otherwise.
Using feature 3 for & 1y, 4(7) = & 1o (7)) + &1, 4(7), T # t1, we get

ty t
/gsdfs_*'/gsdfs = /tgsdfs w. p. 1,
to t1 to

WhereogtoétlgtST.
Let’s define the stochastic integral for £ € My([0,77]) as the following
mean-square limit

- T
Lian. T €9 (1) (r) - 1) [&dr

N—oo j=

where ¢WV)(¢,w) — is any step function from the class My([0, T]), which
converges in the sense of relation (7.2) to the function £(¢, w).
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7.2 Stochastic Stratonovich Integral

T
Let’s analyze the well-known features of the stochastic integral ({ & dr
T T
1. M {({ deT} = g M {&;} dr;
T 2 T
2. M{(f{}ch) }ngM{gz}dT;
0 0 , .
T
3. g(a& + fn,)dr = a({é}dT—l—Bgde w. p. 1 Vo, B € RL.
The property of additivity may be analyzed also as for the stochastic

Ito integral.
Note, also, that [2]

M{ [ &df, 2”} < (t—t) " men— 1) [M{l& ") dr,  (7.3)
M{ [ &dr 2"} < (t—to)" " [M{|&[*"} dr, (7.4)

where (&))" € May([to, t]).

7.2 Stochastic Stratonovich integral

Let’s examine the class Qa2 ([t, T]) of Ito processes n, € RY; 7 € [¢,T]
such, that

nr=mn+ /Tasds + /Tbsdfs, (7.5)
i t

where f, € R! is F,-measurable for all s € [t, T] standard Wiener process
and

L. al, b € Mo([t, T]).

2. For all s, 7 € [t,T] and some positive constants C, v < oo: M{|bs —
b1} < COls — 7.

Assume, that Cyo(R%,[t,T]) — is a space of functions F(z,7) : R! x
[t,T] — R, which continuously differentiated two times using variable z,
and these derivatives are bounded uniformly for z € R!, 7 € [t, T].

Let’s define the stochastic Stratonovich integral for the process F(n;, 7);
7€ [t,T] (F(z,7) € Co(RL, [t,T])) as the following mean-square limit

1

N-1 /1
Li. Fl= (N>> —~ € [ F(y,,7)df:
im 3 (5 (ng +ngn) o) (Fy = ) # [ Pl
(7.6)
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where the sense of formula (7.1) notations is kept.

It is easy to demonstrate, that if n, € Qs([t,T]), F(n,,7) € Ma([t, 1)),
where F(z,7) € Cy(R',[t,T]), then the following relation between the
stochastic Stratonovich and Ito integrals is reasonable

<1 T 1 ToF
t/ F(n,,7)df, = t/F(nT,T)dfT—I— 2 5 (1 T)brdT wop. 1. (1)

If the Wiener processes in (7.5) and (7.7) are independent, then with

probubility 1
*T

T
| FOw,7)df, = [ F(ne,7)df:.
t

t
Also, if nW € Qu([t, T)); i =1, 2, then

T
@ geG) — [ @ 300) L 21,
t/ n, dfy)) = t/UT df’’ + 21{Z:J}t/deT w. p.1,

where the process nﬁ) looks as follows

0 =0 + [auds + [ budf.

Here fT(j) € R j =1, 2 — are independent standard Wiener processes;
1,4 — is an indicator of the set A.

7.3 Ito formula

Assume, that (2, F,P) — is a fixed probubility space, and f; € R™ is
F;-measurable for all ¢ € [0,T] vector Wiener process with independent
components ft(z); t = 1,...,m. Assume, that the stochastic processes agi)
and BU) i =1,...,n;j=1,...,m are such, that al?), B ¢ M,([0, T))
forall:=1,...,n;9=1,...,m.

Let’s analyze the vector Ito process x; € R",t € [0,T] of type

t t
X; = Xg + /aTdT —|—/BTdfT w. p. 1, (7.8)

where 0 < s <t <T.
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7.4 Stochastic differential Ito equation

Assume, that the function R(x,t) : R" x [0,7] — R! has continuous
partial derivatives

OR OR &R
ot’ 0x’ 9x®ox()’

,7=1,...,n.
Within the limits of examined assumptions for all s,¢ such, that 0 <
s < t < T, the following Ito formula takes place with probability 1 [2]:

R(x4,t) = R(xs,5) + /(%—It{(XTaT) + Z al) ——

m n . . 82R m n .. .
(ij) plkj) __~ *v (ij) Y-+ (J)
> 3 BEBE) ) )T+ 3 Y [ B i 0, )Y

7.4 Stochastic differential Ito equation

Assume, that (2, F,P) — is a fixed probubility space and f; € ™ —
is Fi-measurable for all ¢ € [0, T] vector Wiener process with independent
components f: i =1,...,m.

Let’s analyze the following stochastic differential Ito equation:

t t
xi = X0+ [ a(xs, 7)dr + [ B(x,, 7)dfr, %o =x(0,w), (7.9)
0 0

where the stochastic process x; € R" — is a solution of equation (7.9);
a: R x[0,7] - R, B: R x[0,T] - ™, xg — is a vector initial
condition; x¢ and f; — fy — are independent when ¢ > 0.

The stochastic process x; € R" is called as a strong solution (hereinafter
referred to as solution) of stochastic differential Ito equation (7.9), if any
component of x; is Fy-measurable for all ¢ € [0, 7], integrals in right part
of (7.9) exist and the equality (7.9) is executed for all ¢ € [0,7] with
probubility 1.

It is well known [2], that there is a unique (in the sense of stochastic
equivalence) continuous with probubility 1 solution of stochastic differential
Ito equation, if following 3 conditions are met:

1. The functions a(x,t), Bg(x,t) : R" x [0,T] - R"; k=1,...,m are
measurable according to collection of variables (x,t) € R"x [0, T'|; B(x, T)
is k-th colomn of matrix B(x;,7);
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2. For all x, y € R" there is such constant K < oo, that

[a(x,t) —aly, )|+ 2 [Bi(x,t) = Bily, )] < Klx =],
=1

m
la(x, O + 3 |Br(x, )" < K* (14 |x[);
k=1

3. The random value xq is Fo-measurable and M {|x,|?} < oo.

7.5 Stochastic integral according to martingale

Assume, that (2, F,P) — is a fixed probubility space and {Fy,t € [0, ]}
— is a non-decreasing collection of o-algebras, defined at (€2, F, P). Assume,
that M;, t € [0,T] is Fi-measurable for all ¢ € [0,7] martingale, which
satisfies the condition M{|M;|} < oo and for all ¢ € [0,T] there is a Fy-
measurable and non-negative with probubility 1 stochastic process p;, t €
[0, T'] such, that

M{(M, — M,)?|F;} = M{/pTdT|Ft} w. p. 1,
t

where 0 <t < s <T.
Let’s analyze the class Hs(p, [0, T]) of stochastic processes ¢, t € [0, 7],
which are F;-measurable for all ¢ € [0,7] and satisfies the condition

T
M {g gofptdt} < 00.
Let’s analyze the partition {7;};_ of the interval [0, T] for which

(V) (V)

0= To < k) (V)

(N) _ _ (N)
<<TN —T, AN—0<I'jTiaJ,$(_1 ‘Tj‘Fl_Tj ‘—)O

when N — oc.
Let’s define sequence of step functions cp,gN) such, that: go,gN) =Y (v W.

i
p.lwhente [V, 70 j=01,... ., N1, N=1,2,....
Let’s define the stochastic integral according to martingale from the
process @; € Ha(p,[0,T]) as the following mean-square limit

N-1 T
1.im. N (M oy — M) ¥ [ o,dM 7.10
Lim, JE:O £ ( ) TJ(N)) 0/ prall, (7.10)
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7.6 Stochastic integral according to Poisson random measure

where <p,EN) — is every sequence of step functions from the class Hy(p, [0, T),

which converges to ¢; in the following sense
T 2
Lim. M — o™ dt} —
Nl_glo { 0/ <€0t Pt ) Pt

T
It is well known [2], that the stochastic integral [ p;dM; exists, it doesn’t
0

depend on the selection of sequence <p,§N) and satisfies to the following

conditions with probubility 1
T

2 T
|F0} = I\/I{f <ptptdt|F0};
T T0 T

3. ({(a% + Bipy)d M, = a({%th + /ngthtQ

T T T
4, M{({ gOthtbfT/Jtht‘Fo} = M{g@twtptdﬂFO}

T

7.6 Stochastic integral according to Poisson random
measure

Let’s examine the Poisson random measure in the space [0, T]x Y (R" &
Y). We will denote the values of this measure at the set Ax A (A C [0,7],
ACY)asv(A,A). Let’s assume, that M{v(A, A)} = |A|II(A), where |A]
— is a Lebesgue measure of A, II(A) — is a measure on o-algebra B of
Borel sets Y, and By — is a subalgebra of B, consisting of sets A C B,
which are satisfies to the condition IT(A) < co.

Let’s analyze the martingale measure 7(A, A) = v(A, A) — |A|II(A).

Assume, that (2, F, P) — is a fixed probubility space and {Fy, t € [0, T}
is a non-decreasing family of o-algebras F; C F.

Assume, that:

1. Random values v([0,t), A) — are F;-measurable for all A C By;

2. The random values v([t,t + h), A), A C By, h > 0, doesn’t depend on
o-algebra F;.

Let’s define the class H;(II, [0, 7]) of random functions ¢ : [0,7] x Y X
Q — R, which for all t € [0,7], y € Y are F;-measurable and satisfy to
the following condition

/ [ M{le(t, y)[}TI(dy)dt < oo.

269



Chapter 7. Stochastic integrals and stochastic differential equations

Let’s analyze the partition {7;}7_, of the interval [0, T, which satisfies
the same conditions as in the definition of stochastic Ito integral.

For ¢(t,y) € Hy(I1, [0, T]) let’s define the stochastic integral according
to martingale Poisson measure as the following mean-square limit [2]:

//(pty dtdy—l //cp p(dt,dy), (7.11)

where oV)(t,y) — is any sequense of step functions from the class
Hy(I1, [0, T]) such, that

Jim / / M{|o(t,y) — oW (¢, y) [ I(dy)dt — 0.

It is well known [2], that the stochastic integral (7.11) exists, it doesn’t
depend on selection of the sequence @@V (t,y) and it satisfies with proba-
bility 1 to the following conditions:

T
L M{] J elt, )7 (dt, dy)[Fo ) = 0

2. ({‘f((am(t, y) + Bez2(t,y))v(dt, dy) = af J e1(t,y)o(dt, dy)+

N

T 2 T
3. M{[[ ] (t,3)5(dt,dy)| [Fof = | M {[o(t,y)PIFo} ().

where a, 3 — are some constants; p1(t,y), ¢2(t,y), ¢(t,y) from the class
Hy (L, [0, T7)).
The stochastic integral

//w v(dt,dy)

according to Poisson measure will be defined as follows

T T
//cpty (dt,dy) = //goty dtdy+//<ptyﬂ(dy)dt,
0Y 0Y

where we propose, that the right part of the last relation exists.

270



7.7 Moment estimations for integrals according to Poisson measures

7.7 Moment estimations for stochastic integrals ac-
cording to Poisson measures

According to the Ito formula for the Ito process with jump componet
with probubility 1 we get [2]:

2) = [ [ ((zr- +7(r3)" = () v(dr, dy), (7.12)

where

/'y v(dr,dy).

) o&\‘\ﬁ

Y
We suppose, that the function v(7,y) satisfies to well-known conditions of

right part (7.12) existence.
Let’s analyze [2] the useful estimation of moments of the stochastic
integral according to Poisson measure:

an(T) J‘&i‘i‘}{(//(( 1)T—1)H(dy)dr>j}, (7.13)

where

a,(t) = sup M{lz|"}, be(7,y) = M{|7(7,¥)['}

0<r<t
We suppose, that right part of (7.13) exists.
Since v(dt,dy) = v(dt,dy) — II(dy)dt, then according to Minkowskiy
inequality

(M{ZP7)* < (M {J= ] + M {27, (7.14)

where .
éé// (dy)dr; zt—//va Yo (dr, dy).

The value I\/|{|zT|2T} may be estimated using the inequality (7.4):

M{|%|*} < t2”‘1O/tM{LZ<p(T, y)II(dy) 21«}de

where we suppose, that

[m{|f+(rymiay
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Chapter 7. Stochastic integrals and stochastic differential equations

7.8 Taylor-Ito and Taylor-Stratonovich expansions

Assume, that L — is a set of functions R(x, s) : " x [0, T] — R!, which
for all t € [0,7], x € R" has continuous partial derivatives:

O, DB, OB
ot 77 ox) 0x(H9x9)

and Gg — is a set of functions R(x,s) : R" x [0,7] — R!, which for all
t € [0,7], x € R™ has continous derivatives:

(xt) ,7=1,2,...,n

OR
m(x,t),z:LQ,,n
Let’s define at the sets L and Gg the following operators
OR n OR
_ v (4)
LR(X7t) - 8t (X7t)+i:1a ( )8X()(X t)+
1m n , . O’R
- BW(x YBW (x.t ¢
ty 3 2 BB 6 ) ),
i OR
GV R(x,t) = ZB”(xt)a St i=1,...,m

j=1

Let’s examine the stochastic process 7, = R(Xs, s), where R(x,s) : R" X
[0, 7] — R! or R* x [0,T] — R" and x; — is a solution of stochastic
differential Ito equation (7.9).

Assume, that sufficient conditions for existence of solution of the
stochastic differential Ito equation (7.9) fulfilled and R(x,t) € L; LR(xy, t),
GV R(x;,t) € Mo([0,T]); i =1,...,m.

Then according to the Ito formula for all s,¢ € [0, 7] such, that s > ¢
with probability 1

s m S ) .
R(x,,8) = R(xi,t) + [ LR(x,, 7)dr + > [ G R(x,,7)df{).  (7.15)

t =1

Stochastic Taylor formula (Taylor-Ito expansion) may be obtained by
iterated usage of the formula (7.15) for the stochastic process R(Xs, s).
Let’s denote

Grk:{()\ka---a)\l):T+1§2k—)\1—...—)\k§2’r;
N=1lor N=0;l=1,...,k},
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7.8 Taylor-Ito and Taylor-Stratonovich expansions

Egp={( Qg M) 2k— X — ... =X =g
N=lorN=0;l=1,...,k},

Mk:{(/\k,...,)\l):)\12101‘/\120;121,...,](7}.

S T2
TR = [ [awlid dwli) if k> 1, (7.16)
t t
J((;‘(’)‘_'_‘_i)fl))s . aof 1, W() fT(i) when 7 =1,...,m and wgo) =T

Assume, that functions a(x,t) : R" x [0,7] — R", B(x,t) : R" x
[0, T] — R™™ R(x,t) : R" x [0,T] — R! have smooth partial derivatives
of any fixed order.

Then for all s,¢ such that s > ¢ with probubility 1 [24]:

R(xs,5) = R(xy,t)+

r m mA\g (igorrit)
+> > X QW QR t) TG
k=1 ()\k,---,)\l)eMk: 1=\ k=
+D7"+13,t) (7.17)

where D, 1,, — is a remainder term in the integral form [24], the right part
of (7.17) exists in the mean—square sense and A\; = 1 or \; = 0; ngll) =L
andzl—Olf/\l—OQ = ( andy;,=1,....mif\=1;1=1,...,N.
If we put in order the members of Taylor Ito expansion according to
order of vanishing in the mean-square sense when s — ¢, then with proba-
bility 1:
R(xs,5) = R(xt,t)+

r mAi mAg (i1) (iponin)
+ 2 X Y oY QW QR ) SRR,
q,k=1 ()\k;---;/\l)eEqk i1=\1 k=g
+H7'+]-s,t’ (7'18)

where

m)q

T ) i) (igin)
7'+]-st Z Z Z ct Z Q/\l ctt Q)\l R(Xt, t) J()\k )\1)8 t+

1 (A A1) €Grr 1=A1 ik=M\

+DT+1s,t *

Using standard relations between stochastic Stratonovich and Ito in-
tegrals we may rewrite Taylor-Ito expansion using the terms of multiple
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stochastic Stratonovich integrals [22], [24]. In this case stochastic Taylor
formula is called as Taylor-Stratonovich expansion.

Assume, that the functions a(x,t) : " x [0,7] — R", B(x,t) : R" x
[0, T] — R™™ R(x,t) : R" x [0,T] — R have smooth partial derivatives
of any fixed order.

Then for all s,¢ such that s > ¢ with probability 1 [22], [24]:

R(xs,8) = R(x¢,t)+

r mAy mAg (i1) w(ifei)
+ Z Z Z D st D)\l R(Xt7 t) J()\k )\1)8 t+
k=1 ()\k;---;)\l)eMk 1=\ 1=\

+Dyi1,,, (7.19)

where D, , is a remainder term in the integral form [22], [24], the right
part of (7.19) exists in the mean-square sense and also )\l =1 or A1 = 0;

ij)zL ZGOG'andzl—OWhen)\l—OD GO and 4 =
1,...,mwhen)\l—1 [=1,...,N;

T =[] aw® L dw® if k> 1, (7.20)
t t
*(ig...i1)  def () _ £() - (0) _
J()\O___)q)st =1, =f" when¢t=1,...,mand w’ =T.

If we put in order the members of Taylor-Stratonovich expansion ac-
cording to order of vanishing in the mean-square sense when s — ¢, then
with probability 1:

R(xs,5) = R(xy,t)+

r m)q m/\k ( ) ('Lk Zl)
+ 2 X > . DS DSV Rk, t) - T,
q,k‘=1 (/\k;---;)\l)eEqk 1=\ = )\k
+Hr+]-s,t7 (7.21)
where
m)\l m)\k ( ) ('lk 7»1)
’l"+]-st Z Z Z Z D * R(Xt7t) J()\k /\1)St+

]‘()‘kn 7/\1)€Grk 7/1 )\1 Zk )\k
+Dr+1s,t'
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7.9 The unified Taylor-Ito and Taylor-Stratonovich
expansions

Let’s analyze the stochastic differential Ito equation (7.9) and propose,
that the conditions for the existence of its solution are met.

Assume, that functions a(x,t) : R" x [0,7] — R", B(x,t) : R" x
[0, 7] = R™™ R(x,t) : R" x [0,T] — R! have smooth partial derivatives
of any fixed order.

By the iterated usage of the Ito formula for the process R(x:,t), where
x; — is a solution of the equation (7.9), and special transformations, based
on replacement of integration order in the multiple stochastic Ito integrals
[31], [32], [42], [46] in [42]-[46], [48] the following unified Taylor-Ito and
Taylor-Stratonovich expansions were obtained (while obtaining the unified
Taylor-Stratonovich expansions we also used standard relations between
multiple stochastic Ito and Stratonovich integrals [43], [46]):

(s —t)]
R(X87 8) - (Xt7 ) + Z Z ) X
(k7J7l17 7lk) A ‘7
S LIGH G R(x,, 1) 4 D 7.92
X Zl wo- G R(xe 6) )] Besy T Pratyy (7.22)
11 yeenylp=

(the first unified Taylor-Ito expansion),

r — )
Ricws) =R +y, w0
q= (ka.]alla 7lk) A ‘7
xS GG LI Ry, )T i 4 Dy, (7.23)

7/17 71']6_]-

(the second unified Taylor-Ito expansion),

X

Rix,s)= Rixyt)+y  » o=V

|
q= 1(k7.77lla 7lk) Aq '7

x Y GG LR, ) + Dy (7.24)

lks,t
/Lla ,lk 1

(the first unified Taylor-Stratonovich expansion),

X

Rix,9) =R +Y ¥ (s—t)

=1 kgl e, I
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x > DIGM . .GYR(x, )™ + Dy, (7.25)

] : ks
Zl,...,ZkZI

(the second unified Taylor-Stratonovich expansion),

where t
L = [t - (- e e, (7.26)
t t
to )
1Zl lklskt / S o tk : /(S - tl)lldft(fl) : dft( )7 (727)
t t
*S *t2 '
U = [ =) (=) L dfyY (7.28)
t t
xS *tz '
T = [ (s—t)l [ (s —t)df) . dEY; (7.29)
t t
li,....lp =0, 1,...; k=1, 2,...; %1,...,% = 1,...,m; these integrals

when k£ = 0 are set equal to 1;

Ay ={(k,j,l,....lk) : k—i—]—i—Zl =q; k,5,l1,...,ly=0,1,...},

p=1

p=1,2..5i=1,....m;L=L- % _72”)1 G(()i)G(()i), C_?(()i) = Gg); the operators
1=

L and G(()Z); i = 1,...,m are defined in previous section; D,;1,, — is a
remainer term in the integral form (see [42]-[46], [48]).

In [42]-[46], [48] the unified Taylor-Ito and Taylor-Stratonovich expan-
sions well-ordered according to the orders of vanishing in the mean-square
sense when t — s were also examined.

In this case summation in the unified Taylor-Ito and Taylor-Stratonovich
expansions is performed using the sets

D,={(k,5,l,.... ) :k+2(j+L+...+lx) =q; k,5,l,...,,=0,1,...},

instead of sets

Aq:{(k7.77l17 l) k+]+zl = q, kajallaalkzoala}

p=1
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7.9 The unified Taylor-Ito and Taylor-Stratonovich expansions

Note, that the truncated unified Taylor-Ito and Taylor-Stratonovich ex-
pansions contain the less number of various multiple stochastic integrals
(moreover, their major part will have less multiplicity) in comparison with
classic Taylor-Ito and Taylor-Stratonovich expansions [22].

It is easy to note, that the stochastic integrals from the family (7.16) are
connected by the linear relations. The same may be noted for the family
(7.20).

However, the stochastic integrals from the families (7.26)—(7.29) can’t be
connected by linear relations. Therefore we call the families (7.26)—(7.29)
as stochastic basises.

Let’s name the numbers ranks(r) and rankp(r) of various multiple
stochastic integrals which are included in the families (7.26)—(7.29) as the
ranks of stochastic bases, when summation in the stochastic expansions is
performed using the sets A;; g =1,...,7 and D;; ¢ = 1,...,r correspon-
dently; here »r — is a fixed natural number.

At the beginning, let’s analyze several examples.

Assume, that summation in the unified Taylor-Ito and Taylor-Stratonovich
expansions is performed using the sets

D,={(k,5,b,.... ) : k+2(j+L+...+lk) =q; k,5,1,...,l=0,1,...}.

It is easy to see, that the truncated unified Taylor-Ito expansion, where
summation is performed using sets D, when r = 3 includes 4 (rankp(3) =
4) various multiple stochastic integrals: Iéﬁft), Iéff:tl), I 1(23, [é%jil). The
same truncated classic Taylor-Ito expansion [24] contains 5 various multiple

stochastic integrals: J(%i,t, J((ﬁéls),t, J((ff)))&t, J((éll))&t, J((ﬁif)i;)t.

For r = 4 we have 7 (rankp(4) = 7) integrals: [éift), I(%il), I 1(23, Iéfﬁf;f”,
] (i2)

I(S?:;), Iﬁj‘:j), 1334535’1“) against 9 stochastic integrals: J((Sl,t’ J((ﬁz)lszt, J10)s.19
J((éll))s,t’ J(({?ilf)lsl,)ta J(({%lll))s,t7 J((ﬁZOQ))s,t? J((éQIZII))s,t’ in‘i?fi?ﬁ . For r =5 (rankp(5) =
12) we get 12 integrals against 17 integrals and for r = 6 and r = 7 we
have 20 against 29 and 33 against 50 correspondently.

We will get the same results when compare the unified Taylor-
Stratonovich expansions with their classical analogues [24].

Note, that summation according to sets D, is usually used while con-
structing strong numerical methods (built according to the mean-square
criterion of convergence) for stochastic differential Ito equations [23], [24],
[46].

Summation according to sets A, is usually used when building weak
numerical methods (built in accordance with the weak criterion of conver-
gence) for stochastic differential Ito equations [23], [24].
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Table 7.1: Numbers ranka (7), nym(r), f(r) = nu(r) /ranka (r)

T 1 2 3 4 5 6 7 8 9 10
ranka(r) 1 3 7 15 31 63 127 255 511 1023
nv(r) 1 4 11 26 o7 120 247 502 1013 2036
f(r) 1 1.3333 1.5714 1.7333 1.8387 1.9048 1.9449 1.9686 1.9824 1.9902
Table 7.2: Numbers rankp(r), ng(r), g(r) = ng(r)/rankp(r)
T 1 2 3 4 5 6 7 8 9 10
rankp(r) 1 2 4 7 12 20 33 54 88 143
ne(r) 1 2 5 9 17 29 50 8 138 261
g(r) 1 1 1.2500 1.2857 1.4167 1.4500 1.5152 1.5370 1.5682 1.8252

For example, ranky (4) = 15, while the total number of various multiple
stochastic integrals, included in the classic Taylor-Ito expansions [24] when
r = 4, equals to 26.

It is easy to check, that ranky(r) = 2" — 1 [46].

Let’s denote the total number of various multiple stochastic integrals
included in the classic Taylor-Ito expansion (7.17) by num(r), where sum-

mation is performed using the set LTJ Mg.
k=1

We can demonstrate [46], that ny(r) =2(2" — 1) — 7.

It means, that lim nv(r)/ranka(r) = 2.

In table 7.1 we can see numbers ranka (r), num(r), f(r) = nm(r)/ranky (1)
for various values r.

In [46] it was proven, that

r—1 53]

> > Cf whenr =1, 3, 5,...

k . s=0 l=s

rankn(r) =1 g ’
C; whenr=2 4 6,...

s=0 l=s

where [z] — is an integer part of number z; C]* — is a binomial coefficient.

Using ng(r) let’s denote the number of various multiple stochastic in-

tegrals included in the classic Taylor-Ito expansion (7.18) (W.Wagner,
r

E.Platen) where summation is performed using the set ]EJ . Egk.
g k=

In [46] it is proven, that

nE(T) =2 CST*S]+3—Z7 (7'30)
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where [z] — is an integer part of number z; C]"" — is a binomial coefficient.
In table 7.2 we can see numbers rankp(r), ng(r), g(r) = ng(r)/rankp(r)
for various values r.
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