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square) approximation of multiple Ito and Stratonovich stochastic integrals
is sistematically analyzed in the context of numerical integration of
stochastic differential I1to equations. This monograph for the first time
successfully use the tool of multiple and iterative Fourier series, built in the
space L2 and poitwise, for the strong approximation of multiple stochastic
integrals. We obtained a general result connected with expansion of
multiple stochastic Ito integrals with any fixed multiplicity k, based on
generalized multiple Fourier series converging in the space L2. This result is
adapted for multiple Stratonovich stochastic integrals of 1-4 multiplicity for
Legendre polynomial system and system of trigonometric functions. This
monograph open a new direction in researching of multiple Ito and
Stratonovich stochastic integrals. This book will be interesting for specialists
dealing with the theory of stochastic processes, applied and computational
mathematics, senior students and postgraduates of technical institutes and
universities, as well as for computer experts.
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Preface

The basis of this book is composed on the monographs:

1. Kuznetsov D.F. Multiple Stochastics Ito and Stratonovich Integrals
and Multiple Fourier Serieses. FElectronic Journal "Differential Equa-
tions and Control Processes”. 2010, no. 3. (In Russian). Available at:
http://www.math.spbu.ru/diffjournal /pdf /kuznetsov_book.pdf

2. Kuznetsov D.F. Strong Approximation of Multiple Ito and Stra-
tonovich Stochastic Integrals. Multiple Fourier series approach. (In En-
glish). St.-Petersburg, Polytechnical University Press, 2011. 282 p.,

which are the first monographs where the problem of strong (mean-
square) approximation of multiple Ito and Stratonovich stochastic inte-
grals is sistematically analyzed in the context of numerical integration
of stochastic differential Ito equations.

The presented book and mentioned monographs for the first time
successfully use the tool of multiple and iterative Fourier series, built
in the space Ly and pointwise, for the strong approximation of multiple
stochastic integrals and open a new direction in researching of multiple
Ito and Stratonovich stochastic integrals.

We obtained a general result connected with expansion of multiple Ito
stochastic integrals with any fixed multiplicity &k, based on generalized
multiple Fourier series converging in the space Lao([t, T]).

This result is adapted for multiple Stratonovich stochastic integrals
of 1 — 4 multiplicity for Legendre polynomial system and system of
trigonometric functions, as well as for other types of multiple stochastic
integrals. The theorem on expansion of multiple Stratonovich stochas-
tic integrals with any fixed multiplicity k, based on generalized Fourier
series converging pointwise is verified.

We obtained exact and approximate expressions for mean-square er-
rors of approximation of multiple Ito stochastic integrals of any fixed
multiplicity k. We provided a significant practical material devoted to
expansion and approximation of specific multiple Ito and Stratonovich
stochastic integrals of 1 5 multiplicity using the system of Legendre
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polynomials and the system of trigonometric functions.

We compared the methods formulated in this book with existing
methods of strong approximation of multiple stochastic integrals. We
consider some weak approximations of multiple [to stochastic integrals.

We proved the theorem about integration order replacement for the
class of multiple Ito stochastic integrals. This theorem is generalized
for the case of multiple stochastic integrals according to martingale.
We brought out two families of analytical formulas for calculation of
stochastic integrals for the Ito processes of sufficiently general form.

This book will be interesting for specialists dealing with the theory
of stochastic processes, applied and computational mathematics, senior
students and postgraduates of technical institutes and universities, as
well as for computer experts.

It is well known, that Ito stochastic differential equations are ade-
quate mathematical models of dynamic systems of various physical na-
ture which are under the influence of random disturbances. We can meet
the mathematical models built on the basis of Ito stochastic differential
equations or systems of such equations in finances, medicine, geophysics,
electrotechnics, seismology, chemical kinetics and other areas [7] - [20].
Importance of computational solution of Ito stochastic differential equa-
tions is arisen from this circumstance.

It is well known, that one of effective and perspective approaches
to numerical integration of Ito stochastic differential equations is an
approach based on stochastic analogues of Taylor formula for solution
of this equations [24], [25], [46]. This approach uses finite discretization
of temporary variable and performs numerical modeling of solution of
Ito stochastic differential equation in discrete moments of time using
stochastic analogue of Taylor formula.

The most important difference of such stochastic analogues of Taylor
formula for solution of Tto stochastic differential equations is presence
of so called multiple stochastic integrals in them in the forms of Ito
or Stratonovich which are the complex functionals in relation to the
components of vector Wiener process. These multiple stochastic inte-
grals are subjects for study in this book. In one of the most common
forms of record used in this monograph the mentioned multiple Ito and
Stratonovich stochastic integrals are detected using the following formu-
las:

T [2) ) .
T = [e(te) ... [en(t)dwl? .. dwi
t t
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(Ito integrals),

xto

*T
TP = [Gnte) ... [ n(t)dwy” . dwi
t t
(Stratonovich integrals),
where ¥;(7); | = 1,...,k — are continuous functions at the interval

[t,T] (as a rule, in the applications they are identically equal to 1 or
have polynomial shape; w, — is a random vector with m-+1 component:

wg) = fT(i) when ¢ = 1,...,m and w&o) =T;0,...,0 =0, 1,...,m;
£f0):i=1,...,m  are independent standard Wiener processes.

The given multiple stochastic integrals are the specific objects of
the theory of stochastic processes. From one side, nonrandomness of
weight functions ¢;(7); I = 1,..., k is the factor simplifying their struc-
ture. From the other side, nonscalarity of Wiener process f, with in-
dependent components fT(i); i = 1,...,m, and the fact, that functions
Pi(7); 1 = 1,...,k are different for various 4; I = 1,...,k are essen-
tial complicating factors of structure of multiple stochastic integrals.
Considering features mentioned above, the systems of multiple Ito and
Stratonovich stochastic integrals play the extraordinary and perhaps the
key role for solving the problems of numerical integration of Ito stochas-
tic differential equations. We want to mention in short, that there are
two main criteria of numerical methods convergence for Ito stochas-
tic differential equations: a'strong or mean-square criterion and a weak
criterion where the subject of approximation is not the solution of Ito
stochastic differential equation, simply stated, but the distribution of Ito
stochastic differential equation solution. Both mentioned criteria are in-
dependent;, i.e. in general it is impossible to state, that from execution of
strong criterion follows execution of weak criterion and vice versa. Each
of two convergence criteria is oriented on solution of specific classes of
mathematical problems connected with stochastic differential equations.

Using the strong numerical methods, we may build sample pathes of
Ito stochastic differential equation numerically. These methods require
the combined mean-square approximation for collections of multiple Ito
and Stratonovich stochastic integrals. Effective solution of this task com-
poses the subject of this monograph. The strong numerical methods
are using when building new mathematical models on the basis of Ito
stochastic differential equations, when solving the task of numerical so-
lution of filtering problem of signal under the influence of random dis-
turbance in various arrangements, when solving the task connected with
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stochastic optimal control, and the task connected with testing proce-
dures of evaluating parameters of stochastic systems and other tasks.

The problem of effective jointly numerical modeling (in terms of
the mean-square convergence criterion) of multiple Ito or Stratonovich
stochastic integrals is very important and difficult from theoretical and
computing point of view.

Seems, that multiple stochastic integrals may be approximated by
multiple integral sums. However, this approach implies partition of the
interval of integration of multiple stochastic integrals (this interval is
a small value, because it is a step of integration of numerical methods
for stochastic differential equations) and according to numerical experi-
ments this additional partition leads to significant calculating costs.

The problem of effective decreasing of mentioned costs (in several
times or even in several orders) is very difficult and requires new complex
investigations (the only exception is connected with a narrow particular
case, when i = ... = 4 # 0 and ¥1(s),...,¢¥r(s) = ¥(s). This case
allows the investigation with using of the Ito formula. In more general
case, when not all numbers 41,.. ., are equal, the mentioned problem
turns out to be more complex (it can’t be-solved using the Ito formula
and requires more deep and complex investigation). Note, that even for
mentioned coincidence (i3 = ... =2 # 0), but for different functions
P1(8), - - ., ¥r(s) the mentioned difficulties persist, and relatively simple
families of multiple Tto stochastic integrals, which can be often met in the
applications, cannot be expressed effectively in a finite form (for mean-
square approximation) using the system of standard Gaussian random
values. The Ito formula is also useless in this case and as a result we
need to use more complex but effective expansions.

Why the problem of mean-square approximation of multiple stochas-
tic integrals is so complex?

Firstly, the mentioned stochastic integrals (in case of fixed limits of
integration) are the random values, whose density functions are unknown
in the general case. Even the knowledge of these density functions would
hardly be useful for mean-square approximation of multiple stochastic
integrals.

Secondly, we need to approximate not only one stochastic integral,
but several multiple stochastic integrals which are complexly depended
in a probability meaning.

Often, the problem of combined mean-square approximation of mul-
tiple Tto and Stratonovich stochastic integrals occurs even in cases when
the exact solution of Ito stochastic differential equation is known. It
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means, that even if you know the solution of Ito stochastic differential
equation, you can’t model it without enganging combained numerical
modelling of multiple stochastic integrals.

Note, that for a number of special types of Ito stochastic differential
equations the problem of approximation of multiple stochastic integrals
may be simplified but can’t be solved. The equation with additive vec-
tor noise, with scalar non-additive noise, scalar additive noise, equation
with a small parameter is related to such types of equation. For the men-
tioned types of equations, simplifications are connected with the fact,
that either some coefficient functions from stochastic analogues of Tay-
lor formula identically equal to zero, or scalar noise has a strong effect,
or due to presence of a small parameter we may neglect some members
form the stochastic analogues of Taylor formula, which include difficult
for approximation multiple stochastic integrals.

Furthermore, the problem of combined numerical modeling (proceed-
ing from the mean-square convergence criterion) of multiple Ito and
Stratonovich stochastic integrals is rather new.

One of the main and unexpected achievements of this book is suc-
cessful usage of functional analysis methods (repeated and multiple gen-
eralized Fourier series (converging in La([t, T]¥) and pointwise) through
various systems of basis functions in this academic field.

The problem of combined numerical modeling (proceeding from the
mean-square convergence criterion) of multiple Ito and Stratonovich
stochastic integral systems was analyzed in the context of problem of
numerical integration of Ito stochastic differential equations in the fol-
lowing monographs:

[I] Milstein G.N. Numerical integration of stochastic differential equa-
tions. Kluwer. 1995. 228 p. (translation from edition to Russian lan-
guage, 1988);

[I1] Kloeden P.E., Platen E. Numerical solution of stochastic differen-
tial equations. Springer-Verlag. Berlin. 1992. 632 p. (2nd edition 1995,
3rd edition 1999);

[IT1] Milstein G.N., Tretyakov M. V. Stochastic numerics for mathe-
matical physics. Springer-Verlag. Berlin. 2004. 596 p.;

[IV] Kuznetsov D.F. Stochastic Differential Equations: Theory and
Practice of Numerical Solution. Publishing house of the Polytechnical
University, Saint-Petersburg. 2010. 816 pp. 4th edition (in Russian).

Books [I] and [IIT] analyze the problem of mean-square approxima-
tion only for two elementary multiple Ito stochastic integrals of first and
second multiplicities (k = 1 and 2; ¢1(s) and vy(s) = 1) for the multi-
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variable case: 71, 19 = 0, 1,...,m. In addition, the main idea is based
on the expansion of so called process of Brownian bridge into the Fourier
series. This method is called in [I] and [III] as the method of Fourier.

In [II] using the method of Fourier, the attempt was made to perform
mean-square approximation of elementary stochastic integrals of 1 — 3
multiplicity (k = 1,...,3; ¥1(s),...,%3(s) = 1) for the multivariable
case: i1,...,13 = 0, 1,...,m. However, as we can see in chapter 6, the
results of monograph [I1], related to the mean-square approximation of
multiple stochastic integral of 3rd multiplicity, cause a number of critical
remarks.

The main purpose of this monograph is to detect, validate and adapt
newer and more effective for applications methods (than presented in
books [I] - [IIT]) of combined mean-square approximation of multiple Ito
and Stratonovich stochastic integrals.

Talking about the history of solving the problem of combined mean-
square approximation of multiple stochastic integrals, the idea to find
bases of random values using which we may represent multiple stochastic
integrals turned out to be useful. This idea wastransformed several times
in the course of time.

Attempts to approximate multiple stochastic integrals using various
integral sums were made until 1980s, i.e. the interval of integration of
stochastic integral was divided into n parts and the multiple stochastic
integral was represented approximately by the multiple integral sum, in-
cluded the system of independent standard Gaussian random variables,
whose numerical modeling is not a problem.

However, as we noted before, it is obvious, that the interval of in-
tegration of multiple stochastic integrals is a step of numerical method
of integration for Tto stochastic differential equation which is already
a rather small value even without additional splitting. Numerical ex-
periments demonstrate, that such approach results in abrupt increasing
of computational costs accompanied by the growth of multiplicity of
stochastic integrals (beginning from 2nd and 3rd multiplicity), that is
necessary for building more accurate numerical methods for Ito stochas-
tic differential equations or in case of decrease of the numerical method
integration step, and thereby it is almost useless for practice.

The new step for solution of the problem of combined mean-square
approximation of stochastic integrals was made by G.N. Milstein in his
monograph [I] (1988), who proposed to use converging in the mean-
square sense trigonometric Fourier expansion of Wiener process, using
which we may expand a multiple stochastic integral. In [I] using this
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method, the expansions of two simplest stochastic integrals of 1st and
2nd multiplicities into the products of standard Gaussian random values
was obtained and their mean-square convergence was proved.

As we noted, the attempt to develop this idea was made in mono-
graph [II] (1992), where it is obtained expansions of simplest multiple
stochastic integrals of 1 — 3 multiplicity. However, due to the number of
limitations and technical difficulties which are typical for method [I], in
[IT] and following publications this problem was not solved more com-
pletely. In addition, the author has reasonable doubts about handling of
the method of series summation, given in [II], related to integrals of 3rd
multiplicity (see section 6.1.4).

It is necessary to note, that the method [I] excelled in times or even
in orders the method of integral sums considering computational costs
in the sense of their diminishing.

Regardless of the method [I| positive features, the number of its lim-
itation is also outlined: absence of obvious formula for calculation of
expansion coefficients of multiple stochastic integral; practical impossi-
bility to make exact calculation of the mean-square error of approxima-
tion of stochastic integrals with the exception of simplest integrals of
1st and 2nd multiplicity (as a result, it’is necessary to consider redun-
dant terms of expansion and it results to the growth of computational
costs and complication of numerical methods for Ito stochastic differen-
tial equations); there is a hard limit for a system of basis functions in
the course of approximation® it may be only trigonometric functions;
there are some technical problems if we use this method for stochastic
integrals whose multiplicity is higher than 2nd (see section 6.1.4). It is
necessary to note, that the analyzed method is a concrete forward step
in this academic field.

The author thinks, that the method presented by him in chapter
1 (hereafter, the method based on multiple Fourier series) is a break-
through in solution of problem of combined mean-square approximation
of multiple stochastic integrals.

The idea of this method is as follows: multiple Ito stochastic integral
of multiplicity k is represented as a multiple stochastic integral from the
certain non-random discontinuous function of k variables, detected on
the hypercube [t, T]¥, where [t, T] — is an interval of integration of mul-
tiple Tto stochastic integral. Then, the indicated nonrandom function is
expanded in the hypercube into the generalized multiple Fourier series
converging at the mean-square in the space La([t, T]¥). After a number of
nontrivial transformations we come (theorem 1) to the mean-square con-
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vergening expansion of multiple Ito stochastic integral into the multiple
series of products of standard Gaussian random values. The coefficients
of this series are the coeflicients of multiple Fourier series for the men-
tioned nonrandom function of several variables, which can be calculated
using the explicit formula regardless of the multiplicity & of the multiple
Ito stochastic integral.

As a result we obtain the following new possibilities and advantages
in comparison with the method of Fourier [I].

1. There is an obvious formula for calculation of expansion coeffi-
cients of multiple Ito stochastic integral with any fixed multiplicity k. In
other words, we can calculate (without any preliminary and additional
work) the expansion coefficient with any fixed number in the expansion
of multiple Ito stochastic integral of preset fixed multiplicity. At that,
we don’t need any knowledge about coefficients with other numbers or
about other multiple Tto stochastic integrals, included in the analyzed
collection.

2. We have new possibilies to obtainment of exact and approxi-
mate expressions for mean-square error of approximation of multiple
[to stochastic integrals. These possibilities-are realized using exact and
estimates formulas (see chapter 4) for mean-square errors of approxima-
tions of multiple Ito stochastic integrals. As a result, we won’t need to
consider redundant terms of expansion, that may complicate approxi-
mations of multiple stochastic integrals.

3. Since the used multiple Fourier series is a generalized in the sense,
that it is built using various full orthonormal systems of functions in the
space Lo([t, T]), we have new possibilities for approximation — we may
use not only trigonometric functions as in [I] but Legendre polynomials
as well as function systems of Haar and Rademacher-Walsh (see chapters
2 and 5).

4. As it turned out (see chapter 5), it is more convenient to work with
Legendre polynomials for building approximations of multiple stochas-
tic integrals — it is enough just to calculate coeflicients of the multiple
Fourier series, and approximations themselves appear to be simpler than
for the case of the system of trigonometric functions. For the systems
of Haar and Rademacher-Walsh functions the expansions of multiple
stochastic integrals become extremely complex and ineffective for prac-
tice (see chapter 2).

5. The question about what kind of functions (polynomial or trigono-
metric) is more convenient in the context of computational costs of ap-
proximation turns out to be nontrivial, since it is necessary to compare
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approximations made not for one integral but for several stochastic in-
tegrals at the same time. At the same time there is a possibility, that
computational costs for some integrals will be smaller for the system of
Legendre polynomials and for others — for the system of trigonomet-
ric functions. The author thinks, that (see bottom lines in tables 6.2
and 6.3) computational costs are 3 times less for the system of Legen-
dre polynomials at least in case of approximation of special family of
multiple stochastic integrals of 1 — 3 multiplicity. In addition, the au-
thor supposes, that this effect will be more impressive when analyzing
more complex families of multiple stochastic integrals. This supposition
is based on the fact, that the polynomial system of functions has a sig-
nificant advantage (in comparison with the trigonometric system) for
approximation of multiple stochastic integrals for which not all weight
functions are equal to 1 (compare formulas (5.4), (5.5), (5.7), (5.8) with
formulas (5.42), (5.47), (5.46), (5.45) correspondently).

6. The Milstein method leads to repeated series (in contrast with
multiple series taken from theorem 1 in this book) starting at least
from the third multiplicity of multiple stochastic integral (we mean at
least triple integration on Wiener processes). Multiple series are more
preferential in terms of approximation than the repeated ones, since
partial sums of multiple series converge in any possible case of joint
converging to infinity of their upper limits of summation (lets define
them as pi,...,px). For example, for more simple and convenient for
practice case when p; = ...'= pp = p — oco. For repeated series it is
obviously not the case. However, in [II] the authors unreasonably use the
condition p; = ps = p3 = p — oo — within the frames of the Milstein
method.

7. The convergence (see chapters 4 and 5) in the mean of degree
2n, n € N of approximations from theorem 1 and convergence with
probability 1 for some of these approximations is proven.

Let’s deal with the content of this monograph according to chapters.

Chapter 1 is devoted to expansions of multiple Ito stochastic integrals.
The new method of expansion of multiple Ito stochastic integrals based
on the generalized multiple Fourier series and converging in the mean-
square sense is formulated and proven. This method is generalized for the
case of discontinuous full orthonormal systems of functions in the space
Ly([t, T7). Using the example of multiple Ito stochastic integrals of 2nd
and 3rd multiplicity it is demonstrated, that expansions from theorems
1 and 2 are similar for a particular case: ¥1(s), ¥a(s),¥3(s) = ¥(s);
i1 =149 =13 = 1,...,m with well known representations of multiple Ito
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stochastic integrals based on Hermite polynomials.

Chapter 2 is devoted to expansions of multiple Stratonovich stochas-
tic integrals. We adapt the results of theorems 1 and 2 for expansions of
multiple Stratonovich stochastic integrals in the first part of this chapter.
The theorem about expansion of multiple Stratonovich stochastic inte-
grals of 2nd multiplicity (theorem 3) is proven for the case of two times
continuously differentiated functions 11 (s) and ¢5(s) (41,72 = 1,...,m).
We obtained similar expansions for multiple Stratonovich stochastic
integrals of 3rd and 4th multiplicity for the cases of system of Leg-
endre polynomials and the system of trigonometric functions when
P1(s),...,a(s) =1 (41,...,84 =0, 1,...,m) (see sect. 2.3.1, 2.4 and
2.5).

The generalization of some of these results (theorem 4) for the system
of Legendre polynomials and binomial expressions v;(s) = (¢t — s)b
(j =1, 2, 3) are given in the following cases:

1. il?é’l‘Q, 2.2751'3, Z'17éZ‘3 and ll, 12, l3:0, 1, 2,...;
2. ilzig#ig; llzlg#lgandll, l2, ngO, 1, 2,...;
3. il#iQZ’L‘g; ll#lgzlg andll, lQ, l3:0, ]., 2,...;
4. il,ig,igz 1,...,m; ll :lgzlg,:landl:O, 1, 2,....

Also we got even more general modifications of theorem 4 (theorems
5 and 5’) for the system of Legendre polynomials and the system of
trigonometric functions in the following cases (11(s), ¥a(s), ¥3(s) —
are continuously differentiated functions):

L. 4y # dg, 12 # 13, 11 7 13

2. 11 = iy # i3 and P1(s) = Ya(s);

3. 11 # 19 = i3 and P(s) = ¢¥s3(s);

4. 41,49,i3 = 1,...,m and ¥1(s) = a(s) = ¢¥3(s).

The generalizations of these results (theorems 6 and 6”) for the sys-
tems of Legendre polynomials and the system of trigonometric functions
(case of two times continuously differentiated functions (s), ¥a(s),
13(s)) are given without the conditions 1 — 4 (41, 49, i3 =1,...,m).

In the second part of chapter 2 we analyze another approach to ex-
pansion of multiple Stratonovich stochastic integrals of any fixed mul-
tiplicity &, based on the generalized repeated Fourier series converging
pointwise. We analyze in detail the cases when k = 2, 3, 4 and propose
generalization for the case of fixed k (theorems 10, 13).

At the end of chapter 2 we analyzed the method of expansion of
multiple Stratonovich stochastic integrals of the 2nd, 3rd and 4th multi-
plicities, which is a modification of theorem 10 (we analyzed new passage
to the limit in this theorem for &k = 2, 3, 4) and provides a possibil-
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ity to obtain new and significantly differ proofs of theorems 3, 6 and
8 than those, that were presented earlier. See theorems 14 16. These
results create an entire picture about expansion mechanism of multiple
Stratoinovich stochastic integrals, using multiple and repeated Fourier
series.

In chapter 3 we analyze versions of the theorem 1 for other types
of multiple stochastic integrals. We formulated and proved analogues
of theorem 1 for multiple stochastic integrals according to martingale
Poisson measures (theorem 17) and for multiple stochastic integrals ac-
cording to martingales (theorem 18).

Chapter 4 is devoted to obtainment of exact and approximate expres-
sions for mean-square errors of approximation of multiple Ito stochastic
integrals, created using theorem 1. We analyzed the case of any fixed
k and pairwise various 41, ...,7 = 1,...,m, as well as the case of any
possible numbers i1,...,4, = 1,...,m and any fixed k.. Here k — is a
multiplicity of multiple stochastic Ito integral. The convergence in the
mean of degree 2n, n € N of expansions from theorems 1 and 2 is
proven.

In chapter 5 we provide a significant practical material, based on the
results of chapters 1 and 2. We got approximations of specific multiple
Ito and Stratonovich stochastic integrals with multiplicities 1 — 5 using
theorems 1 — 8 and the system of Legendre polynomials. For the case
of trigonometric system of functions using theorem 1 and the results
of chapter 2 we obtained approximations for specific multiple Ito and
Stratonovich stochastic integrals with multiplicities 1 — 3. We obtained
a big number of formulas for mean-square errors for developed approx-
imations. Convergence with probability 1 of several approximations for
double stochastic Ito integrals is proven.

Chapter 6 is devoted to other methods of approximation of multiple
Ito and Stratonovich stochastic integrals. We analyzed Milstein method
and compared it with the method based on theorem 1. We also analyzed
a combined method and a method of integral sums of mean-square ap-
proximation of multiple stochastic integrals. The last part of the chapter
6 is devoted to the weak approximations of multiple Ito stochastic inte-
grals.

In chapter 7 we determined the class of multiple Ito stochastic in-
tegrals, for which with probability 1 the formulas of integration order
replacement corresponding to the rules of classical integral calculus are
reasonable. We proved the theorem of integration order replacement for
the class of multiple Ito stochastic integrals. We analyzed many exam-
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ples of this theorem usage. These results are generalized for the case of
multiple stochastic integrals according to martingale.

Chapter 8 is devoted to some exact formulas for stochastic inte-
grals. We represented multiple Tto stochastic integrals of kth multiplicity
with using of Hermite polynomials. One formula for double Stratonovich
stochastic integrals and one formula for multiple Stratonovich stochas-
tic integrals of kth multiplicity are proven. We brought out two families
of analytical formulas for calculation of stochastic integrals for the Ito
processes of sufficiently general form.

In chapter 9 we gathered a support material which may be used
while reading this book. We provided concepts of Ito and Stratonovich
stochastic integrals, of Ito formula, of Ito stochastic differential equa-
tion, of stochastic integrals according to Poisson random measures and
martingales, of various variants of Taylor—Ito and Taylor-Stratonovich
expansions for solution of Ito stochastic differential equation.
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Chapter 1

Expansions of multiple Ito stochastic
integrals based on generalized
multiple Fourier series, converging in
the mean

This chapter is devoted to expansions of multiple Ito stochastic in-
tegrals, based on generalized multiple Fourier series converging in the
mean. The method of generalized multiple Fourier series for expansions
and mean-square approximations of multiple Ito stochastic integrals is
derived here. In this chapter it is. also obtained generalization of this
method for discontinuous basis functions. And here is given a comparison
of derived method with well-known expansions of multiple Ito stochastic
integrals based on Ito formula and Hermite polynomials. As well as the
proof of convergence in the mean of degree 2n, n € N of considered
method is obtained.

1.1 Introduction

The results of this chapter are fundamental for following chapters of
this monograph and perhaps for the book in whole. For the first time we
use power tool of generalized multiple Fourier series converging in the
mean in order to derive expansions of stochastic integrals.

The idea of representing of multiple Ito and Stratonovich stochastic
integrals in the form of multiple stochastic integrals from specific non-
random functions of several variables and following expansion of these
functions using Fourier series in order to get effective mean-square ap-
proximations of mentioned stochastic integrals was represented in sev-
eral works of the author. Specifically, this approach appeared for the first
time in [47] (1994). In that work the mentioned idea is formulated more

19



Chapter 1. Expansions of multiple Ito stochastic integrals

likely at the level of guess (without any satisfactory grounding), and as a
result the work [47] contains rather fuzzy formulations and a number of
incorrect conclusions. Nevertheless, even in [47] we can find, for example
formulas (4.3), (4.37), (4.38). Note, that in [47] we used multiple Fourier
series according to the trigonometric system of functions converging in
the mean. It should be noted, that the results of work [47] are true for
a sufficiently narrow particular case when numbers i, ..., i are pairwise
different; 41,...,4 = 1,...,m (see formula (1.1)).

Usage of Fourier series according to the system of Legendre polyno-
mials for approximation of multiple stochastic integrals took place for
the first time in [45] (1997, submitted for publication in December 1996),
[32] (1998), [34], [35], [37] (1999), as well as in [36] (2000). In particular,
you can find formulas (5.3) — (5.8), (5.18) in this works. Note, that the
approach taken from work [47] was formulated, proved and generalized
in its final variant by the author in [42] (2006) (theorem 1 in this book).

The question about what integrals (Ito or Stratonovich) are more
suitable for expansions within the frames of distinguished direction of
researches has turned out to be rather interesting and difficult.

On the one side, theorem 1 conclusively demonstrates, that the struc-
ture of multiple Ito stochastic integrals is rather convenient for expan-
sions into multiple series according to the system of standard Gaussian
random variables regardless of their multiplicity k.

On the other side, the results of chapter 2 convincingly testify, that
there is a doubtless relation between multiplier factor %, which is typical
for Stratonovich stochastic integral and included into the sum, connect-
ing Stratonovich and Ito stochastic integrals, and the fact, that in point
of finite discontinuity of sectionally smooth function f(z) its Fourier
series converges to the value 3(f(z — 0) + f(z + 0)). In addition, as it
is demonstrated in chapter 2, final formulas for expansions of multiple
Stratonovich stochastic integrals (of second multiplicity in the common
case and of third and fourth multiplicity in some particular cases) are
more compact than their analogues for Ito stochastic integrals. The ex-
pansion of multiple Stratonovich stochastic integrals of any fixed mul-
tiplicity k& based on repeated Fourier series and obtained in chapter 2
[45], [35], [32] is also seems interesting.

And still, estimating the results of chapter 1 and 2 of this monograph,
the author adhered to the judgment, that the structure of multiple Ito
stochastic integrals is more suitable for expansion in multiple series ac-
cording to the system of Gaussian random variables.

Actually, when proving theorem 1 for the case of any fixed multiplic-
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1.2 Theorem on expansion of multiple Ito stochastic integrals

ity k of multiple Ito stochastic integral we used multiple Fourier series
converging in the mean. The deduction of theorems 3 8, 14 16 for
multiple Stratonovich stochastic integrals of 2nd, 3rd and 4th multiplic-
ity in addition to the results of theorem 1 required also usage of the
theory of repeated or multiple Fourier series converging pointwise, and
resulted to more complex researches than those that were performed for
proving of theorem 1, which nevertheless didn’t provide common results
(we analyzed the cases of multiple Stratonovich stochastic integrals of
2nd, 3rd and 4th multiplicity, where the results related to integrals of
4th multiplicity have an individual pattern, although they are of vital
importance for practice).

Expansions of multiple Stratonovich stochastic integrals of any fixed
multiplicity & obtained at the end of chapter 2 are rather interesting but
include repeated series, approximation of which is less convenient than
approximation of multiple series.

1.2 Theorem on expansion of multiple Ito stochastic
integrals of any fixed multiplicity &

In this section we will get the expansion of multiple Ito stochastic
integrals of any fixed multiplicity k& based on generalized multiple Fourier
series converging in the mean in the space La([t, T]F).

Assume, that (Q,F,R)" is a fixed probability space and {Fy, t €
[0,T]} is a mnon-decreasing collection of o-algebras, defined at
(Q,F,P).

Assume, that f (¢, w) def ft, t € [0, T] — is a standard Wiener process,
which is F;—measurable for all ¢ € [0, 7], and process fia — fa for all
A >0, t > 0 is independent with the events of g-algebra Fa.

Hereafter we call stochastic process £ : [0,7] x @ — R! as non-
anticipative when it is measurable according to the family of variables
(t,w) and function £(t,w) % ¢ is Fi-measurable for all ¢ € [0,T] and
&, independent with increments fiia — fa for A > 7, ¢ > 0.

Let’s examine the following multiple Ito (J[¢/®]7;) and Stratonovich
(J*[¢®]r,) stochastic integrals:

T [2) ) )
J[¢(k)]T,t = /¢k(tk) . ./¢1(t1)dwt(fl) .. .th(zk)a (1.1)
t t
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Chapter 1. Expansions of multiple Ito stochastic integrals

xt2

TP = [ elte).. [ nt)dwy” . dwi, (12)
t

t

where ¥(7); 1 = 1,...,k  are continuous functions at the interval
6T w =D wheni=1,...,m; w!” =t;i1,...,4, =0, 1,...,m;
fT(’) (¢=1,...,m) are independent standard Wiener processes.

The problem of effective jointly numerical modeling (in terms of the
mean-square convergence criterion) of multiple Ito stochastic integrals,
as we mentioned before, is very important and complex from theoretical
and computing point of view. The exception is a very marrow particular
case, when i1 = ... = i # 0 and ¥1(s),...,¥r(s) = ¢¥(s) (see this
chapter and chapter 6). We can analyze this case using the Ito formula.

This problem, as we will see in this chapter, cannot be solved using
the Ito formula and it requires deeper and more complex investigation
for the case when not all numbers iy, . .., i coincide among themselves.
Note, that even in case of such coincidence (i1 = ... = i} # 0), but with
various ¥1(s), ..., ¥x(s) the mentioned problem persists, and relatively
simple families of multiple Ito stochastic integrals, which can be often
met in the applications, cannot be expressed effectively in a finite form
(for mean-square approximation) using the system of standard Gaussian
random values. The Ito formula is-useless in this case, and as a result
we need to use more complex but-effective expansions.

Assume, that {¢;(z)}32, " is a full orthonormal system of functions
in the space La([t, T)); ¥1(7),...,¢¥x(7)  are continuous functions at
the interval [t, T'.

Let’s analyze the following function

_ ¢1(t1) ...’l/)k(tk), t1 <...<tg.
Kt ... t) = {0’ i) Ui et € [T

The function K (t1,...,tx) is sectionally continuous in the hypercube
[t, T]¥, i.e. the hypercube may be cut in finite number of parts using
the sectionally continuous surfaces in such manner, that the function
K(t1,...,t) is continuous in each part and has limits at the border of
part, and it may have gaps along these cuts.

At this situation it is well known, that the multiple Fourier series of
function K (t1,...,tx) € La([t, T]¥) is converging to this function in the
hypercube in the mean-square sense, i.e.

lim "K(tl,...,tk)

P1s--Pr—00

P Pk k
> 2 G, l[ll ¢ (k)| =0, (1.3)

71=0 Jx=0
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1.2 Theorem on expansion of multiple Ito stochastic integrals

where ||f|| = ( J f2(t1,...,tk)dt1...oitk)2 and we have Parseval
[t.T)*
equality

2 — .
[f!]kK(tl,...,tk)dtl...dtk_ph__{lprzg ]120 ]kzo 2 i (14)

k
Civgi= [ Kt ta) I & (t)dt ...ty
[t.T7 =1

Let’s formulate the basic theorem:

Theorem 1. Assume, that the following conditions are met:

1. 9Yi(7r); i=1, 2,...,k — are continuous functions at the interval
t, T
| 2.{ej(z)}2y s a full orthonormal system of continuous functions
in the space Lo([t, T]).

Then the multiple Tto stochastic integral J[®r; of the form (1.1)
1s expanded in the multiple series converging in the mean-square sense

“lim. Y qu,l(nl)Awgf;)...¢j,k(m)Aw§f:)), (1.5)

N2 (1y,..1,)€Gy
where GkZHk\Lk; sz {(l1,...,lk): ll,...,lk:O, 1,...,N—1},

Lkz{(ll,...,lk)l ll,...,lk:O, 1,...,N—1;
ly #1.(9 #1); g,rzl,...,k};

T .
W = {(ﬁjl(s)dwg”’) — are independent standard Gaussian random

variables for various i, or j; (if i # 0);
k
Ciogi= [ K, ta) H i, (t)dty . . diy; (1.6)
[t.T]* =1

K(ty, ... t) :{¢1(t1)---¢k(tk), h<...<t

0, otherwise ’

where tq, ...t € [t,T].
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Chapter 1. Expansions of multiple Ito stochastic integrals

Proof. At first, let’s prove preparatory lemmas.
Let’s analyze the partition {r;}_ of interval [¢, T] for which

t=mn<...<tw=T, Ay= max A7; — 0with N = o0, (1.7)
0<j<N-1
where AT; = Tj41 — 7;.
Lemma 1. Assume, that condition 1 of theorem 1 is met. Then

Ja—1 k

Tp®]r 4 =Lim. Z X T () AwS) w. p. 1, (18)

N—oo =0 71=01=1

where Aw!" “ = wgll] —w% )i =0, 1,. ; {le};v_ol — partition of

interval [t, T], satisfying the condition (1. 7) heremafteT w.p.1" means
"with probability 1"

Proof. Proving it is easy to notice, that using the property of stochas-

tic integral additivity, we can write down:

N-1 Jjo—1 k

I ( Jre= > . Z 11 JW}I}THH ., TEN W D. 1, (1.9)

je=0 —0/=1
where
N-1 Tkt _ .
EN= D / Yr(s /¢k (1) T [ * 2], dw =) dw () 4
k=0 75, ik
k-3 (%)
+ Zl G[¢k7T+I]Nx
r=
ko1 —1 Tkt H . ,
X Z / 7ﬁkfr(s) / wkfrfl(T)J[q;b(kirim]T,tdws—lkiril)dwglkﬂ)“r‘
Je—r=0 75 Tip—r
ja—1
[ }N Z J[ }Tngrl:TJz’
J2=0
N-1 ji—1 Jmy1—1 k

GWin=X ¥ ... X I JWilyum

Jk=0 jr-1=0 Jm=0 l=m
J[ilse = /1/)1(T)dwg’),
[4

’lvbr(rlf) déf (wma ¢m+la . ad}k)a Mm déf ,(p(k) = (1/)1, tt wk)
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1.2 Theorem on expansion of multiple Ito stochastic integrals

Using standard evaluations (9.3) and (9.4) for the moments of
stochastic integrals, we obtain

Lim. ey =0. (1.10)

N—oo

Comparing (1.9) and (1.10) we get

— Jjo—1 k
)= Y - 2 LTy, w1 (1.11)
k=0 —01=1
Let’s rewrite J[¢], ,, 7, in the form
Tj+1

J[wl]Tjﬁrl,TJ, = wl(le)Ang) + / (d)l(T) - wl(le))dwq(—il)

le

and put it in (1.11).

Then, due to moment properties of stochastic integrals, continuity
(as a result uniform continuity) of functions 4;(s) (I = 1,...,k) it is
easy to see, that the prelimit expression in the right part of (1.11) is
a sum of prelimit expression in the right part of (1.8) and of the value
which goes to zero in the mean-square sense if N — oco. The lemma is
proven. U

Remark 1. The result of lemma 1 may be generalized, i.e. the
function y(s) in (1.8) may be replaced with a mean-square continuous
stochastic process ¢s from the class Ma([0,T]) (see sect. 9.1)

Remark 2. It is easy to see, that if AWS_Z) in (1.8) for some

Il € {1,...,k} is replaced with (Aw%))p; p = 2; i # 0, then the
differential dwt(j’) in the integral J[®]p, will be replaced with dt;. If
p=3, 4,..., then the right part of the formula (1.8) with probability 1
will become zero. If we replace Awgi) in (1.8) for somel € {1,... k}
with (A1;,)", p=2, 3,..., then the right part of the formula (1.8) also

with probability 1 will be equal to zero.
Let’s define the following stochastic integral:

k
k
Lim. z @(T,I,...,Tjk)n wi &g, (1.12)
N—oo J1yee-Jk=0 =1 !

Assume, that Dy = {(t1,...,t) : ¢t <11 < ... < tx < T} We
will write ®(tq,...,tx) € C(Dy), if ®(ty,...,t) is a continuous in the
closed domain Dj, nonrandom function of k variables.
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Chapter 1. Expansions of multiple Ito stochastic integrals

Let’s analyze the multiple stochastic integral of Ito type

T ‘
Mol & [ [ o, t)dwy.

t t

o

dwt

b

where ®(t1, ..., ;) is a nonrandom function of k variables

It is easy to check, that this stochastic integral exists in the mean-
square sense, if the following condition is met:

/ /q> th, .. tp)dty . dty < oo

Using the arguments which similar to the arguments used for proving
of lemma 1 it is easy to demonstrate, that if (¢,

, ...y tr) € C(Dy), then
the following equality is fulfilled:
ts
O [ [, tdw dwli) =
t t
N-1 Ja—1 k .
=lim. ¥ ... Y ®(r5,...,75,) [ AW wp.1. (1.13)
N—ooo =0  j=0 =1 A
In order to explain, let’s check rightness of the equality (1.13) when
k = 3. For definiteness we will 'suggest, that i1,49,43 =1,...,m.
We have
T t3 t2 . . .
MOJ5 Y [ [ [t 1o, ts)dw dwl dwy? =
bttt
NP (1) g () A ()
= kl._}rg}. P / t/fb(tl, to, T, )dwy. " dw,. AWsz =

:g\fl—)nolo Z Z / /cb(tl’tQaTjs)dwyl)dw(iQ)AW(ﬁ):

1 ty Tis
J3=072=0 75, %

N— 1]"; 1 T2kl Tyt
N 12 13 _
= %\r]_)rg]o >Ny / </ + /) tl, ta, Tj, th th AW

73=0j2=0 75, Tja

N—1j3—1 jo—1 Tiz+1 Tir+1 |
= 1 1.1m. Z Z Z / / (I)(t],tQ’ T]B)dwi )dW( )Awq(—“)_i_
N=00 j3=0 jo=0j1=0 Ty T -

i1
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1.2 Theorem on expansion of multiple Ito stochastic integrals

N-1js—1 Tja+1 1o . . )
Him. X% [ [ Ot by, ) dwi dwi Awl . (1.14)

N=00 j3=0 j=0 Tia Tia

Let’s demonstrate, that the second limit in the right part of (1.14)
equals to zero.

Actually, the second moment of its prelimit expression equals to

N-1j3=1 Tzt 2

> / /¢2(t1’t2’Tjs)dtldt2ATj3S

jS:O j2:0 Tjy  Tigy

when N — oo. Here M is a constant, which restricts the module of
function ®(t1,1s,%3), because of its continuity; Arj = 7541 — 75
Considering the obtained conclusions we have

T t:
MOV [ [ [0t ta, ts)dwi dwl dwy =
t t t

N—1j3—1jo— 1 Tia+1 Tip+1 )
=lim ¥ YN [ [ ®(tr,ta,7,)dwy, dwi Awl) =

N=00 ;=0 jo=0 j1=0 Tiy  Thy

N=1jg=1jp—1 T Tt
=lim ¥ X Y[ [ (Bt ta 7)) = Bty 7, 73,)) X

N=00 ja=0jy=041=0 7, 7,

xdwt dwt Awgz)

N—1j3—1ja—1 Tzt Tir 41
"Hlm Z Z Z / / ((D(tlaszaTjs)_(I)(TjuTijjs))X

N=00 3= jo=0j1=0 Tiy Ty

xdw alwt’2 Aw ’3

N-1j3—1j>—1 ) ,
+lim. Y Y Z O(715,, ), TJ3)AW,(r )AWQ?)AWE?). (1.15)
N=00 jz=0 jo=0j;= - 73

In order to get the sought result, we just have to demonstrate, that
the first two limits in the right part of (1.15) equal to zero. Let’s prove,

that the first one of them equals to zero (proving for the second limit is
similar).

27



Chapter 1. Expansions of multiple Ito stochastic integrals

The second moment of prelimit expression of the first limit in the
right part of (1.15) equals to the following expression:

N—1j3—1ja—1 Tzl Tin+1
S XYY [ [ @t T) - Bt 7, 7,)) dhda ATy, (116)
J3=0j2=051=0 75, 7},

Since the function ®(¢1,s,¢3) is continuous in the closed bounded
domain Ds, then it is uniformly continuous in this domain. Therefore,
if the distance between two points in the domain Djs is less than § > 0
(6 > 0 and chosen for all € > 0 and it doesn’t depend on mentioned
points), then the corresponding oscillation of function ®(ty,ts,t3) for
these two points of domain Dj is less than e.

If we assume, that A7; < § (j =0, 1,..., N — 1), then the distance
between points (t1,t, 7j,), (t1,7j,,Tj,) is obviously less than 6. In this
case

(@ (t1, 2, 75,) — (b1, 75, 7o) | <€

Consequently, when At; < 6 (j = 0, 1,..., N — 1) the expression
(1.16) is evaluated by the following value:

N—-1j3—1j2—1 _ 13
52 Z Z Z AT]'IAT]'QAT]'3 < Ezu
§3=0 2=0 j;=0 6

Because of this, the first limit in the right part of (1.15) equals to
zero. Similarly we can prove equality to zero of the second limit in the
right part of (1.15).

Consequently, the equality (1.13) is proven when k = 3. The cases
when k£ = 2 and k > 3 are analyzed absolutely similarly.

It is necessary to note, that proving of formula (1.13) rightness is
similar, when the nonrandom function ®(¢y, ..., ) is continuous in the
open domain Dj, and bounded at its border.

Assume, that

N-1

k .
Lim > ® (1y,,...,15) I AW & J[a]ff).
oo iy ik =0 =1

JoF s a#F T gor=1,....k
Then we will get according to (1.13)

12

T
JOE =[] £ (0, tdwi? . awf),  (117)
t

)
t (t1,te)
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1.2 Theorem on expansion of multiple Ito stochastic integrals

where summation according to derangements (1, ..., %) is performed
only in the expression, which is enclosed in parentheses, and the non-
random function ®(1, ..., %) is assumed to be continuous in the corre-
sponding domains of integration.

It is easy to see, that (1.17) may be rewritten in the form:

T = 3 / /¢> ty .t dwl) L dwi®),
(t1sensth)
where derangements (¢1, ..., tx) for summing are performed only in the

values dwt(fl) ... dw,g,i'“), at the same time the indexes near upper limits

of integration in the multiple stochastic integrals are changed correspon-

dently and if ¢, changed places with ¢, in the derangement (¢4, ..., %),

then 4, changes places with i, in the derangement (i1, ..., 1).
Lemma 2. Let us assume, that the following condition is met

/ /cI> (ty, ... ty)dty ... dt, < oo,
where ®(t1,...,t;) — is a nonrandom-function. Then
{‘I 1) }<Ck/ /qﬂtl,..., Ydty ... dtp, Cp < co.

Proof. Using standard properties and estimations of stochastic inte-
grals (see sect. 9.1) for & € May([to, t]) (see also sect. 9.1) we have

t 2 t t 2 t
I\/I{/gTdfT }:/M{\§T|Q}dr, M{‘/f,rd’r }g (t—to) [ M{|&[*} ar.
to to to to
(1.18)
Let’s denote
ti41 ty )
g[q)]l(flll],...,tk,t = / - /q)(tla .- atk)dwg del ’
t t

where I =1,..., k—1and ¢[®]\" , , L o(t,....4).
In accordance with induction it is easy to demonstrate, that

f[q’}(l) et € Ma([t, TT)

L1y

using the variable ¢;,1.
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Chapter 1. Expansions of multiple Ito stochastic integrals

Subsequently, using the estimations (1.18) repeatedly we can be led
to confirmation of the lemma. O

Not difficult to see, that in the case 41, ...,7 = 1,...,m from lemma
2 we have:
Gl
M {‘I[(I)]Tyt } — [ [ @ttt dt (119)
t t
Lemma 3. Asume, that v;(s); i=1,...,k  are continuous func-
tions at the interval [t,T). Then
d (k)
I Jlplr: = J®lp; wpl, (1.20)

l

1

T .
where Jpilrs = [ pi1(s)dw(; ®(ty, ... t;) = I @i(t;) and the integral
t

J[@]g‘i is defined by the equality (1.12).
Proof. Let at first 4, 2 0; [ =1, ..., k. Let’s denote

T
»—n:lk.

def N1 (i)
J[‘PI}N = 2:0 (pl(Tj)AWle .
j=

Since

k k
11;11 Jlolw 11;11 Jlelry =

= 5~(TT Ttoalss) (Tl = Jlealze) ( 11 Jleily),

g=l+1
then because of the Minkowsky inequality and inequality of Cauchy-
Bunyakovsky

k k 2\\ 3 k 1
(M{ zH Jleiln — zH Jlotlr.s }) < Cklz (M{|T@iln — J[(Pl]T,t|4})4 ,
=1 =1 =1
(1.21)
where Cj < oc.
Note, that
N-1
Jeln — Jpilrs = ZO J[A@ 71,75
o=
where
Tg+1
TAGrym, = [ (0i(7y) = @ils)) dwi?.
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1.2 Theorem on expansion of multiple Ito stochastic integrals

Since J[Ay] are independent for various g, then [27]

),

2}. (1.22)

To+1,Tg

N-1
M

j=0

4 N-1
[Awl}rjﬂﬂ'j } = ZO M{‘J[Awl]7j+1ﬂ'j
j=

+6 Z M{‘J AQD[ Tit1:Tj

2y j—1
VE mflsae.,

Because of gaussianity of J[Aep] we have

Ti+1,Tj

Tj+1

2} - / (wi(15) — @u(s))ds,

7

M {|J[A‘pl]7j+1ﬁj

Tj+1

T = 3( [ (erlry) - wz(s))2ds>2.

Tj

M {‘J[A‘Pl]ﬁﬂﬁj

Using this relations and continuity and as-a result the uniform con-
tinuity of functions ¢;(s), we get
-1 4 N-1 j
I\/I{ }§54(3 Y (A1) +6 Z AT]ZAT(I)
7=0

N
Z J[Awl]7j+1ﬂ'j
i — 3=0 =0 q=0

<3 (§(T —t) + (T —1)?),

where A1; < 6, 6 > 0 and choosen for all € > 0 and doesn’t depend on
points of the interval [¢,T]. Then the right part of the formula (1.22)
tends to zero when N — oo.

Considering this fact, as well as (1.21), we come to (1.20).

If for some I € {1,...,k} : ng) = t;, then proving of this lemma
becomes obviously simpler and it is performed similarly. O

According to lemma 1 we have

N-1 -1 ) ]
¥, =1im. X X wim)- de(m) AW AwH =
k
N-1 lo—1

= lLim. Z C.. Z K(Tll, .. ’le)Awq(—fl) AW(““) —

N=oo ;=0 L=0 e
N-1 N-1 ‘
=Llim. Y ...} K(Tll’...’le)Aw‘(r:l) CAwl) —

T
N—oo =0 ;=0 k
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Chapter 1. Expansions of multiple Ito stochastic integrals

N-1
—1; (i1) (ir) —
—lNl;glo. . El:k_o K(Tll,...,le)Awnl ...Awn: =
lq Flog#r, qr=1,...,k
T ta . .
=/ / (K(tl, o tdw dwt(ff)) , (1.23)
t (tremstr)
where derangements (fy,...,%;) for summing are executed only in the

expression, enclosed in parentheses.
Not difficult to see, that (1.23) may be rewritten in the form:

T
J[?/J(k It = / /Kt1,..., th . dwt )
(t1-sti) t t
where derangements (1, . .., ¢) for summing are performed only in the

values dwt(fl) . dwt(i’“), at the same time the indexes near upper limits

of integration in the multiple stochastic integrals are changed correspon-
dently and if ¢, changed places with ¢, in the-derangement (¢4, ..., ),
then 4, changes places with ¢, in the derangement (i1, ..., ).

Note, that since integration of bounded function using the set of
null measure for Riemann integrals gives zero result, then the following
formula is reasonable for these integrals:

T to
/G(tl,... L)dt .. / G(ty, ... ty)dt ... dty,
t t

[t.T]* th ot

where derangements (¢1,...,%;) for summing are executed only in the
values dtq,...,dtg, at the same time the indexes near upper limits of
integration are changed correspondently and the function G(t1,. .., %)
is considered as integrated in hypercube [t, T]F.

According to lemmas 1 — 3 and (1.17), (1.23) with probability 1 we
get the following representation

T @] =
& o (ir) (ix)
= Z - Z Cjk---jl / . / Z <¢j1 (tl) .. '¢jk (tk)dwtl .. .thlc ) +
71=0  jx=0 t b (t1yeestr)

Z Z Clk hx

J1=0 k=0
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1.2 Theorem on expansion of multiple Ito stochastic integrals

N-1 _ .
kal;glc. . Zl:k i ¢, (T1,) - - - bji (le)va(vzll) cee AWS;":)-F
AL q#m qr=1,..k

_|_RP1,---,Pk —

= pzl pzk CJk g1 (11H1 Z ¢]1(Tll)' ¢]k(le)AW 1 AW Zk

71=0 =0 N—oo p, " 1=0

—k{i.m. > bi, (Tll)AWg:) .. -¢jzk (le)Awgl’:)> + R’;{Z""p’“ -
=00 (.., eG

4l Pk k
=5 3 G (111G
j1=0 Jrk= =

—Lim. Z ¢j11 (7—11)AW7(—2) s ¢jlk (le)AWg:)) + R%,;t...’pka
N—=oc (1), In)eCk

where
T ot
LR B (SUSRNAS
(t1,th) t
-5 zouhn%m»mt.dmw (1.24)
n=0 =0
where derangements (t1,...;tx) for summing are performed only in the

values dwt ) th(k , at the same time the indexes near upper limits
of integration in the multiple stochastic integrals are changed correspon-
dently and if ¢, changed places with ¢, in the derangement (1, ..., ),
then 4, changes places with i, in the derangement (i1, ..., 1).

Let’s evaluate the remainder R7;""* of the series.

According to lemma 2 we have

T to

w{rg < = [ (K-
(t1,oti) § 4
2
- Z Z CJk g H ¢]l(tl)) dt] e dtk =
71=0 Jk=0
2
=G / (K(tl’.“ ) Z Z CJk J1 Hd’]l(tl)) dty...dty — 0
[t,T]* =0 jx=0
(1.25)

33



Chapter 1. Expansions of multiple Ito stochastic integrals

if p1,...,pr — o0, where the constant C} depends only on the mul-
tiplicity k of multiple Ito stochastic integral. The theorem is proven.
O

Not difficult to see, that for the case of pairwise different numbers

i1, .. .,0 = 1,...,m from theorem 1 we get:
k7. 1 (ix)
T e =, Lim, ].2_ E_ it G

1.3 Expansion of multiple Ito stochastic integrals
with multiplicities 1 — 6

In order to evaluate significance of theorem 1 for practice we will

demonstrate its transformed particular cases for k=1,...,6:
T .
[wn(t)dwi = 3 ;¢ (1.26)
t J1=0

/¢2 / by (tr)dwiH dw (™) =
t

= Z chzh ( i ]2) 1{11—”#0}1{]1 ]2}> (127)
J1:J2=
‘][w(?))]T,t >/ Z stjzjl( ](fl) J(j ? ](;3)
J1.J2,53=0

im0y L=ty — Lmissor L G -
—1{i1:i3¢0}1{jl=j3}4§§2))a (1.28)
00 4 .
T = Y C,-4...,-1<H ¢l
J1seesja=0 =
=iy L =i G G — Lty L=y G ]4
—1{7:1:1:4;&0}1{]'1:]'4}(]'2 st = Yip=ig20} 1 (G ]S}CJ ja
~ it =i} G = Liymivroy =it Gy (i“r
10 =201 (i =o} Lis=iaz0} L (a=ji} +
1 =isz01 15 =g} Lio=iaz0} L (io=jiy +
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1.3 Expansion of multiple Ito stochastic integrals

+1{1:1:7:47é0}1{1‘1:1'4}1{122:113#0}1{12:13}) ) (1.29)

o0 5 i)
JWOry = Y CJ‘s---h(l_Hﬁl_

11, ,J5=0
1 1o el plis) g 1o L)l lia)
{i1=i27£0} H{j1=52} 555 Sja Sjs {i1=i3£0} H{j1=4a}552  S4a Sjs
(is) (i) _
1{11 Z47£0}1{11 J4}C] JZ Js 1{11 15750}1{]1_15}@ ]3 Ja
(i) (i3) -(is)
1{12 Za?éo}l{]z Ja}CJ JZ Js 1{12 74¢0}1{JZ J4}C] J3 ]55
(i) (i2) ~(is)
1{72 75¢0}1{12_]5}C11 J33 Ja 1{13 74?50}1{]3_]4}@1 J2 ]55

) +(ia) (i2) ~(i3)
1{13 ls7é0}1{]3 Js}CJ Jo Sja 1{14 157é0}1{]4 JS}CJ i Gjs t

L i iz} L =i} L =iy Lssmin) Gy +
1 gi,=iy 201 L=y Liismisoy Lsmint G+
1 gi,miy0) L=y Lismisor =it G+
1 ity 0 L=y L=ty Lgmiat G+
1 im0y L=t L =iy L G+
L isgo) L) Liaminr) Liimin) G+
1 ity L=y Liamisoy Lsomin) G+
1 iyt 0) L=y Liamis oy Lsamint G+
1 iyt 01 L=y Lismis oy Lgmint G+
1 gismiy 201 1=} Liamisroy Lsumint G+
1 gis=iy 20} 1=} Liamiroy Lgamiap G+
Lm0y Lo L =iy L= G+
L iymis g0} L i) L =iy Luminy G
1 iyt 01 L=y Liismisoy Lgsmin) G+

+1fiy=is0} L {jo=is) 1{i3=i4¢0}1{j3=j4}§('f1)) : (1.30)
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Chapter 1. Expansions of multiple Ito stochastic integrals

TOre= £ (-

J15--,J6=0
~Lpinigror L =i} J§ G = i i G ]é PR
~Limiaror L gemin G G G = Limiro Liiimin GG G G
=iz Lgsmin GG GG = Lz L G G G G
=iz L= G GGG = Lzt =i G 6 G G
~Lpinmigron =it GG = Limigroy =i G Jl e
~Limiaror L imin G GG = Lnmiso Limin 606 G G
~Ligmipo) =i G GGG 1{13 15750}1{13 RteReRleRlen

(i2) (iz) »(is)
~Lis=isr0} L= Js}CJ Ja 193 jes

+1ji,mi0) L=} L=ty =i G G
L it} L i) L imi} Lismin} s G
L (it} L i) Lz} Liumin} o G
RTINS P PRI TP e e
L ity b i L im0} Liamin} s G
+1p,=igz03 1 =js} L fig= 15750}1{]4—15}CJ ]6
+1giymiy 0y L=} Liaminto) Lmin G G
+Liiip0) L i Lm0y Linmin) G G
+1gis=i 20y L=} Lismint0) =i G G
L fiiyp0) L i) L im0y Liamin} s Gl
it} L i) im0} L iamia) a Gl
1 it} L i) L =iy L=} a” G
1 (iyiyp0) L inmio) Lm0y Liamin) ot G
L gi,mi 0y L gomia) Liisminro) Ls=int GG
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1.3 Expansion of multiple Ito stochastic integrals

L giyis 20y Lgamio) Liismicry =it G G
L im0y Lgomint Lis=inroy L= G G
L gig=i, 20y o=} L=ty L=in G Gt
L gig=i, 20y Lgomi) Liamir) =i G Gt
1 iy =i120) L g Lm0y Liamin) s G
L gigmi, 20y Lgomi) Lismioro) =it G G
+1gie=i 201 1 (jo=jn} L fio= 23760}1{]2—13}(]4 ]5
L iy} Lo} Ligmis 20} Li=is) G ot
1 figisp0) L i L =iy L=y 1 G
L figminoy Lgomin) Lismisro} =i G G
F1fig=inz0} 1 (jo=jo} Lfir= 15760}1{]1—15}(1 14
1 figispo) L i) L =iy Lnmin) Gy G0
L iymit) L=} i mis 0y Lo G G2
L it} L igmis L=y Linminy 1 Gt
F1gig—is 2011 (jo—io} Lis=is 20} L {jis= Js}CJ Ja
1 figmisp0) L= L =ity Linmin) 1 Gl
ity or Ljomio} Liinminoy Limin G G
L figmisr0) L i L =iy Lsiminy G G
1 figmisp0) L= L =iy L=y Ga G
im0y Lgomia Lis=inroy L= G G
1 gigmiy 0y Lgomia) Liiamintoy =it GG
im0y Lgomia) Liaminr) =i G G
+1jig=iit0} 1 (jo=ja} L i = 25750}1{11—15}CJ ]%
ity Lgomia) L=ty =it G G
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Chapter 1. Expansions of multiple Ito stochastic integrals

(is) »(i5)
+1{i6:i4¢0}1{j6:j4}1{il:i27é0}1{j1:j2}cj;3 j;s

(i1) (i)
L figmis20) L iomio) Lis=iat0) LGa=i G G
(i1) (i)
L ig=is 20} L jo=jst Hia=iar0 L {ja=ja} Gy G
im0 L i} Linmis 20} L (ramin LY
+1{is=is#0}1{j6=js}1{i1=i4750}1{jl=j4}CJ(';2)CJ(Zs)
(i2) »(ia)
im0} Ljomin) Lin=inz0} L (=i} G G
(i) (i)
1 im0y L= Lin=in0} L (=i} Gy G
~ Lig=ir 20} L (o=} L{io=is 20} L (io=js} L ia=ia0} L (=i}
—Lig=is 20} L jo=jn} L {in=ia 20} L Gs=ju} L ig=is 20} L (=35}
= Lig=ir 20} L o=} L{in=ia 20} L (=i} L{iamis 20} L {Ga=1js}
—Lig=io 20} L a=jo} 1 {ir=is 20} L {1 =js} L is=ia 20} L (G =1a}
~Lig=in 20} L ga=do} L {ir=iaz0} L =i} Y fis=is 20} L (s =is}
= Lig=ia20} L ja=jo} L fir=is 20} Ligi=js} Liamis 20} L (=35}
= Vig=ia20} L ja=ja} Lfir=is£0) 1 {51 =js} Lia=ia 20} 1 (ja=js}
~ Lig=is20y Ljs=ia} L{in=iaz0) (i =ja} L io=is 20} L (=i}
_1{i3=i6750}1{.73=js}]‘{il=i2760}1{jl=.7'2}1{i4=i5750}1{]'4=1'5}
—1{2'6:1‘47&0}1{]'6:]‘4}1{1',:1'57&0}1{]‘1:j5}1{i2:i37é0}1{j2:j3}
—Lig=is 20} L a=ja} L {in=is 20} L G =js} L {in=is 20} L (=35}
= Lig=is0} L ja=ja} Lir=io 0} L {ji=jo} Lia=in 0} L ja=js}
~Lig=isz0} Ljo=ia} Lo =ia20} L =ja} L in=iaz0} L {go=ia}
~ Lig=is 20y Ljs=is} L {in=iaz0) L=} L is=iar20} L (s =ia}

= Lig=is 20} L o=is} L {in=iz0) LGy =13}1{z'2=u¢0}1{12:j4}>a (1.31)

where 14 indicator of set A (14 = 1, if condition A is executed and
14 = 0 otherwise).

Note, that according to the theorem 1 the series in (1.26) (1.31)
understanding as multiple series:

00 def . D1 Pk
> O= Lim, DI P
Jreege=0 P PRTOO gi=g =0

38



1.4 Expansion of multiple Ito stochastic integrals of any multiplicity

1.4 Expansion of multiple Tto integrals of any mul-
tiplicity &

Lets generalize formulas (1.26) — (1.31) for the case of any multiplicity
of the multiple Tto stochastic integral. In order to do it we will introduce
several denotations.

Let’s examine the unregulated set {1,2, ..., k} and separate it up in
two parts: the first part consists of r unordered pairs (sequence order of
these pairs is also unimportant) and the second one  of the remains
k — 2r numbers.

So, we have:

({{gla 92}, ceey {921"71, 921"}}; {qla ey qk*?T})’ (132)
part 1 part 2

where {g1,99,- -, 92r—1, 92, q1; - - -, Gr—2r} = {1,2, ..., k}, curly braces
mean irregularity of the set taken in them, and the round braces —
regularity.

Let’s call (1.32) as partition and examine the sum using all possible
partitions:

agngr--yg?r—l.qQTv(I]---Qk—2r' (1'33)
({{g1,92}:-- - {g2r—1, 92} o {15 - - -0 })
{91,921 921, Gor, @1, - - s Qe—2r } = {1,2,...,k}

We give an example of sums in the form (1.33):

Qg9 = Q12,
({g1,92})
{91792} = {172}

Qg,gag:91 = A1234 + Q1324 + 2314,

>
({{91,92},{93,94}})
{91:92,93,94} = {1,2,3,4}

Ggrgo.q1ge = 012,34 + Q13,24 + Q14,23+

>
({91 792}7 {th s (12})
{91,92: 01,42} = {1,2,3,4}

+ag3,14 + a24,13 + a34,12,

Qg1 g0q100qs = 12,345 + @13,245 + Q14,235+
({91: 92}, {q1, 92, 43})
{91, 92, 01,92, 43} = {1,2,3,4,5}
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Chapter 1. Expansions of multiple Ito stochastic integrals

+ai5.234 + 23,145 + 24,135 + 25,134 + 34,125 + 35,124 + 45,123,

> Qg gs,gagn,qs = 312,345 1 Q13,245+
({{91,92},{93,94}}, {a1})

{91,92,93, 94,01} = {1,2,3,4,5}
+ai4235 + 12354 + @13254 + G1523 4+
+a1254,3 + a1524,3 + @14,25 3+
+a1534,2 + 13542 + Q14532+

+as52,34,1 + a53.24,1 + A54,23,1-

Now we can formulate the basic result of theorem 1 (formula (1.5))
using alternative more comfortable form.

Theorem 2. In conditions of the theorem 1 the following converging
in mean-square sense expansion is valid:

J[’Lﬁ(k)}T,t = > Ce-.in <ll:[1 Cf(l”)—l—

J15e5Jk=0

r
1:[1 1{1'-92571: 1'-‘123 #0}
({{g1: 92} - -sAg2r—1, 920} s {qus -y ak—2r}) 5=
91,92, -, 92014 G2, Q1 - -+ Qh—2r} = {1,2,..., k}

14
2"

k—2r (i)
. . 1
XL i 1= day} 11;11 qul ), (1.34)
where
i def Li %1: %“:
= lim. .. .
Jrege=0 PP oo im0

In particular from (1.34) if ¥ = 5 we obtain:

00 5 )
TOhre= % Cu(I¢f-

J15-05=0

3 .
(’q)
- ({919 }% a2, 03}) L= iy 70 Ly = ) 11:11 S ¥
Y91.9271, 1,492,943 =
{91,92: 1,92, 3} = {1,2,3,4,5}
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1.5 Comparison of theorem 2 with representations of multiple Ito integrals

+ > Liiy, = ig, 20} 1 (G, = 3y} X
({{g1:92}: {93, 94}}, {a1})
{91,92:93, 91,1} = {1,2,3,4,5}

(iq,)
x 1{i53: i94 #0}1{.7'93: jg4 }qul ) :
The last equality obviously agree with (1.30).

1.5 Comparison of theorem 2 with representations
of multiple Ito stochastic integrals, based on
Hermite polynomials

Note, that rightness of formulas (1.26)  (1.31) can be collater-
ally verified by the fact, that if 4y = ... = ig = i = 1,...,m and
P1(s), ..., ¥6(s) = ¢¥(s), then we can deduce the following equalities
which are right with probability 1:

1
T re = yore,

1
TPz =5, (07, — Ary),

1
Jw}(s)}Tﬂ‘f =3 (‘%,t — 35T,tAT,t) )
1
J W), = = (6% - 65%7tAT,t + 3A2T,t) )

4!

1
T ®rs = o (0 — 1067, A7, +150m,A,)

1
T s = o (03, — 1607, Am, + 4507, A7, — 1547,

T . T
where 07 = [ (s)df?, Ar; = [ ?(s)ds, which can be independently
t t

obtained using the Ito formula (see sect. 9.2).
When k = 1 everything is evident. Let’s examine the cases k = 2, 3.
When k£ = 2 (we put p; = pa = p):

TP, = Li > Cin i~ s ) =
W ]T,t pl_gé Z .72]1C11 C]z Z nn

J1,J2=0 71=0
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Chapter 1. Expansions of multiple Ito stochastic integrals

p ji—1

_ p_)m <Zopzo (Cjrjr + Cirjs) Cﬂ C]2 + Z Cjuir ((C](Z)y B 1))

71=0

~—
T
s

0 jo=

i (£ 5 000+ £ e (@) -1))

oy —
T
8

P i), 1 & 0)?
1.m. <* Z lecjzcj('l)cj("z) +5 Z CJZl ((C](])> B 1)) -
2 31:d2=0 2j1:0

#i2

. 1/ 2 (i) 2

(1.35)
]1 0

Let’s explain the last step in (1.35). For Ito stochastic integrals the
following estimation [5] is right:

wllfear[} < mmf([era)’}

[ &df.
where ¢ > 0 — is a fixed number; f, —is a scalar standard Wiener
process; & € Ma([t, T]) (see sect. 9.1); K, — is a constant, depending

only on g;

/T|§T|2d7 < oo wip.1; M{(/T\gTFdT)%} < 0.
t t

Since

T
Z C]1<]1 - /<¢(S) - ‘io Cj1¢j1(s))dfs(i)1
J1=0 t =

then using the estimation (1.36) to the right part of this expression and
considering, that

T

J(ws) —

t

if p — oo we obtain

2
Z CJ1¢J1( )) ds —0

Jj1=0

Y(s)df? = q lLim. Z WGP, a>o. (1.37)
p—roo
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1.5 Comparison of theorem 2 with representations of multiple Ito integrals

Hence, if ¢ = 4, then it is easy to conclude, that

p AN 2
. ] (z) 2
lzal.m. <j1§:0 Cj.6, ) = 07

This equality was used in the last transition of the formula (1.35).
If £ =3 (we put p1 = pa = p3 = p):

T®1, = 1i P O D60 c. B
‘ [w ]T’t pl_)rorcl, Z ]3]2]14‘]1 C]Z Cjﬂ Z ]3]1]]C],;

J1,J2:53=0 J1,5a=0

p )
Z C]'szj]C]('L) - Z C]l]ﬂlcjz) -

J1,J2=0 J1,J2=0

— 1im ( T 0y (D00
pooo \ . 733271591 Sj2 SJ3
J1,J2:53=0

D .
- Z (Cjzjljl + lejlja + lejajl) 41(3)) =

J1,3=0

P ji—1lja—1
pl—>ror<13 (Z Z Z ( Jaj2i1 +C]3]1]2 +Ch]1]3 +CJ21311
J1=0j2=0 j3=0
+Cjo i + Ciian) ¢+
WAWRNE] JuI3J2/ 531 5J2 >3
p -1

N2 s
+ Z Z ( JajiJs + CJle]a + CJ3]3]1) (CJ(;)) C](:)—i_

J1=0jz=
Jj1—1

+ Z Z ( Jajig + C]l]l]S + CJ1]3J1) (Ch ) CJs

J1=0j3=

pc_,, \?3 _ ¢ Ciii tCis C---C@Z
+Z J1J1g le Z ( 13]1]1+ J1]1]3+ ]1]3]1) YE]

j1=0 J1,3=0

p ji—lj—1
Lim (Z Z Z C]lc]zCJSCﬁ C]z CJs

p_> Jj1=0 j2=0 j3=0
p -1

+2 > 2 GG (C]g) ¢ + Z z o (Ch) ¢y

J1=0j5=0 ]1 =073=0

12 i i
PN GO ofloﬁc;s)):
6 ji=0 2 jja=0

PR L

=11,
=
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Chapter 1. Expansions of multiple Ito stochastic integrals

p ji—1

TR S Se e (5) oK z ¥, (<) ¢+

]1 0]3 0 0]3 0

+é fj i (¢ ) z 02 ;¢ )

71=0 .71 J3=

im (_ S ¢ 00 DD
500 6 J10203591 S)2 S)3

J1:J2.33=0

1 p i1 N2 G p jiz1 N2
et Koo (@) d s E S o, (@)@

71=03=0 J1=0 ja=0
g
+2 Xp: ]121 Cj, (st> C]] + Z Z C;, (C]] ) C](_Si)+

J1=0j3=0 =073=0

+5 2 () - oicjgcﬁ?)=

]1, Jl Js=0
i (LY (i)>3 L& o & (i))
=Llim (=Y CpGl ) —= X CF Y CuGl | =
i (6 <jlz—:o DR PP IE
1 3
=3 <5T,t — 3074 A1) - (1.38)

The last step in (1.38) is arisen from the equality

P N3

Lim. (¥ Ci¢l) = o,
j1=0

which can be obtained easily when ¢ = 8 (see (1.37)).

In addition, we used the following correlations between the Fourier
coefficients for the examined case: Cjj, + Cj,j, = C;,Cj,, 2Cj; =
le’ C]1]2]3 + lejsjz + szjsjl + C]z]l]s + C]sjzjl + stjljz = cjlcjz st’
2 (C]uus + lejsjl + stjljl) = C]Qlc 6C]1J1]1 0131 and the formula
(2.275) if k = 2, 3.

Cases k = 4, 5, 6 can be analyzed similarly using the formula (2.275)
when k =4, 5, 6.
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1.6 On usage of full orthonormal discontinuous systems of functions

1.6 On usage of full orthonormal discontinuous sys-
tems of functions in theorem 1

Analyzing the proof of theorem 1, we can ask a natural question: can
we weaken the condition of continuity of functions ¢;(z); j =1, 2,...7

We will tell, that the function f(z) : [t,T] — R' satisfies the con-
dition (%), if it is continuous at the interval [¢, T] except may be for
the finite number of points of the finite discontinuity, as well as it is
continuous from the right at the interval [¢, T'.

Afterwards, let’s suppose, that {@;(z)}32, — is a full orthonormal
system of functions in the space La([t,T]), moreover ¢;(z), j < oo
satisfies the condition ().

It is easy to see, that the continuity of function ¢;(z) was used sub-
stantially for proving of theorem 1 in two places: lemma 3 and formula
(1.13). It’s clear, that without damage to generality, partition {r;}},
of the interval [¢,7] in lemma 3 and formula (1.13) can be taken so
"small", that among the points 7; of this partition will be all points of
jumps of functions ¢1(7) = ¢;,(7), ..., YrlT) = G5, (T); J1, -, jr < 00
and among the points (7j,,...,7,); 0 < g1 < ... < jr < N — 1 there
will be all points of jumps of function ®(t1, .. ., t).

Let’s demonstrate how to modify proofs of lemma 3 and formula
(1.13) in the case when {¢;(z)}32; — is a full orthonormal system of
functions in the space Ly([t,T]), moreover ¢;(z), j < oo satisfies the
condition (x).

At first, appeal to lemma 3. Proving this lemma we got the following
relations:

mf

j-1
+6 - M{|J1A¢iln..0["} S M{ 1AL,
q=0

N-1
Z J[A(pl]THl,Tj

J=0

4 N-1
} =2 M {‘J[A(Pl]ﬁ'ﬂﬁj

j=0

"

2}, (1.39)

M {17180} = T«omj) ~@s)ds,  (140)
{1 7800.ol') =3( [ (o) - etoyas).

Propose, that functions ¢;(s); I = 1,. ..,k satisfy the condition (%),
and the partition {Tj}jv;ol includes all points of jumps of functions ¢;(s);
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Chapter 1. Expansions of multiple Ito stochastic integrals

Il =1,...,k. It means, that, for the integral Tl(gol(v'j) — @i(s))?ds the

subintegral function is continuous at the interval [7;, 7j41) and possibly
it has finite discontinuity in the point 7;4;.

Let u € (0, Ar;) is fixed, then, because of continuity which means
uniform continuity of the functions ¢;(s); I = 1,...,k at the interval
[Tj, Tj+1 — p] we have:

Ti+1 Tj+1—H

[ (@ilm) = @rls)ds = [ (ail) = eils))*dst
b (aln) - ale)ds < HAn -+ M. (142

Obtaining the inequality (1.42) we proposed, that Ar; < §; j =
0, 1,...,N —1 (6 > 0 is exist for all € > 0 and it doesn’t depend
on s); |gi(r;) — @i(s)| < € if s € [1j41 — p, Tj+1] (because of uniform
continuity of functions ¢i(s); I = 1,...,k); [ei(1;) — @i(s)| < M, M
— is a constant; potential point of discontinuity of function ¢;(s) is
supposed in the point 7j41.

Performing the passage to the limit in the inequality (1.42) when
©— 40, we get

Tj+1

/ (@i(15) = wi(s))%ds < 2 A;.

Tj

Using this estimation for evaluation of the right part (1.39) we get

N-1 4 N-1 N-1 j-1
M| S T8 << (35 (A 46T An T Ar) <
Jj=0 3=0 j=0 q=0
<3 (§(T —t) + (T —1)%). (1.43)

N-—
This implies, that M{‘ _201 J[Ag]
]:

lemma 3 remains reasonable.

Now, let’s present explanations concerning the rightness of the for-
mula (1.13), when {@;(z)}?2, — is a full orthonormal system of func-
tions in the space La([t,T]), moreover ¢;(z), j < oo satisfies the condi-
tion (x).

Let’s examine the case k = 3 and representation (1.15). We can
demonstrate, that in the studied case the first limit in the right part of

4
}—>0whenN—)ooand

Tj+1,Tj
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1.6 On usage of full orthonormal discontinuous systems of functions

(1.15) equals to zero (similarly we demonstrate, that the second limit
in the right part of (1.15) equals to zero; proving of the second limit
equality to zero in the right part of the formula (1.14) is the same as for
the case of continuous functions ¢;(z); 7 =0, 1,...).

The second moment of prelimit expression of the first limit in the
right part of (1.15) looks as follows:

N—1j3—1 jo—1 Tia+1 Tir+1

S XYY [ [ @t m) - 8,1, 7)) dhdt Ay,

J3=0ja=051=0 73, 7}

Further, for the fixed u € (0, A7j,) and p € (0, A7j,) we have

Tia+1 Tjr+1

/ ((I)(tl,tz,Tjs) — (D(tl,sz,Tjs))Q dtldtg =

’7']'2 le
Tjg+1— 1 Tja+1 Tj1+1—P Tj1+1
2
:< [+ ( [+ )(<I>(t1,t2,7j3)—<I>(t1,7j2,rj3)) X
Tia Tjg+1— [ Ti1 Th+1—P
thldtg
Tig+1 THTji+17P  Tip41 71 Tji+1 Tia+1 Ti+17P Tig+1  Ti+1
A I B A B
Ti2 it Tia  TR#1SP  Tp+i—H i Tjg+1~H Tjy+1=P

X (‘I’(tl, to, Tjs) — (I)(tl, Tjys Tjs))2 dtidty <
< (A1, < p) (ATy, — p) + M?p (ATj, — 1) +
+Mu (A, — p) + M pp, (1.44)

where M is a constant; A1; < ;5 =0, 1,...,N—1 (6 > 0 is exists
for all € > 0 and it doesn’t depend on points (t1,t2, 75,), (t1, Tj Tjs)):
we also propose that, the partition {Tj}év:f)l contains all points of dis-
continuity of the function ®(ty,t9,13) as points 7; (for every variable).

When obtaining of (1.44) we also suppose, that potential points
of discontinuity of this function (for every variable) are in points
Tji+1s Tja+1s Tja+1-

Let’s explain in details how we obtained the inequality (1.44). Since
the function ®(t1,t9,t3) is continuous at the closed bounded set Q3 =
{(tla ta, t3) it € [Tju Tji+1 _p]7 ly € [Tj27 Tjo+1— ML t3 € [Tj37 Tjs+1— V]a }7
where p, p, v — are fixed small positive numbers (v € (0, A1), p €
(0, ATj,), p € (0, ATj,)), then this function is also uniformly continous
at this set and bounded at closed set Ds (see sect. 1.2).
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Chapter 1. Expansions of multiple Ito stochastic integrals

Since the distance between points (t1,%2,7j,), (t1,7),,75,) € Q3 is
obviously less than 6 (A7; < 6;5 =0, 1,..., N—1), then |®(t1,t9, 75,) —
®(t1,7j,,7j,)| < e. This inequality was used during estimation of the
first double integral in (1.44). Estimating of three remaining double
integrals we used the feature of limitation of function ®(¢1,%9,%3) in
form of inequality |®(t1,t2, 75,) — ®(t1, 7, 75,)| < M.

Performing the passage to the limit in the inequality (1.44) when
u, p — +0 we obtain the estimation

Tig+1 Tj1+1
/ (q)(tl, tg, ’Tj3) - (I)(tl, sz, 7']'3))2 dtldtg S E2AT]‘2AT]‘1.
Tia  Tiy

Usage of this estimation provides

N—1j3—1j2—1 Tizt1 Tir 1

S Y Y [ ] @t 1) - 8t 7, 7)) dhdts ATy, <

j3=0 j2=0j1=0 Tjgy Tj

, N=lis=1ia=1 L(T — 1)?
<e Z Z Z ATJ']ATJ'QATh <g —
33=0 j2=0 j1=0 6

The last evaluation means, that<in the considered case the first limit
in the right part of (1.15) equals to'zero (similarly we may demonstrate,
that the second limit in the right part of (1.15) equals to zero).

Consequently, formula (1:13) is reasonable when k = 3 in the ana-
lyzed case. Similarly, we perform argumentation for the case when k = 2
and k > 3.

Consequently, in theorem 1 we can use full orthonormal systems of
functions {@;(z)}32, in the space La([t,T]), for which ¢;(z), j < oo
satisfies the condition ().

The example of such system of functions may serve as a full orthonor-
mal system of Haar functions in the space Lqo([t, T) :

1 ! —!
o(z) = VT =1 nj(z) = T—¢" (;—7)’

where n = 0, 1,...; j = 1, 2,...,2" and functions ¢,;(z) has the
following form:

2%, z €[50, T+ )
pnilz) =\ 2%, w e [l + s, )5
0 otherwise
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1.7 Remarks about usage of full orthonormal systems in theorem 1

n=0,1,...;5=1, 2,..., 2" (we choose the values of Haar functions
in the points of discontinuity in order they will be continuous at the
right).

The other example of similar system of functions is a full orthonormal
Rademacher-Walsh system of functions in the space Lo([t, T]):

) = 7= ) = Zrgom (75) o (775).

where 0 < m3 < ... < my; my,....mp =1, 2)...; k=1, 2,...;
om(z) = (=1 2z €[0,1; m =1, 2,...; [y] — integer part of y.

1.7 Remarks about usage of full orthonormal sys-
tems in theorem 1

Note, that actually functions ¢;(s) of the full orthonormal system of
functions {¢;(s)}32, in the space La([t,T]) depend not only on s, but
ont, T.

For example, full orthonormal systems of Legendre polynomials and
trigonometric functions in the space Ly([t, T]) have the following form:

2% +1 T4ty 2
. T) — P _
9i(s:t.T) =\ =5 ’((S 2 >T—t>’

Pj(s)  Legendre polynomials;

1 when j =0

1 2771"5 .
i(s,t,T) = \[Sln when j =2r — 1,
g ) T—t \/_COSQMS

when j = 2r

r=1,2,....

Note, that the specified systems of functions will be used in the con-
text of realizing of numerical methods for Ito stochastic differential equa-
tions for the sequences of time intervals: [Ty, T1], [Th, 1], [T, T3], - - -,
and Spaces LQ([T07 Tl]), LQ([Tl, TQ]), L2([T27 TgD, PR

We can explain, that the dependence of functions ¢;(s,t,T") from
t, T (hereinafter these constants will mean fixed moments of time) will
not affect the main characteristics of independence of random variables.

Cfmt f%(stT)dW“ A0 1=1,...,k.
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Chapter 1. Expansions of multiple Ito stochastic integrals

Indeed, for fixed ¢, T" due to orthonormality of mentioned systems of
functions, we have:

M{rilref = Lmimror L imsy
where
(@) / (ir)
C(jll)T,t = /gbjl(s’ 2 T)dws“ ;
t
u#£0;l, r=1,... k.
: 7 .
On the other side random variables ¢ = [ ¢;(s,t1,T1 dwi)
(1) T ta i gt s

. T .
and C((;j))Tz,tz = tfz ;. (5,t2, To)dw'® are independent if [t1, Ty] N [t2, To] =
2
(0 (the case Ty = to is possible) according to property of Ito stochastic
integrals. '
Therefore, two important characteristics of random variables C&’;T’t

which are the basic motive of their usage are stored.
In the future, as it was before, instead of ¢;(s,t,T) we will write

¢;(s) and instead of ngT’t we will write CJ@ for brevity sake.
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Chapter 2

Expansions of multiple Stratonovich
stochastic integrals, based on
generalized multiple and repeated
Fourier series

This chapter is devoted to expansions of multiple Startonovich
stochastic integrals. We adapted the results of chapter 1 (theorem 1) for
multiple Stratonovich stochastic integrals ‘of multiplicity 1 — 4. Also, we
consider other approach to expansion.of multiple Stratonovich stochas-
tic integrals of any fixed multiplicity %k, based on repeated generalized
Fourier series converging pointwise:

2.1 Expansions of multiple Stratonovich stochastic
integrals of 1st and 2nd multiplicity. Polynomial
and trigonometric cases

In the following sections of this chapter we will denote full orthonor-
mal systems of Legendre polynomials or trigonometric functions in the
space Lo([t, T) as {¢;(z)}52,.

In the mentioned sections we will also pay attention on the following
well-known facts about these two systems of functions.

Assume, that f(z) — is a bounded at the interval [t,T)] and section-
ally smooth function at the open interval (t,T). Then the Fourier series

o T
20 Cioi(z); C; = [ f(z)p;j(x)dz converges at any internal point = of
j= t ’

the interval [t,T] to the value 5 (f(z —0) + f(z +0)) and converges
uniformly to f(z) in any closed interval of continuity of the function
f(z), laying inside [¢,T). At the same time the Fourier series obtained
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

using Legendre polinomials converges if x =t and x = T to f(t + 0)
and f(T—0) correspondently, and the trigonometric Fourier series con-
verges ifx =t and z =T to % (f(t+0)+ f(T —0)) in case of periodic
continuation of function.

Assume, that ¢1(7), ¥o(7)  are continuously differentiated func-
tions at the interval [t, T]. For the case k = 1 we obviously have

«T

| n(tn)des) = > g,

t J1=0

where the series converges in the mean-square sense;

T
le = /Qpl(tl)(r/)]l(tl)dth C](]’ /¢]1 tl dft ; 1= a' .., M.
t

According to the standard connection of Stratonovich and Ito
stochastic integrals with probability 1 we have

T
T P)r, = Jp@r, + %1{2'1:1:27&0}/¢1(t1)w2(t1)dt1. (2.1)
1

On the other side, according to-theorem 1

2

T
[ Galt) [ (b)Yt =
t

t

i1 def
Z Z C]z]l ( J1 Sje e 1{21—22#1}1{11 12}) =

Z CJZJI ( f 2) 1{11 lz?éo}l{h—]z}) =

Ji.j2=
= Z OCthC] o 1{11 =iy#0} Z C]l]l (22)
J1.J2= J1=0

The following natural questions take place: is it legal the partition
of limit in two limits in the last formula and is the following equality
reasonable (it proves the possibility of such partition):

;/¢ (t1)a(t1)dty = Z Cijr- (2.3)

J1=
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2.1 Expansions of integrals of 1st and 2nd multiplicity

Note that, according to (5.35), (5.36) the formula (2.3) (polynomial
case) is right, at least if ¢¥1(7) =t — 7, ¥o(7) = 1; 1 (1) = 1, ¢ao(7) =
t — 75 (1), ¢2( )=t =T i(r) = (t—7)% ¢a(r) = L (1) = 1,
¥o(7) = (t—7)? and according to (5.48) the formula (2.3) (trigonometric
case) is right, at least if ¥1(7) =t — 7, (7)) = 1; ¥1(7) = 1, Pho(7) =
t—7; 7€t T).

Since if 11(s) = 1o(s) the equality Cjj, = %CJQI is realized, then in
this case the equality (2.3) is a conclusion of Parseval equality.

From (2.1) - (2.3) it follows:

P P2

J*[T/)(Q)}Tt— llm Z Z CthC] h 7

P1,p2—> =0 jo=0

where the series converge in the mean-square sense.
Let’s prove (2.3) in more general case.
Let’s analyze the function

1
K*(t1,t2) = K(t1,t2) + il{tlzm}"’bl(tl)w?(tl)a (24)
where 1, € [t, T] and K (¢1,t9) has the form:

_ [ i(t1)a(te); ti < ta |
K1) = {0, otherwise A URAE
Let’s expand the function K*(t1,ts) using the variable ¢, when ¢y, is
fixed, into the Fourier series at the interval (¢,T) :

Kt 1) = Z C(t2)$5 () (a7 8,T), (2:9)

=

where
T

Ci\(t2) = [ K™ (b1, 1), (h)dts = /K t1, 1) by, (t1)dty =
t

= a(t) [ a(t) g ()t

{#j(z)}52o — is a full orthonormal system of Legendre polynomials in
the space La([t, T7).

The equality (2.5) is executed pointwise in each point of the interval
(t,T) according to the variable t1, when ¢y € [¢,T] is fixed due to sec-
tionally smoothness of the function K*(¢, ;) according to the variable
ty € [t,T] (t2 is fixed).
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Note also, that due to well-known features of the Fourier series, the
series (2.5) converges when ¢t =¢,T

Obtaining (2.5) we also used the fact, that the right part of (2.5) con-
verges when t; = t9 (point of finite discontinuity of function K (t1,%s))
to the value

1

2 (K(ta —0,t2) + K(t2 4+ 0,12)) = %1/)1(152)1/)2(752) = K*(ta, t9).

Function Cj, (t2) is a continuously differentiated one at the interval
[t, T]. Let’s expand it into the Fourier series at the interval (¢, 7T)

Cj\(t2) =

Jj2=0

Z C]2]1 (r/)]z (tQ) (t2 7é 12 T),

where

(2.6)

T ty
Chj = /le (ta)gj, (t2)dts = /1/12 t2) 0, (t2) /1,/11 (t1)dj, (t1)dt1dts,
¢

t

and the equality (2.6) is executed pointwise at any point of the interval
(t,T) (the right part of (2.6) convergeswhen ¢y =¢,T)
Let’s substitute (2.6) into (2.5):

K*(t1,t2) = i i Chi 03 (1) d), (2); (b1, 1) € (¢, T)*.
J1=0 j2=0

2.7)

Moreover the series inthe right part of (2.7) converges at the bound-
ary of square [t, T]?.
It easy to see, that putting t; = ¢ into (2.7), we will obtain

11/)1(151)1/)2(751) = i i Ciaiy i1 (1) g, (£1). (2.8)
2 J1=0j2=0
From (2.8) we formally have:

T

[n(t)s(t1)dt —/ S S Cpndi (0)dn(t)dts =

t J1=0j2=0

N\ﬂ

Cj2jl ¢j1 (t1)¢j2 (tl)dtl =

P1 P2

p}l—lgcl)op;l—%n Z Z 0]2]1 /¢]l tl ¢]2(t1)dt1 -

J1=0j2=0
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2.1 Expansions of integrals of 1st and 2nd multiplicity

D1

= hm lim Z Z Cijll{j1:j2} =

0]3 0
min{p;,pa} 00
= Jim_ lim_ ,ZO Ciojr = ,ZO Ciuir- (2.9)
ji= ji=

Let’s explain 2nd string in (2.9) (the 4th string follows from orthonor-
mality of functions ¢;(s) at the interval [¢, T7).
We have:

T o T
| ¥ Cit) (t)dt - i:o/cjl (1), (t1)dts| <
t Nn=U¢

71=0

IN

i1 (1)@, (t)| dt =

%MR

l

/T
t
ty

S waln) [ r(6)8 ()i (1)

1+1 t

dt; <

|

]l

o0 t

<C z / b1 (5)0j, (s)dse;, (t1)| dtr; C = const. (2.10)

@h\ﬂ

Let’s suppose, that function 19(7) is continuously differentiated at
the interval [¢, 7] and the function 4 (7) is two times continuously dif-
ferentiated at the interval [t, T]; {¢;(z)}?2,  is a full orthonormal
system of Legendre polynomials in the space La([t, T7]).

Then

[ i
> [n(s)es (s)dsgy, (1) =
Ji=p1+1%
© MWt T4
=31 5 @i+ [ () PP ),
Jj1=p1+1 -1
(2.11)
where z(t1) = (t1 - %) 7 1Pi(s)}52 is a full orthonormal system

of Legendre polynomials in the space LQ([ 1,1]).
From (2.11) and the well-known formula

dPjq o) dP;_4

() = S a) = 2+ DP(); =1, 2
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

it follows: t
S i) (s)dse () =
= % jlzi;:ﬂ{(ﬂ]ﬂ(z(tl)) — P _1(2(t1))) 1 (t1) — T2— tx

(/1 Pjs(y) — Py ))%( _ty+¥) dy} (z(t)) <

5 (Ba) Py e(0) - P P L))+
Tt

e

<Gy

o0

> {uitt) (5555 (Pusalettn) = Pa(eten) -

J1i=p1+1
1
21 — 1
2(t1) 1 1
— (P, — P, (y)) — P;(y)—P;_
% [ (553 (Prsal®) = P ) ~ 57— (P 6) = Pa-ala)

-1

(P ((t)) — P]-I,z<z<t1)))) T - by

< (T ty ) s (a(w))],

where Cy — is a constant; w]TH 1 — are derivatives of function 1)1 (s)

according to variable T= ty +
From (2.12) and well—known estimate for Legendre polynomials:

K
cye(=1,1);: neN, (2.13)

V4 1(1—y?)i’

(constant K doesn’t depend on y and n) it follows:

(2.12)

| Fa(y) |<

> / V1(s)$,(s)dsey, (1)) <

hi=p1+1%

A > (o (=(02)) P (1)) = Pia(=(00)) Py (=(11))) +

< Cy
]1_P1+1
2(t1)
+C; Z ) T+ i | <
j1=p1+1 it ((1 - )? /1 1—y2)1( (z(tl))2)4)



2.1 Expansions of integrals of 1st and 2nd multiplicity

< Co Jim (Pas (2(80) Pal2(t1)) = Py (2(t0) P (2(0))) | +

x© 1 1 1
+C1 Y ,2( ; + Cy 1)<
2 i

ji=pi+1 1

S | 1 1
+C1 Y .2((1 ( + + Oy i)f

ji=pi+1J1

<a((b+ £ ) ot S k)

P1 ji=p+1Ji

<K( SR ) (2.14)
P (1= ))F (1 ()

where Cy, Cy,...,Cy, K are constants, t; € (¢,7T) and

x 1 Td 1
< [Z (2.15)
h=p+1J1 T p1

From (2.10) and (2.14) it follows:

/ z Cj, (t1) ;i (t1)dty — 5 / Cj, (t)j, (t1)dty| <

t J1=0 J1=0%
K 1 1
< — —0
P1 (_/1 _ % _/ ]Z) ’

when p; — oo, where K, K1 are constants.
So, we obtain:

/1/11 t1)Ya(t1)dty —/ ic: Cj, (t1) ¢, (t1)dt, =

t J1=0

o T
Z / (b)) (t1)dt = 3 / S Chindin(t), (1) dty =
1=0%

71=0% j2=0

Cjojr @) (t1) bjy (t1)dts = i Cjjy- (2.16)

J1=0

&\ﬂ

o0 [o¢]
=2 X
J1=07j2=0

57



Chapter 2. Expansions of multiple Stratonovich stochastic integrals

In (2.16) we used the fact, that Fourier-Legendre series
Z Cjz.h ¢]z (tl)
Jj2=0

of smooth function Cj, (¢1) converges uniformly to this function at the
any interval [t +¢,T — €] for all € > 0 and converges to Cj, (¢t + 0) and

Cj, (T — 0) when t; = ¢, T. That is why we may to write down
T [e¢]
[ 3 Cridnltr)ss ()t = > / Cijy 652 (1) 5, (1) .
t J2= J2=0

Relation (2.3) is proven for case of Legendre polynomials.

Let’s suppose, that function ¢9(7) is continuously differentiated at
the interval [¢,T] and the function ¢1(7) is two times continuously dif-
ferentiated at the interval [t, T]; {¢;(z)}5<o — is a full orthonormal
system of trigonometric functions in the space Lo([t, T1).

Using (2.10) we have:

T o0
/ > Ch tl)d’h(t] dt1 Z /Ch t ‘r/’h(tl)dtl
t ]170 .71 Ot
o T| ~ (n 2mj1(s —t) oy (ty — t)
< = . .
- T—tt/ le%_H (!1/)1(5)3111 T_{ ds sin T
t .
2 2
+t/1/)1(s)c F?(i t)d s 7Tlej(t_l t)) dty <
o5 o
—S
B 1t Ji=pi+1J1 T—1t !

iy zml(_t ) (2)d Qm(_ t)) it
T X 1 . 2« 1(t1 )
“of[( S o
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2.1 Expansions of integrals of 1st and 2nd multiplicity

27['j1(t1 *t)_
T—1t

T -t © 1 ) ’
+ o 72 (1/’1 (t1) — 91 (t)cos

hi=p1+1J

t , :
2 —t 2 t1—1
— /siniﬂ]%(s 7 ) i/(s)ds siniﬂjr}( ! : )—
/ — —
ty . .
2 —t 2 t1—1
—/cosiﬂjl(s ) 1(s)ds cosiﬂh( ! ))

dt
Tt 1 T—1 L

t

T o 1
t h=pi+1 .71 pl

when p; — oo, where Cy,Cy — are constants, € — is any small

posilive number. Here we used the fact, that the functional series

x
1 .- 27l’]1(t1 t
.*Slni
jlzzl 51 T-t

for all e > 0 due to Drichlet-Abel test and converges to zero at the
points ¢ and T. Moreover, this series (with accuracy to linear trans-
formation) is Fourier series of the smooth function K(t1) = t; — ¢,
t1 € [t, T]. So, we may write down:

uniformly converges at the any interval [t +e1, T — 1]

© 1 omj(t ¢
) ,sin”](])‘<s, (2.18)
=m+1J1 T—t

when p; > N(g) (N(g) doesn’t depend on ¢; and exists for all € > 0).
From (2.17) it follows

T o0
[ 3 Cji (1), (t1)dtr = 3 / (t1)d, (t1)dts. (2.19)
t 1=0 n=0%
Let’s consider another approach of proving the equality (2.19) for
trigonometric case.
It is clear, that

T o0
Z Ch (t1)¢j1 (tl)dtl =

t Jji=p1+1

T t

= Z Pa(t1) 5 (1) / ¥1(0) 6, (0)dodt,| =
t hi=m+1
9 |T 00 t . 2mji(s — 1) 27 (t — t)
=5 t/%(tl)h:%“ (t/¢1(8)sm o ds sin L
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

—}—/11/)1(5)(:

T .

>® 1, 2wyt — ¢
/( ¢2 tl E: ,—SIHM—F
t

ai=p1+1J1 T—1

2mg —t 2mw91(t; — ¢
0s i (s ; )ds cos mii (b ))dtl =

27Tj1(t1 *t)_
T—1

(waan — 4} (t)cos

2 2mg1(ty — ¢t
f/ 7'(']1(5 i’(S)dS sin 7'('_]711( lt )7

T—t 1

t1 . .
2 —t 2 t1 —t
_ /COSM (s)ds COSmht))) i,

T 00 ﬂ-' _
[wat) 3 L2 Dy,
t

<G
ji=pi+1J1 T—t

00 T ;
Z ,l/’(/)Q(tl)SinMdtl

ji=pi+1J1 % T=t

&

—C + 22, 2.20
1 ’ (2.20)

where constants C7, Cy doesn’t depend on p.
The last step follows from a uniform convergense of the series

o 1 . 275i(t; — ¢
,—siniﬁjl(1 )

11:%4'1 N -t
From (2.20) we obtain:
T
> REAQIAC / 1(60)8;,(6)dbdty <
t Ji=pi+
x 1 T 271']1( ) Cy
<Oy Y |%all) —walt) = [eosT T Puh(s)ds ||+ <
ji=p+1J1 f p
K
S — — 01
p
if p — 0o, where constant K doesn’t depend on p.
So, we obtain:
T t K
) ¢2(t1)¢yl(tl)/¢1(9)¢jl(9)d9dt1 <, (2.21)
t Ji=p1+1 p
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2.1 Expansions of integrals of 1st and 2nd multiplicity

where constant K doesn’t depend on p.

Further consideration of this case is similar with proving of relation
(2.3) for the case of Legendre polynomials.

Thus, we proved the following theorem.

Theorem 3. Assume, that the following conditions are met:

1. The function 1o(7) is continuously differentiated at the interval
[t,T] and the function 1(T) is two times continuously differentiated at
the interval [t,T].

2. {#j(z)}52y — is a full orthonormal system of Legendre polynomi-
als or system of trigonometric functions in the space La([t, T)).

Then, the multiple Stratonovich stochastic integral of the second mul-
tiplicity

«T xt2 ] .
T ®lre = [ alta) [ n(t)dfsdEL? (ir,i=1,...,m)

i i
1s expanded into the converging in the mean-square sense multiple series

Pr P2

J*[d)(Q)]T’t: Lim. Z Z C]2]1<](Zl) ](212)’

prp2=o0 g,

where the meaning of notations introduced in the formulations of theo-
rems 1 and 2 is remained.

Let’s make one remark about multiple and repeated series. For mul-
tiple series when k = 2 we use the following notation:

00 def P11 P2
PRI NP NP ILEE (2.22)
J1,J2=0 J1=07j2=0
but for repeated one we write down:
2 & def L
2 Y gy, = Jim mo 3 3T ayyj,. (2.23)
J1=0j2=0 J1=072=0

It is clear, that (2.22) and (2.23) are different things in mathematical
sense. Sometimes series (2.22) is equal to series (2.23) (there is well-
known theorem about reducing the limit to the repeated one). However,
usually series (2.22) not equal to series (2.23).

Let’s consider one simple example, when series (2.22) is equal to series
(2.23). Let’s put ¢1(s),42(s) = 1 in (2.4) and consider repeated Fourier
series (2.7) under this assumption. Also let’s put p; = p2 = p in (2.22).
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

We have:

Jle ¢j1 (t1)¢j2 (t2) Z Z J2J d)jl (tl)d)jz (tQ) =

=0j2= =0jp=

]2]1¢j1 (t1)¢j2 (t2) . (2.24)

=0 jo=p+1

Let’s suppose, that {qﬁj(x)};?‘;o — is a full orthonormal system of
Legendre polynomials in the space La([t,T]) and p > 1.
Then due to orthonormality of Legendre polynomials we obtain:

T to
Cjzjl = /¢j2(t2)/¢j1(t1)dt1dt2 =
t t

V2 + V2 + (T —t) | y
- 1 42 ( ) /1 Ph(y) /1 le(yl)dyldy =
2 (T -1 }
\/JT( /P]z

2_71 T 1 .71+1 ) le*l(y)) dy =

-1
V20 +3(T =) 9
= amrr | Pay)dy =
oS / »
T

T2 (2p+1)(2p+3)( =p=p+l)

if 71 # 0 and

ta

T
J2]1 /(]5]2 t2 /45]1 751 dtldtQ =

t
VT +1‘T
V2 + 1T =1 /P]2 (y+1)dy =0

if j1 = 0, where {Pj(z)}?2, — is a full orthonormal system of Legendre
polynomials in the space La([—1, 1]).
So, we obtain:

O(T - 1)

Z Z Choin i (1) i (2)| < 2y(2p+1)(2p+3)

=0 jo=p+1

)

when p — oo, where C' is a constant.
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2.1 Expansions of integrals of 1st and 2nd multiplicity

Therefore in this case we have:

p q
Z Z C]271 ¢J1 (tl)(rbh (t2) qll)%lo Z 'ZO Cjzjl ¢jl (t1)¢j2 (tQ) :

% j1=042=0 J1=0 jo=
(2.25)
However, if we put 1;(s), ¥2(s) not identically equal to 1 in (2.4) or
take £k > 2 (K is multiplicity of multiple Fourier series), then we can
see, that equality like (2.25) may be not correct.
Let’s consider another approach of proving the equality (2.3) in the
general case. If we demonstrate, that

S Chadi()bslt) = grtalt), (220

J1:J2=0

where the multiple series converges uniformly according to variable ¢;
at the any interval [t + &,T — €] for all € > 0, then integrating the
equality (2.26) and using the orthonormality of functions ¢;(7) we get
the equality (2.3).

In order to prove (2.26) we should refer-to the facts taken from the
theory of multiple Fourier series, summarized in accordance with Prince-
heim.

For each § > 0 let’s call the exact upper edge of difference |f(t') —
F(t")| in the set of all points t';t" which belong to the domain D, as
the module of continuity of function f(t) (t = (t1,...,tx)) in the k-
dimentional domain D (k->'1), moreover distance satisfies the formula
p(t,t") < 6.

We will declare, that the function of k (k > 1) variables f(t) (t
(t 1y-- - tk)) belongs to the Holder class with the parameter 1 (f(t)
! (D)) in domain D if the module of continuity of function f(t) (t
(t1,-..,tg)) in the domain D has the order O(6).

In 1967 L.V. Zhizhiashvili proved, that the rectangular sums of mul-
tiple trigonometric Fourier series in the hypercube [t, T)* of the function
of k variables converge uniformly in the hypercube to this function, if it
belongs to C([t, T]*); a > 0 (definition of Holder class with the index
a > 0 may be found in the well-known mathematical analysis manuals).

It is also well known, that for rightness of the similar statement for
Fourier-Haar series, at least for a two-dimensional case, it is enough to
have only continuity of function of two variables in the square [t, T]?.

The author thinks, that for double Fourier-Legendre series the simi-
lar formulation will be true, if the function of two variables belongs to
C([t, T)?). If this condition is not enough, then at least the result will be

IImH
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

correct if the function is constant in [¢t, T)? (it corresponds to v;(7) = 1;
1 =1,2, 3 in the following arguments of this section and section 2.2). In
this case we may also to use theorem 3.

Let’s analyze the auxiliary function:

K'(t1,t2) = {gfg%ggg 2 22 , ity € [t, T

and demonstrate, that it belongs to C'([t, T]?).
Let’s analyze the increment: AK' = K'(t1,t2) — K'(¢},1), where

Vit =102 + (b = 13)? < 6, (i, ta), (1,85) € [t, 1T
Using the Lagrange formula for 1y (¢}), 1¥2(¢7) at the interval
[min{ty, t7}, max{ts, t7}]
and for 91 (t3), ¥a(t5) at the interval
[min{ty, 13}, max{ts, £3}]
we will come to the representation

s [t (t), B> by o)t (ta), £ > £
AR = { e, b <4~ {ninyate, 4 <4 OO

Hereafter, it is clear, that the difference staying in the right part of
the last equality is different from zero and equals to

E (1 (t)Ya(ta) — Y (t2)ha(th)) + O(0) (2.27)

on the set: M = {(¢1,%9) : min{ts, t1 + e} < to < max{t1,t1 +¢€}; t1 €
[t,T)}, where € = (t] — t1) — (t5 — t2) = O(0).

Since we have |[tg — ;] = O(4) on the set M, then using the La-
grange formula to 1(t2), 11 (t2) at the interval [min{t, 2}, max{t1,t2}]
and substituting the result into (2.27), we will get, that K'(t1,t2) €
CY[t, T1%).

Let’s expand the function K'(t1,t) in the square [t,7T]? into the
multiple Fourier series, summarized using the method of rectangular
sums, i.e.

K'(t1,t2) =

n me T T
=, m > //K'(tlat2)¢jl(t1)¢jz(t2)dt1dt2 <05, (t1) ), (t2) =
T ji=04,=0% i
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2.1 Expansions of integrals of 1st and 2nd multiplicity

Ty T2

= ny n2—>oo Z Z (/ Ql)g(tz ¢72 t2 (/ 1/}1 tl (b]] (tl)dtl)dt2+

J1=0j2=0
T
+ [ trlt2)es <tz)(/ altr) () )t ) (1) (1) =

ny N2

= m,m—)oo 'ZO ]Z (C]zh + CJlJz) ¢]1 (t1)¢]z (t2) (2'28)

Obtaining (2.28) we replaced the order of integration in the second
repeated Riemann integral.

It is easy to see, that putting ¢; = t9 into (2.28), separating the limit
in the right part in two limits and renaming j; by 72, 72 by j1, n1 by n2
and my by mp in the second limit, we will obtain

ny  Ng

Pi(ta)a(t) =2 lim Z Z Chjs @i (t1)Bj, (t1)-

J1=0 j>=0

The required equality is obtained.

Let’s demonstrate expansions of multiple Stratonovich stochastic in-
tegrals of second multiplicity using Legendre polynomials, trigonometric
functions, Haar functions and Rademacher-Walsh functions.

Using Legendre polynomials:

*T

/dfq(_“) — \/YTtCO(il)7

t

*T _ $)3/2 )
; T—t 0
( ) <Cé ) 4

t —7)df) = —
/( 7)df; 5

di”),

i1 i2) __ 21 72 1 1) (12 i1) ~(i2
t//dfT( g = T {co , +Z T )CHH-

For system of trigonometric functions:

S

*T

[ a6 = VT =1,

t

*T

[ ryaer = LD o V2L
t

2r—1
T 9 T = T ’
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

T i) etin) _ L (i) (i) 1 &L f i
/df_l(_“)dfs(“) = E(T - t) |:<0 ! C(]2 + — z { 2r 27‘ 1 C?r 1 21‘
Tpr=1T

t

—

+\/_(C2r 160” Co“ 27‘271)}}

Using the system of Haar functions:

*T
[ df® = VT ¢,

t
*T 3 n
. T — 3 i oo 2
[ mare) = -T2 (04 5 5 06y
t n=uJ

*T" x5

/ / df gfli) =

t

T—1 2 i1 o
=T+ 3 e - ¢+
n=0j=
o] 2™ 2m2 (i)
+ Z Z Z Cﬂz]z n1J1 ﬂzh nl]l) ’

n1,m2=0 j1=1 jo=1

N o T LT S IS AL

2"

where

Cn2j2,n1j1 =
_ nl‘;"Q . ]2_1 1 ]1_1 1 } jl_1>2
=2 (((mln{ oms + ona+1’  omy n1+1 2m

( {Jé-l jl*l} j11>2)
— [ max ) - X
2n2 2TL1 2”1

x 1{max{12 Lo }<m1n{ 2"2 +2”2+1’ z"l +2"1+1 }}_

272 2Tl
min 2112’ omn1 oni+1 on
— (maX{ 2n2 + 2n2+17 2”1 — 2n1 X
Xl{ma‘x{];"; +2n2+l7 L }<m1n{2n2 2,:11_‘_2711%}}4‘
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2.1 Expansions of integrals of 1st and 2nd multiplicity

. . . 2
. I2 0N n
+(<mln{2n27 ﬁ} - ﬁ) -
ja—1 1 j1—1 1 712
7<max{ g T mAl g T omdl [ owm) )
e { B+ pedr. it gt <min{ oy, 1}
IO F T S S ' G A
P e Tamd gn [ om
ja—1 j—1 1 } jl)z)
— — =] |x
<max{ N2 ’ onq +2n1+1 on1
Xl{max{@;l’ L + gy p<min{ 2o+ e 2%}})7

. T , T
& = [ oo()dfD, ) = [ gpj(r)dED;n =0, 1,..;5=1,2,..., 2"
t t

are independent as a whole according to lower indexes or if i #

I (i, I = 1,...,m) standard Gaussian’s random variables; i1, iy =
1,...,m.

For the system of Rademacher-Walsh functions:

5.

*T
[ ae < VT =il
t

*T

i T <)/ ) .
[t~ et = fu(gém + Y Com ﬁ;ﬂ__mk),
' 2 1<my <...<my <oo
1<k<oc
*T 8
j ; T—t( 4.0
//dfqul)dfs(zz) — 7(&5“)(&2)—1-
Tt 2
Y GGG = G )
1<mi<...<mp<oc
1<k<oco
+ Z C, C(iz) C(il) )
T MUk LMy STU Mgy ST gy | 2
1<n1 <. <ng, <oo
1<m; <...<myg, <oo
1<ki,ka<oc
where
M-l 2mk —1
Conyoomye = Z (—1)31. . Z ( 1)5kX
81=0 5,=0
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((minf s’““}) (max{ 3] )
X [ min e — |max{—,..., — ,
2m 21k 2m 21

Cnl...nk2 ..My -

2m1—1 2™k —1 2mM -1 2"k2 —1
= X ()T Y (F)M Y (- X (<)
s1=0 sk, =0 =0 qry=0

x 1 5 s, sy +1 X
1 k1 . s+ k1
{max{ ST o3 Ry }<m1n{ AT s MRy

x 1 g +17 X
q ko ind ot Tk
{max{ 27T+ 7y }<m1n{ 2T e S

X

A

1 s Sk
{max{max{zﬂ,—‘l,...,ﬂ—ﬁz},max{ ST ees mél }}
i S fatl Gkt s fs4l Sk t! X
<m1n{m1n{ Gt e g },mln{ BT }}}
. (41 Qr, + 1 L [s1+1 S, + 1
X ming min ... min A —
ony R L ’ omy T 9miy
2
S1 skl
—max O —
2,," p) ) 2mkl
ql 9k
— [ MmaX{ max N\ max
oy ? ? ok [
2
51 Sk,
—max c oy om +
27771 2 kq
+2-1 k. : +1 Skl . : +1 gyt
{max{max{;Tll,...,znTQZ},mm{‘;lml e 2,%):1 }}<m1n{m1n{ n 27%@ }., 1}}
L (s1+1 Sk, + 1 S1 Sk,
x | min e, — max e X
2m 27k 27"1 PARS

X | min{ min PN , 1r—
AL My

{ { q1 qu } . {Sl + 1 Skl +1}}>:|
—Imaxq{max R , min ey ;
2n1 2nk2 2m1 2mk1

C(P) —

T
o = [ o(r)dfW, ) = ,t[qﬁml___mk(T)dfT(g); 0<my <...<my
k, my,..., mp =1, 2, ... — are independent as a whole according to
lower indexes or if p # g (p, g = 1,...,m) standard Gaussian random
variables; i1, .9 =1,...,m

N
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2.1 Expansions of integrals of 1st and 2nd multiplicity

Apparently, due to its complexity (in comparison with expansions
according to Legendre polynomials and trigonometric functions), the
given expansions performed using Haar and Rademacher-Walsh systems
represent more theoretic interest than practical one.

Let’s provide some additional remarks in the context of analyzed
problem.

Note, that the following statement is reasonable.

Assume, that &, m, pm, pn;m, m =0, 1, 2,... — are sequences of
random values, moreover

l.i.m. gn m C: lnl_glc é.n,m = HUm, 1m1_>1?& €nrn = Pn;

n,m—00

where (  is a random value. Then

Jim lim M{(um — €)’} = lim_lim M{(&m — )%} = 0.

—00 M—0Q m—00 N—00
We prove this fact as in deterministic case using the inequality:
M{(z — y)?} < 2M{(z — 2)*} + 2M{(z — y)?} instead of the inequality:
z—yl<|z—z[+]z -y
Assume, that

fnm— Z Z 0]2]1 ]: C J*["/) } Tt-

J1=0 jo=

Let’s take for u,, and p, the following formulas

Z (Z le@ ) ) and Z (Z CJ2J1CJ ) it

J2=0 \j1=0 J1=0 \j2=0

correspondingly.
Actually, since

M{(gn,m_p'm)g} i i ]2]1’ M{(&nm pn) }_ Z Z 012211’

=0j1=n+1 =0 jo=m+1

Z 1211S Z Jz]l; Z J2JlS Z ]2]1’

1:2=0 J2=0 J1:J2=0
Z J2]1 = / KQ(tl,tQ)dtldtQ < 00,
J1,J2=0 1]
then

1n1—>ro% gnm = Hm; %l_)m gnm = Pn-
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Then, using the statement given before, we will obtain

J*W}(?)]T,t* Z Z C]QJIC_] ]2 a [ } = Z_: E_: Joa I ](ZZ)a

=0jo=

where the series converges in the mean-square sense, i.e. for example for
the first case

2
i Jim M{ (70— 35 3% ) | =0
J2

The possibility to generalize theorem 3 to the case of multiple
Stratonovich stochastic integrals of 3rd multiplicity seems quite natural.
But this problem as we will demonstrate in the next section turned out
to be rather difficult. However, in the sections 2.3 2.5 this problem will
be solved using the another approach.

2.2 About the expansion of multiple Stratonovich
stochastic integrals of 3rd multiplicity. Some re-
lations for the case of weight functions of gen-
eral form

Investigating in this section the problem connected with a possibility
to generalize theorem 3 for the case of multiple Stratonovich stochas-
tic integrals of 3rd multiplicity using the approach based on series like
(2.26), the auther didn’t obtain general results. However in the sections
2.3 — 2.5 this problem will be solved using the Parseval equality and
formulas like (2.3). In particular, we will show in the sections 2.3 — 2.5,
that in the case ¥1(7),..., Ya(7) = 1541,...,94 =0, 1,...,m and the
system of Legendre polynomials or the system of trigonometric function,
generalization of theorem 3 for Stratonovich stochastic integrals of 3rd
and 4th multiplicity is correct.

In addition in this chapter we will show, that for functions (1),
a(T), ¥3(7) of polynomial type or even for some more general smooth
functions (two times continuously differentiated functions), generaliza-
tion of theorem 3 (cases of Legendre polynomials and trigonometric
functions) for Stratonovich stochastic integrals of 3rd multiplicity is also
correct.

So, let’s try to develop the approach based on series like (2.26) for
multiple Stratonovich stochastic integrals of 3rd multiplicity.
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2.2 About the expansion of integrals of 3rd multiplicity

Let’s write down the relation connecting Stratonovich and Ito
stochastic integrals of 3rd multiplicity:

T ty .
T W, = TP, + %1{1:1:1:2} / ¥3(t3) /¢2(t2)¢1(t2)dt2dft(;3)+
¢ t

1 T t3 .
oLy [ Yalta)alts) [ (0)dfS dts, (2.29)
t t

which is correct with probability 1 and ¢1(7), ¥2(7), ¥3(7)  are con-
tinuously differentiated functions at the interval [¢, T7.

From here we see, that there are the following particular cases:

1. 41,149, 13 are pairwise different;
2. i1 = iy # is;
3. i # g = 13;
4.1y = i3 # iy;
5. i = iy = is.

Here we propose, that iq,49,i3 =1,...,m.

It is clear, that in the first case multiple Stratonovich and Ito stochas-
tic integrals are simply the same. It also relates to the any multiplicity
k, therefore we may use theorem 1 for these integrals.

Let’s analyze the second particular case.

From theorem 1 if 4, = iy # i3 follows, that

T[® 3 5 o ) plin i) _ ¢ (i
[ }T,t— Z > Z Jaj2ii\Sj Sj2 Sjs o T {jlzjz}cjs

plapz,ps—)OO §1=0 ja=0 ja=
def o (i1) +(i1) ~(is)
= 2 stjzh(jf G = 1)
J1:J2:53=0
If we could rewrite the last equality in the form
3
J[¢( )}T:t = Z Cj3j2jl ](fl) ](21) ](;3) - Z C]3]1J1<j
J1:J2,j3=0 J1:J3=0

and could demonstrate, that in the mean-square sense

& G _ 17 7 (ia)
> OCj3j1j1Cj33 =35 [s(ts) [ atr)n (t2)dtrdfsy?, (2.30)
J1,03= t t
then we will obtain
3 < 3 (@) /- . .
J*W}( )}TJ = Z Cj3j2j1 H Cj,l (7’1 =12 7& Z3)7 (231)
J1,J2,J3=0 =1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where the series converges in the mean-square sense.

The author doesn’t have a proof of equality (2.30) in the general case
(leaping ahead we can note, that this equality is true in some practically
important cases: theorems 4 6). We will only demonstrate here, that

T ty
Z Z Jadihh ]3 §/¢3(t3) /wQ(tl)d}l(tl)dtldfh ) (232)
J3=041=0 i t
where the series %0 converges in the mean-square sense, and the series
J3=
> converges in the common sense.

71=0

In accordance with theorem 19 (see also the Ito formula), the last
equality may be rewritten in the following form

T T )
Z Z 013]1]1 = %/101(151)1#2(251)/ ¢‘3(t‘3)dft(:3)dt1
t t1

=0/51=

Let’s show, that
2¢3(t3)¢1(t1)¢2(t1) 1 <t3

Kg(tl,t;;) = t1 >ty =
6¢3(t1)¢1(t1)¢2(t1) th =13
= i Z Clojois @i (1) 052 (£1) b5y (E3), (2.33)
J3=0 j2,j1=0

where t1,t3 € [t,T] and the convergence of series according to ¢; and
t3 is uniform at the any closed intervals laying within the intervals of
continuity of expanded function.

Let’s analyze the auxiliary function

P3(t3)ha(ta) i (tr), t1 <ty <t3
K(th, b2, t3) = { a(ts)hi(ta)ha(ts), to <t1 <ts, t1,to,t3 € [t,T).
0, otherwise

Let’s fix t1, t and expand the function K3 (¢1,t9, t3) using the variable
ts at the interval [¢, T into the Fourier series:

o~ T
Ky(t1,ta,t3) = 'ZO<¢1(t1)¢2(t2) /¢3(t3)¢j3(ts)dt31{t1<t2}+
J3= ts

T
() a(ts) [ s(ts) sy (ts)dtslp—y+
t2
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2.2 About the expansion of integrals of 3rd multiplicity

T

+¢1(t2)¢2(t1)/¢3(t3)¢_i3(ts)dt31{t2<t1}) s (t3) (ts 7 11, t2). (2.34)
t

It is easy to see, that the function staying in the parentheses looks

as follows
(t1,t2) = {Wh)%(tz), f <t

K
(b)) Wy, (th), to <ty

Js

T
U, (s) = ta(s) /%bs(ts)fﬁjg(ts)dt&

Therefore, this function belongs to the Holder class C1([t, T]%) (see
the previous section). Let’s expand it in the square [t, T]? into the mul-
tiple Fourier series, summarized according to Princeheim and substitute
the result into (2.34):

Ké(th t27 t3) =

00 D1 D2
= 'Zo pl_}uizrgoo '20 Zo( Jaj2g1 + 013]112) ¢11 (tl)¢yz (t2)¢13 (t3)
J3= ’ J1=U )2

Thinking ¢; = t2 in this equality, which is correct if t3 # t1, ta, we
get (see the previous section):

1
iKé(tla t17 t3) =

= i io: Clsjoin @i (1) b5, (1) Bjs (83) (83 # t1).

J3=0 j2,j1=0

Let’s analyze the auxiliary function

P3(t3)a(t2) 1 (t1), t1 < ta < t3
P3(t3)h1(t2)Ya(tr), ta < t1 < t3

Riltotat) = L) S A S h o thinta€ ]
1 (ta)ha(ta)hs(th), t3 <ty <ty
Pa(ta) i (t2)h3(th), ta <t3 <ty

Let’s expand this function in the cube [¢, T]? into the multiple Fourier
series, summarized according to Princeheim

Ny N2 N3

K4(t1:t2:t3) n le n3—)oo Z Z Z ]3]2]1 H ¢]l(tl) (235)

=072=0j3=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where

3
C](;J)'Qﬁ = / K4(t1a ta, t3) ll_[l ¢jl (tl)dtldthtS-
[t.T]2 =

The function K4(t1, t2,3) is selected in such manner, that after using
the property of additivity of Riemann integrals and usage of integration
order replacement in these integrals we could get the equality:

1
Cj(sj)'ajl = stjzjl + stjljz + Cjzjljs + Cj2jajl + le]éjs + lejsjz‘ (2'36)
Substituting (2.36) into (2.35), proposing in the obtained equality,

that t; = t9 = t3 and separating the limit in the right part of obtained
equality into 6 limits we get:

%lbl(tl)lﬁz(tl)zbs(tl): io: Ciainjs @i (1) bj, (1) B3, (11).

J1,J2,J3=0

Since

00 N
> Cipnji @i (1) 85, (1) = 5K (ti, 1) =

J1:J2=0

= ;¢1(t1)¢2(t1)/¢3(5)¢j3(5)d5

and because of the well-known statement about reducing the limit to
the repeated one we come to (2.33). The equality (2.33) is proven.
Let’s analyze

T . n . [o¢] 2
M{<%¢1(t1)¢2(t1)/¢3(t3)dft(313)_ _ZOCJ(?) > Chyni®iy (t1)¢jz(t1)) }
J3=!

t, J1:J2=0

_ M{(/T(Kg(tht:;) - % 00 3 Cuanealtenn)ar) ) -

J1,J2=0

T n 00 2
= /(K2(t1at3) — 2 ¢i(ts) X Cj312j1¢j1(t1)¢j2(t1)> dts.
t J3=0 J1,J2=0
The right part of the last equality converges to zero if n — oo because
of uniform convergence of the series according to t3 (t3 # t1, t; is fixed)
at the any closed intervals laying within the intervals of continuity of
expanded function Ks(ty,13).
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2.2 About the expansion of integrals of 3rd multiplicity

So, in the mean-square sense

o0 is o0 1 T is
> G S Ciida(tn)n(t) = ya()¥a(tr) [ valta) it
J3=! J15)2= th
Considering Parseval equality we have

{(/ > C] Z Cagoin @i (t1) bjy (t1)dt1—

t J3=0 J1,J2=0

|
M=

. 00 2
C](;ﬁ‘) ) Z Cj3j2jl¢j1 (t1)¢j2(tl)dt1> } <

J3=0 J1,J2=0

T 0 9
Z < Z CJajz]lqu] (t1)¢j2(t1)) dt, =

L/ o

t Js=n+1

IN

T

= 1 [(9000 (1) [ vis)des

t1
n 00 2
-3 (3 Crugnlten) )an,
J3=0 \j1,j2=0
where L  is a constant.

Because of continuity (here ¢;(7) are assumed to be continuous) and
nondecreasing of members of functional sequence

n 00 2
un(t1) = 32 ( > Cipjn®i (tl)d’jz(tl)) :
J3=0 \j1,j2=0

and because of the property of continuity of the limit function
1 T
u(t) = iwf(tl)djg(tl)/%bg(ts)dts
ty

according to Dini test we have a uniform convergence uy,(t1) to u(t1) at
the interval [¢, T (t1 # t3, t3 is fixed).

That is why, performing the passage to the limit under the sign of
integration in the last equation we obtain in the mean-square sense

S G0 Y Chdi ()65, (t)dty =
Js=0 t Ji1.Jj2=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

17 T .
= 5 [itaa(tr) [ ealta)dff de.
t t

Replacing the sign of integration in the left part of this equality and
the sign of the right series (that is possible due to uniform convergence
of the last one according to ¢; at the any interval [t + &, T — €] for all
e > 0) and taking into account orthonormality of functions ¢;(7), we
come to (2.32).

Let’s analyze the third particular case.

From theorem 1 if 4y # iy = i3 follows, that

J[¢(3)]T,t = Z Cia]zh( ]j 2 ](:1) ](;3) - ]‘{jz:]’s}C]('fl))‘

J1,42,43=0
Again, if we could write down
o0 o0
3 (i1) 4(i1) »(i3) (1)
J[d)( )}Tﬂf = Z Cjajzjl jf] j;] ]';3 - Z stjajl jlh
J1.J2,5a=0 J1.J3=0

and could demonstrate, that in the mean-square sense

Z C]S]S]l /1/)‘5 t3 ¢2 t‘; /1,[)1 t1 dft] dtf;, (2,37)

J1,J3=0

then, because of connection between Ito and Stratonovich stochastic
integrals we could get:

0 3 .
Ty =Y Chgy TLCLY (in # 12 = i),
J1:J2,53=0 =1
where the series converges in the mean-square sense.
Let’s only demonstrate here, that in the mean-square sense

Z Z C]3]3J1 /¢3 t3 ¢2 tS)/wl(tl)dft(lil)dtg, (238)

=043=0
where the series Z converges in the mean-square sense, and the series
51=0

x
> converges in the common sense.
Js=0
Let’s demonstrate, that

Ts(ta)a(ts)hi(t), t1 <ty
K3(ty,t3) = 0, >ty =

§s(tr) i (t)a(t), b =t3
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2.2 About the expansion of integrals of 3rd multiplicity

[o @] o
=2 2 G5 (01) 5, (E3) 854 (t3), (2.39)
J1=0 j2,j3=0
where t1,t3 € [t,T] and the series converges uniformly according to #
and t3 at the any closed intervals laying within the intervals of continuity
of expanded function.
Let’s analyze the auxiliary function

P3(t3)ha(ta) i (tr), t1 <ty <t3
K3(th, b2, t3) = a(t)ha(ts)hi(ts), t1 <tz <ty , t1,to,t3 € [t, 7).
0, otherwise

Let’s fix t9, t3 and expand the function Kj(t1,t9, t3) using the variable
t1 at the interval [¢, T] into the Fourier series.

oC t2
Kj(t1, t2,t3) = .20(71)2(%)%/13(153) / Y1(t)dj, (t)dti L, <1,y +
Nn= t

12

+1ba(t2)3(ts) /1/)1('51)@51'1 (t1)dt1 1,y +

t

‘|r7,b?,(t2)¢2(t3)/3¢1(t1)<15j1 (tl)dtll{t3<t2}) ¢j, (t1) (t1 # ta, t3). (2.40)

It is easy to see, that the function staying in the parentheses looks
as follows

(B 555w 0 e o

Therefore, this function is related belongs to the Holder class
C'([t, T)?) (see the previous section). Let’s expand it in the square [t, T]?
into the multiple Fourier series, summarized according to Princeheim
and substitute the result into (2.40):

Ké(th t27 t3) =
oc P2 P3
= > im0 30 Y (Chgii + Chaisii) G (b1) b (£2) 854 (8)-
J1=0""" J2=0j3=0

Taking t2 = t3 in this equality, which is correct if ¢; # to, t3, we get

(see the previous section):
1 , o0 o0
SKs(tutats) = 3 3 Chonin @ ()i (83) s (83) (81 7 23)-

31=0 j2,53=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

The equality (2.39) is proven. The following proving of relation (2.38)
is similar to the case which was investigated earlier.

In the fourth particular case the considered Ito and Stratonovich
stochastic integrals with probability 1 will be the same, but as it follows
from the theorem 1 the series

ic: C]s - HC] 3

Ja:J2,51=0

generally speaking, may not converges to Stratonovich stochastic inte-
gral J*[¢®)]r, when iy = i3 # .

In this case let’s use the theorem 1 and formula (2.29) if i; = i3 # 4».

Nevertheless, close connection of formulas (2.30) and (2.32), as well as
formulas (2.37) and (2.38) is non-random. In particular, in the following
sections we will demonstrate, that for the case 11(7), ¥a(7), ¥3(7) =1
and the system of Legendre polynomials or the system of trigonometric
functions the formulas (2.30) and (2.37) passes to formulas (2.32) and
(2.38) correspondently.

Besides, let’s demonstrate, that within the frames of the mentioned
case the generalization of theorem 3 for multiple Stratonovich stochastic
integrals of 3rd multiplicity is correct.

2.3 Expansions of multiple Stratonovich stochastic
integrals of 3rd multiplicity, based on theorem
1. Cases of Legendre polynomials and trigono-
metric functions

2.3.1 The case ¥1(7), ¥a(7), ¥3(7) = 1; i1,49,i3=1,...,m
Assume, that ¢1(7), ¥a(7), ¥3(7) = 1 and {¢;(z)}52, — is a full

orthonormal system of Legendre polynomials in the space La([t, T1).
In this section we will prove the following expansion for multiple
Stratonovich stochastic integral of 3rd multiplicity:

*T #t3 *ty . ) . pL P2 P3 )
df(ll)df(lz)df(zs) — lim. DI " (i2) ~(is) def
t/t// t1 to t3 P1,PoPa—00 7200 a0 Jajaj 2 Sj3
def & (i1) ~(ia) A(is
= Y Cinil lele (2.41)
J1,J2,J3=0
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

where the series converges in the mean-square sense, its coeflicients has
the following form:

T s S1
stjzjl = /d)ja(s)/quz (Sl) /¢j1 (SQ)dSstlds
t t t

and il,iz,ig = 1,...,m.
If we prove the following formulas:

Ps3
. def _
s _Z > ChiinC Z CinivinGie” =
oo Jj1=0j3=0 J1,43=0

= (40’3 Nl (2.42)

P1 P3
Clisjsia Clojuis (V) =
P P oo le:ojgz:(] FEVEY] ]]%0 Jajs
= H (o (n))
=17 : - 2.43
4( ) <C0 \/§C1 ) ( )
Lim ZpZaC (i) def S5 o) g (2.44)
P1,p3—0C D0z J1jagn Pl J17351 543 » .

then in accordanee with theorem 1, formulas (2.42) — (2.44), standard
relations between multiple Stratonovich and Ito stochastic integrals, as
well as in accordance with formulas (they also follows from theorem 1):

1T7‘ ] 1 s o (is
3 [ [ asat =37 =0 (6 + —Z=cf9) wop. 1,
t t

1T 1 s [ i 1
[ [dt®dr = (T ¢ §< R—— “1)) p.1
2,5/‘,5/ s T 4( ) CO \/gCl w. p

we will have

Tty , ,
IR RE R TR sl e Ll Sl o
bt J,2:d3 =0
1 T ) 1 T 1 .
s “}5/ t/ dsdf” — 1{i2:i3}§t/ t/ dfMdr.

It means, that the expansion (2.41) will be proven.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

At first, note that the following relations result from formulas (2.32),
(2.38)

17 1 AT
Z Z C]S]l]l 5/ T—t df ia) — Z(T_t)% ( 313) + _Cl(zg))’
t

Js3=0j1=0

1 T 1 ;
Z Z CJ?]%hCJ = 5 // df‘g l)dT =
t

=073=0 b

— Z(T —1)? (Co“ fﬁ“ ) . (2.46)

The series 7'%0 in the left part of the formula (2.45) and the series
ja=
j?zo in the left part of the formula (2.46) converges in the mean-square
sense. The number series j%_so in the left part of the formula (2.45) and
the number series j;§:0 in'the left part of the formula (2.46) converges in
the common sense.

Let’s examine (2.45). It follows from (2.45), that

1 3
Z C10]1.71 = Z(T - t)2 (247)
Jj1=0
S Ciygy = — (T —t)? (2.48)
=0 111 4\/§ ) -
> Clyjijs =0, js 2 2. (2.49)
J1=0

Let’s check formulas (2.47) — (2.49) by direct calculation. Let’s ex-
amine (2.47). We have

(T—1t)
6 b)
80
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

¢0 /¢71 S1 /QSJI 32 dSQdSldS =

2
o(s (/ b, (s1 d51> ds; j1 > 1. (2.50)

Here ¢;(s) looks as follows:

¢i(z) = 2;:1]3 ((s— %) %) i>0, (2.51)

where Pj(z) — is a Legendre polynomial.
Let’s substitute (2.51) into (2.50) and calculate Cp;,;,; j > 1:

. z(s) 2
2ih+1 T T—t
Cojuiy = T~ Puly)—dy| ds=
0171 2(T . t)j / (4 J (y) 9 y)

— T (2(s) , , 2
(2j1+1§mt/(_/1 2j11_|_1(le+1(y)lel(y))dy) ds =
VT —t T \
= i1 ] (PG = P s, 25

where z(s) = (s — %) e -

ties of Legendre polynomials:

Pi(y) =

and we used following well-known proper-

(R , |
2 +1 (Pia(y) = Piaay)s 5> 1,

Pi(-1)=(-1); j > 1.

Also, we denote %(y) dof PJI(y)

From (2.52) using the property of orthogonality of Legendre polyno-
mials we get the following relation
(-0 :
Cojujy = 16(QT/l 1 (y) + Pi_i(y) dy =

(T—t)3< 1 1 )

= ; ; +
8(2j1+1)\2/1+3 251
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where we used the relation

Then ,
T —t)2
Z COJm = %‘*‘
(T—Q%Qw 1 © 1 )
+— . . + . =
8 D@Dty T
T—4): (T—t): (= 1 1 = 1
= 6)4J 8) ( 452 13+Z:421)=
ji=12J1 — ji=12J1 —
_(Tt)3+(Tt)Z<1 1+1)_(Tt)i
6 8 2 3 2/ 4

The relation (2.47) is proven.
Let’s check correctness of (2.48). Represent Chj,j, in the form

) (t/s by (sl)dsl>2ds —

LT
Chjj = §/¢1(S
¢

_ (T — )E(fél +1)v/3 / Pi(y) (/ le(yl)dlh) dy; j1 > 1.

Since functions

2
(/ yld"ll) ;> 1
are even, then, correspondently functions

2
Y
) (/ le(yl)dyl) dy; 1> 1
—1

are uneven.
It means, that Cyj,; = 0; 71 > 1.
Besides
V3(T = 1)} (T —1)?
Cip=———— +1)%dy =~ 2.
100 = 16 /1y Yy )dy = 43
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Then .
< < (T —1t)2
201'1'1201004'201'1'1:7‘
= = 43
The relation (2.48) is proven. Let’s check correctness of formula
(2.49). We have

oo o0 1T s 2 )
5 Cun= 3 [0u06) ([oaoan) as nz2 o
Jj1=0 jl:02.t 1

It is easy to see, that the integral f $;,(s1)dsq is a Fourier coefficient
i

for the function

N 1, s1<s .
K(s1,5) = {0, otherwise ' 5105 € [t, T].

The Parseval equality in this case looks as follows:

oo H 2 T s
2::0 (/ ¢j1(51)d81> = /KQ(sh s)ds = /d81 =s—t. (2.54)

Taking into account the nondecreasing of functional sequence

2
un( X (/ ¢]1 S1 dsl) s

Ji=

continuity of its members, as well as continuity of limit function u(s) =
s — t at the interval [t;T] we have according to Dini test the uniform
convergence of functional sequence u,(s) to the limit function u(s) =
s —t at the interval [¢, T'.

Then from (2.53) and (2.54) using the uniform convergence of func-
tional sequence u,(s) to the limit function u(s) at the interval [¢, T] we

have )
(/ &5, (s1) dsl) ds =

/@3 (s —t)ds = 0; jg > 2. (2.55)

JaJl]l = / ¢]3
]

j1 1=

Obtaining (2.55) we used the well-known feature of Legendre poly-

nomials: .

/ﬂ@f@z&j>b (2.56)
-1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

The relation (2.49) is proven.
Let’s prove the equality (2.42). Using (2.48) we get

P DP3
Z Z C]3]1]1 =
J1=073=0

2 . T —$)3 pL P
= Z COlelC(gzs) ( 4\/—) (ia) + Z Z C]'i]l]l(]

J1=0 =0j3=2
D1 . (T — t)% Z P 21+2 ;
=3 Coji ¥ + 4\/3 TEY Y Gl (257)
Jj1=0 J1=0 j3=2,j3—even

Since

s 2
(T —t)2(2j1+ 1)v2j5+ 1
stjljl = 16 / / yl dyl dy

and the degree of polynomial

s

equals to 2j; + 2, then using (2.56) we get Cj,;,;, = 0 for jz > 2j; + 2.
It explains the circumstance, that we put 2j; + 2 instead of p3 in right
part of the formula (2.57).

Moreover, the function

(/y le (yl)dyl)

is even, it means, that the function

v) ( /r, (%)dy])

is uneven for uneven j3. It means, that Cj,;,;, = 0 for uneven js. That is
why we summarize using even j3 in the right part of the formula (2.57).
Then we have

»m 2j1+2 2p1+2

Z 2 Cj3j‘j‘ ](;?) = > Z Cj3jlj1 ](;q) =

1=0 j3=2,j3—even ]3=2,j3—even] 13;
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

2p1+2 y24!

= Z Z C1]3.71]1 . (258)

Js=2,js—even j1 =0
We replaced JST_Q by zero in the right part of the formula (2.58), since
Cjﬁjljl =0for 0<j; < ]3772
Let’s put (2.58) into (2.57):
p1 p3 p1 ) ( )%

Z Z C]’a]l]lcj IXZ:OCUJIJIC(SZ3) \/— Cl

J1=0 jz=0

2p1+2 J2!

+ Z Z C]3]1J1 ‘ (259>

Jj3=2,j3—even j1=

It is easy to see, that the right part of the formula (2.59) doesn’t
depend on ps.
If we prove, that

2
1 Ps 1 3
lim M C’311 —fT—t5<(: §13>) =0,
lim {(zz i Y= I
(2.60)
then the relaion (2.42) will be proven.

Using (2.59) and (2.47) we may rewrite the left part of (2.60) in the
following form:

| 2 (=) o % :
p}lj}noc M ( 2_20 Cojijr — ) Co > Z CJ3]111 )

Jz=2,j3—even j;=0

) P1 (T _ t) ) 2p1+2 P1 2
= lim ‘Z:O Cojljl - 4) + lim Z (Z Cjajljl) =

prroe js=2,j3—even \ji=0

2p1+2 2
= lim Z Z CJ?]l]l) : (2'61)

—00 .
n J3=2,jz—even \ji=0

If we prove, that
2p1+2 2
p}l—r>noo : 2 Z CJ3JIJ1) =0, (2.62)
Jja=2,j3—even \j;=0
then, the relation (2.42) will be proven.
We have
2p1+2 4l 2
Z (Z C73]1]1> =
Js=2,js—even \ji
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2p1+2

2 2
= %1 Z (/ ¢J3 (/ (15]1 31 dsl) ds) =
j3=2.] t ]1—0

J3=2,js—even

1 2p1+2 T ) 5
- 413:2,%:—even (‘t/ ¢j3(8) ((S B t) ]1—p1+1 (/ ¢J1 Sl dSl) ) ds ) =

1 242 T 2 2
= - ; )d d
4 ]'3=27%:—9Ve“ (t/ ¢]3( ) IJ1+1 (/qul Sl 81) s) :
2p1+2 T 2 2
<% 3 (/ | ia(s) | (/gb]l (s1) d51> ds) . (2.63)
t 11—p1+1

Js=2,js—even

Obtaining (2.63) we used relations (2.54) and (2.55).
Then we have

(i¢jl(51)d81> - m (/ Py ) _
¢ 2(s) , 9
2]1+ (/1 i) = P 1(y))dy) =

T—-1

= 4(zj 1 1) P G0 = B (L))
< 2(5;1_:1) (P} 1 (2(8) + P}y (2(s))) (2.64)
where z(s) = (s — %) 2

Tt
For the Legendre polynomials the following well-known estimation is
correct:

K
| Paly) < s y€e(-1,1); neN, (2.65)

Vn+1(1 —y?)s
where the constant K doesn’t depend on y and n.

The estimation (2.65) may be rewritten for the function ¢,(s) in the
following form:

2n+1 K 1
T <

|¢n(5) |< T
PTG (- ) 2)7)'

2
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

K, 1

T_t<1—(( T+t )

Let’s estimate the right part ( .64) using the estimation (2.65):

o Ki=KvV2; se(t,T). (2.66)

s 2 T —t KQ K2 1
(t/dm(s])da) < 2@ 1) (jl okl ]l) m <
(T -t)K? 1 ‘
2 (- () ° (.7, (2.67)
where z(s) = (s T;'t) T2t

Substituting the estimation (2.67) into the relation (2.63) and using
in (2.63) the estimation (2.66) for | ¢;,(s) | we get:

2p14+2 P 2
Z (Z Cj.’)‘jljl) <

J3=2,j3—even \j1=0

2
- (T —t)K*K?  2¢t? T ds i 1|
16 ja=2,jz3—even | (1 > ((S _ %) %)2>} ji=p1+1 ]12
2
(T = )P3K*'K2(p1 +.1) /1 dy g1 2 s
a 64 -1 (1—y2)% Ji=p1+1 .]12 . .
Since
1
2.69
Loz 20
and .
x 1 dx 1
£ oLeft 270
Ji=p1+ J1 D1
then from (2.68) we find:
2p1+2 P1 2 C(T —t 3 1
> (Z Cj3j1j1> < )2(”1 +1 0 with P — 00,
j3=2,j3—even \j1=0 1
(2.71)

where the constant C' doesn’t depend on p; and T — ¢.
From (2.71) follows (2.62), and from (2.62) follows (2.42).
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Let’s examine proving of the equaity (2.43). From (2.46) we get

1 3
Z Clyjs0 = 4(T —1)?, (2.72)
j3=0
5 Chapis = (T~ D, (2.73)
o FEVENIE 4\/5 .
Z Cijsjl =0, 51 > 2. (274)

j3=0

Let’s check formulas (2.72) — (2.74) by direct calculation.
Let’s examine (2.72). We have

Z Cjyjs0 = Cooo + Z Cjyjs0

j3=0 ja=1
T —1)3
Cooo = -2 5 ) ;
§ 1
2 _
Ciajs0 = m /1 ri(y) + P _(y) dy =
_(T—t)i( 1 N 1 )_>1
T 825+ 1)\25+3 255 —1)7 =T
Then ,
& (T —1t)?
> Cigjpo = 6
ja=0
(T—QECw x 1 )
i . T . .
8 \Z Gt )@ +3) T g1
T—1): (T—13 (= 1 1 = 1
6 8 ja=1 455 -1 3 j3=1 455 — 1

(T —t)3 (T—t)3<1 1 1>:M

6 T 3 2 32 4

The relation (2.72) is proven. Let’s check the equality (2.73). We have

T s S1
Ciiir = [ 93a(5) [ di(s1) [ 61 (s2)dsadsrds =
t t t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

T
/ (s2 d32/¢,3 S1 dsl/¢,3 )ds =
t

= %/‘ﬁj](sﬂ (/ ¢j3(51)d31) dsy =

3 2
T—1)2(2j5+ 1)v/251 +1 .
=9 ]316 = / (/ (11 dy1) dy; jz 2 1.

(2.75)
Since functions

1 2
(/Pja(yl)dyl) ;g3 >1

Y
are even, then functions

9
(/ (1) dyl) dy; 33 > 1

are uneven.
It means, that Cj,;,1 = 0; js > 1.
Moreover
V(T -t} (T - 1)
001 16 7/1 y( y) y 4\/3
Then 3
(T —1):

ZC 1= Coo + ZC 1= ——F7=—
Py FEXE i J3Js 4\/—

The relation (2.73) is proven.
The equality (2.74) may be proven similarly to (2.49). We have

2

Z C]3J311 = /¢]1 52 (/ ¢]3 $1 dS]) dsy =
Ja=0 Je

17 ’

5/ (/ d)‘,q S1 dsl) d52

t .73 =0 \$2
1 T
= E/QSJ'I(SQ)(T - SQ)dSQ = 0; jl 2 2, (276)

t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where we used the Parseval equality in the following form

2 7 T
(/ ¢J3 81 dsl) = /KQ(Sl, 82)d51 = /d81 =T — 59, (277)
=0 t 59

S2

N l, S < 81 .
K(s1,82) = {O, otherwise ' 51 52 c[t,T]

and the fact, that the series in the left part (2.77) converges uniformly
according to Dini test. The relation (2.74) is proven.
Using the obtained results we have:

P1 p3

Z > ChiiG

=073=0

(T -1 t)% P
O Z] _ 11 + C —
]327 ]3]3060 4\/3 ZO ]E FEVENEL

( ) Ps3 2j3+2

- zcmgo@“ - My Y Gl (218)

Js=0 J3=0j1=2,j1—even
Since
stjzjl 5
2
T —1)2(2j5 + 1)v/2j1 + 1 / .
-1 Yy

and the degree of polynomial

(/ P, (yl)dyl)

equals to 2j3 + 2, then using (2.56) we get Cj,j,;, = 0 for j; > 2j5 + 2.
It explains the circumstance, that we put 2j3 + 2 instead of p; in the
right part of the formula (2.78).

Moreover, the function

(,/ Pjs(yl)dyl)

is even, it means, that the function

)
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

is uneven for uneven j;. It means, that Cj,j,;, = 0 for uneven j;. It
explains summation of only even j; in the right part (2.78).
Then we have

P3 2j3+2 (i]) 2p3+2 (i])
> X GGl = X > Ciainin Gy =
j3=0 j1=2,j1 —even J1=2,j1—even j, 11 -
2p3+2
= Z Z CJ%J%chj . (2‘79)

J1=2,j1—even jz=0

We reptaced jl;Q by zero in the right part of (2.79), since Cj,j,;, = 0
for 0 < j3 < ’%2
Let’s substitute (2.79) into (2.78):

P D3 (T —t)?

(i1)
20]325 CJSJle ]32; C1J3]30<011 - WCIH +
2p3+2 P3
+ Z Z 0]3]3]1CJ . (280)

J1=2,j1—even jz=

It is easy to see, that the right part of the formula (2.80) doesn’t
depend on py.
If we prove, that

P P3 3 i 1 i1 ’
lim M{ Z Z C]%J%HCJ ( _t)i (C(()l) a ﬁgl( ))> }: 07

Pp3—0 i1 =0 j2=0
(2.81)
then (2.43) will be proven.
Using (2.80) and (2.72), (2.73) we may rewrite the left part of the
formula (2.81) in the following form:

. (T LA LR ?
pll—r>noc M (( Z C]3J30 ) CO _22 Z C]s]sh )
]37 ]1 ,J1—even J3

) p1 (T _ t)% . 2p3+2 P3 2
= lim > Ciyis0 — 1 + lim > Z Chajsin | =
=0

e
Pamvec J1=2,j1—even \jz=

2
= lim > Z Cmsh) .

—00 .
s J1=2,j1—even \j3=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

If we prove, that
2p3+2 2
pll—r>noc _ 2 Z C]SJB]I) =0, (2.82)
J1=2,j1—even \jz=0

then the relation (2.43) will be proven.
From (2.75) we get

2p3+2 2
Z Z CJ3]3 71) =

J1=2,j1—even \j3=0

2

1 2p3+2 T P 2
- Z . Z /¢j1(52 = (/¢]3 31 dsl) dso =

J1=2,j1—even \ S2

= i . 21’52 (/ ) (s2) ((T s2) — L p3+1 (/ bjs(s1 dsl) )d52)

J1=2,j1—even \ } s2

1 2p3+2 T
Z Z (/ b, (s2) (/gzsjg 51 dsl) dSQ) <
] —even ]3 p3+1

t S2
1 2P3+2
< Zl (/ | ¢]1 32 (/ ¢]3 S1 dSl) dSz) . 2 83)
J1= 2711 even 13—103+1

32

In order to get (2.83) we used the Parseval equality (2.77) and relation

(2.76). Then we have
T
(/ ¢j3(51)d81) =

_ (T_ t) ) — P; z(s 2
= m (P41 (2(s2)) — Pjy—1(2(s2)))
Tt

< gz 1 1) (Pt (:(52) + Py (3(52)))

rol—|

< T ¢ ( K? +W> B <
225+ D)\ +2 G ) (1 (2(s9))?)
(T —t)K? 1
205 (1- (2(s2))”)

92

e (t,T), (2.84)
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

M)L

where z(s3) = (s2 — TF1) 12,

In order to get (2.84) we used the estimation (2.65).

Substituting the estimation (2.84) into relation (2.83) and using in
(2.83) the estimation (2.66) for | ¢;, (s2) | we get:

2p3+2 s 2
> (Z Cjajsjl) <

J1=2,j1—even \j3=0
2
T—t)KK? 22 T ds w1
< % 2 DD
j1=2,j1—even | } (1 . (( , — %) %)2)4 jampat1J3
2
T— 13K K2(ps+1) [} d o 1)2
_ ) i(ps+1) / y i ( > ._2>  2sm)
04 S (1=yD)1) N\ia=pa+173
Using (2.69) and (2.70) from (2.85) we find:
2t L oM -1)3(ps+1
Z (Z st.isjl) ( )2( 3 ) — 0 with D3 — 00,
j1=2,j1—even \jz=0 D3
(2.86)

where the constant C' doesn’t depend on p3 and T" — t.

From (2.86) follows (2.82) and from (2.82) follows (2.43). Relation
(2.43) is proven.

Let’s prove the equality (2.44).

Since ¢1(7), ¥a(7), ¥3(r) = 1, then the following relation for the
Fourier coefficients is correct (see section 1.2):

1
Cj1j1j3 + Cj1j3j1 + Cj3j1j1 = §CJ210]'3,
where C; = 0 for j > 1 and Cy = v/T' —t. Then w.p.1
& (@) _ = (1 (i2)
) Z lejsjl ng = Z ECjIst - Cj1.71j3 - Gi3jlj1 jg (287)
J1,J3=0 J1:Ja=0

Therefore, considering (2.42) and (2.43), w.p.1 we can write down the
following;:

S Ciii () _ Lo _ DR I SRR O
L J1J3i1553 ) 050 4 J1J1735]3 L JsiigiSgs
J1,45=0 J1,js=0 J1,J5=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

_1 30 _ Lop g (o _ 1))
= 5 =i - = (7 - i)
_1 A (i2) | _
A=) (Co \/gCl )70. (2.88)

The relation (2.44) is proven. So, we have proven the following ex-
pansion for multiple Stratonovich stochastic integrals of 3rd multiplicity
for the case of Legendre polynomials:

TP gp g gtin) _ & YA
[ [ ]aEaEPae = S G GUGIGY, (289)
t ot ot J1:2.43=0

where the series converges in the mean-square sense,

T s S1
stjzjl = /¢13(S)/¢j2(81)/¢j1(52)d52d51d3
t 1 t

and il,ig,ig = 1,...,m.
It is easy to see, that the formula (2.89) may be proven for the case
i1 = 19 = 43 using the Ito formula (also see section 6.3):

*T xtg xto

3
[ Jaranan G fareo) = (i)' -
t t t t

= Conns 666",
where the equality is fulfilled with probability 1.

Let’s analyze expansions of specific multiple Stratonovich and Ito
stochastic integrals using obtained results and the system of Legendre
polynomials.

Assume, that

T to .
L = [— ) [ =) af L dfyY,
t

t
*T *xto .
LU = [ =) (- t)hdE L dE,
t i
where t1,...,4,=1,...,m; ly,..., [z =0, 1,....

The direct calculation according to theorem 1 provides:

i = (R S 1)+
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

a8 (1 ) -
(T — 3 1 (1) ~(i3) 12 \/_ i) i)
( t) 6C G + Cl \/—C2

+i1{11 =i} <C \[gl \fgg + el )

]. Zl ll 11
Lo (67 - 7@ : f@ +G) +
1 i9 iz 12 RPYES
+81{i1=i3} (C((] )~ %Q( )+ QT,t) + ZDgr,t )} ;
6 = VT =",

-t

s(inia) T i) (i) 1 (i1) ~(in)  a(in) o(in)
IOO - 92 |: +Z\/r{C C Cz C@l}:|a

i) T =1 sy (T <1)? iz) ~(in
Loy, = — 9 Ioop,” — 1 ﬁ(o G+
(U D™ — 2™y (g )
@i+ 1)2i+5)(2i+3) | (2i-1)(2i+3)/))
Dgl:ltiziﬁ‘) —
= > NigK g g i 1 ¢ )4
= i=1,7=0 k=i iR 1 k41,520 1164 k
2i>k+i—j>—2; k+i—j even
o i—1 . - .
+ iZIijo kzzjl Nz‘ijk+1,i+1,%+1Ci(“)CJ('”)CIEZS)_

2k>k+i—j>—2; k+i—j — even

_ K [Te \ —
i=1,j=0,k=i+2 R4 E-1850 55 Sk
2i+2>k+i—j>0; k+i—j even

«  itl (i) #(i2) »(43)
- )IREDY Nit K 4 q 0 G VGG —
i=17=0 k=1 WETESLHL RSN B Bk
2k—2>k+i—j>0; k+i—j — even
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

B % N K s _C(il)c(h)c(ia)_
) e \
i=1,j=0,k=i~2,k>1 WETHSLEHLERSN B Bk
2i—2>k+i—j>0; k+i—j — even

00 i—3 i i i
- XX NijeKy 1,4 @Ci(“)CJ('“)CISZS)‘F
i=1,j=0 k=1 o2

2k+2>k+i—j>0; k+i—j — even

+ %‘é N K o C(il)c(i2)c(iﬂ)+
i=1,j=0,k=i R k=1,557-150 55 Sk
2i>k+i—j>2; k+i—j even

x il (i1) 4(i2) ~(i3)
+ i:l,zj:O kgl Niijk,Li,L%flCi Cj Ckay

2k>k+i—j>2; k+i—j — even

(is) x <l (ia)

E 3

Gry=—>. { > NijeKj i pr1, k416 +
j=1 \k=j, k — even

j-1 )
+ > ijkKk+1,j+1,§+1C1gzg)_

k=1, k — even
2j—2

(i3)
- > Nijie K 1 he1,5C
k=j—2, k>1, k — even

AN (iz)
- > ijkKk—H,j—l,ng% -

k=1, k even
2j+2 (i3)
3
- Z ijkKj+1,k—1,§€k -

k=j+2, k — even
& (iz)
3
- X NipKy G0+

k=1, k — even
<l (is)
13
+ X NigKjapasaG i+

k=j, k even

j=1 )
+ > ijkKkl,jl,;‘lCIgls)} )

k=1, k — even

(i2) 3 o 2i+2 (ia)
QT,t = D) > > NijiKi+1,i+1,z‘+1—§Cj -
j

j=0, j even

96



2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

2i

—2 Z NijiKi_Li_Li_%’Cj('ZZ)—i-

j=2, j —even

55l N.. K lia)
+ > iji i—],i—l,i—l—%gj )

j=0, 7 even

where
1
Niip —
ik \J(2k+1)(2j+1)(2z’+1)’
K _ Om kOkGn k| 2n+2m—4k+1 (2k - 1N m<n
i,k amenr | 2+ 2m—2k+1 R e

On the other hand, in accordance with (2.89) we may use more com-
pact expression:

*(i1421 1 211 2
B = (R ) +

1 i Q1i2 iady
+§IO(T3,3 (Ioé ) 100( ))—

1 oy g ) \ 1 1 .
—(— 0 [5G (6 + vad - o)+ o

or
(iviis) _ L fr(is) i) g i)
Toor,” = —7=3 (B nse + 15 hee”) +
1. i w(ini
D (s~ ) -
1
—(T—t)% [EC(Z )423 < is) +\/’Clzz \/—CQD) %1;213)}_"_
1 .l .l

+1{21 12}2]1(23) 1{1-221-3}5 ((T — t)]ézTi) + Il(sz) ,

where

1—1(?,5 = _5( )% (Co + 7(1 ) )

C] = f bj(s)dfD; {¢;(x z)}52, — is a full orthonormal systems of Leg-

endre polynomlal% in the space Lo([t, T7).

Let’s prove some generalizations of expansion (2.89) for the situation,
when ¢;(7) = (t — )% I; = 0, 1, 2,... are fixed natural numbers;
i=1, 2,3
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2.3.2 The case ¥ (1), ¥a(7) = (t—7)}, ¥3(1) = (t—7)8; i1 = iy # i3

In this section we will prove the following expansion for multiple
Stratonovich stochastic integral of 3rd multiplicity:

T x5 %81
[ (=9 [t =) [ (2= sa)fatatiat =
t t t
S (i) ol02) flis) (o o e
= . Z OCj3j2j1 Jj1 Sj2 Sj3 (21 =12 74 13; 11,112,113 = 11 .. 'am);
J1,J2,)3=

(2.90)
where the series converges in the mean-square sense; [,I3 =10, 1, 2,...
and

T s S1
Clajnin / )t —s la/ (t — s1)'dj,(51) /(t — 59)'$j, (s9)dsadsids.
i i i
(2 91)
If we prove the formula:
00 1 T g (i)
Y. CijiG =5 [t~ Bt — s1)2ds df @), 2.92
2/ ) /( ) (2.92)

where the series converges in the mean-square sense and the coefficients
Cj,j.j, has the form (2.91), then using theorem 1 and standard relations
between multiple Stratonovich and Tto stochastic integrals we get the
expansion (2.90).

Using theorem 1 we may write down:

17 s Z 1 2+s+1 _
E/(t—sl’/t—a lds1df*:§ Z C’hg"] .p.- 1,
t t Jja=
where
5 T s
Cj, = [ dis(s)(t = 5)" [(t = 51)"dsds.
t t
Then
Pz M (is) 1 2++1 (is)
Z Z C]3]1]1 - 5 C]'3<j3‘ =
J3=041=0 J3=0
20+13+1 P1 1 ~ 13)
= Z (Z stjljl - EC ) C + Z Z CJ3]1J1
ja=0 \j1=0 Ja=2l+13+2 j1=0
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Therefore

1

. P3 1 L
Pl:%lsrgoo M { (]220]12 CJS]IJlC] 5 (t — S)

“\Gn

2
(t — 81)2ld81dfs(i3)) }

. 20+13+1 1 -
= p}gnoo j32=:0 ‘12::0 Cj3j1j1 - EC ) +
2
+ lim M ( Z Z Ci.ii ) . (2.93)
P1,P3—00 { PRy Y Jagi
Let’s prove, that
. 2! 1~ 2
p}l—gnoo '12::0 Cjajljl EC = 0. (294)

We have
1.\2
(Z 013]171 o 201'3) =

J1=0

8

(1 > /% (/¢j1(51)(t_51)ld51)2d5_

t

—%/%(8) ’3/5 t = s1) d51ds) =
1(7 2
:4(/¢j3(5)(t_ (11 0(/¢]1 81 t—sl) dsl) _
- /s(t — sl)2ld51> ds)
1% 5
= Z (/ ¢j3(s)(t - 5)l3 (/(t — 81)2ld81—

t

- i (/ ¢ji (51)(t — 1) dsl) t/s (t —s1) ldsl) ds)2 -

Ji=p+1

(/qﬁjs )(t—s)!

2

(/qﬁh s1)(t — s1) d51>2ds) . (2.95)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

In order to get (2.95) we used the Parseval equality, which in this
case may look as follows:

T

(/QS]I (s1)(t — s1) dsl) :/ (s, s1)ds1, (2.96)
J1= 0

t

where

— (t—Sl)l, s1 <8,
K(s, 1) = {O, otherwise 5,01 € [LT].

Taking into account the nondecreasing of functional sequence

up(s) = (/(15]1 s1)(t — s1) d31>2,

J1=0

continuity of its members and continuity of limit function
S
s) = /(t — 51)%ds;
i

at the interval [t, T'] in accordance with Dini test we have uniform con-
vergence of functional sequences u,(s) to the limit function u(s) at the
interval [t, T).

From (2.95) using the inequality of Cauchy-Bunyakovsky we get:

D1 ]_ - 2
'z—:O stjljl - 70]'3 <

2
1 7T : T s 5 l 2\ 2
S Z/¢?3(S)(t — 5)2 ?ds/ (jl_%_H (t/ d)jl (S])(t — S]) ds]) ) ds S
S 213/ %5 —t)= i(T —p)Petle? (2.97)

when p; > N(g), where N(e) is found for all € > 0.
From (2.97) it follows (2.94).
Further
DL 3 p1 20+ 1)+ (is)
Z Z CJ3]1]1 Z Z stjljl ja * (298)

J1=0 js=2l+I3+2 J1=0 ja3=2l+I3+2
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

We put 2(j1 + 1 + 1) + I3 instead of ps, since Cj,j;, = 0 for jg >
2(j1 + 1+ 1) + I3. This conclusion follows from the relation:

s 2
13]1]1 = /¢J3 S)ls (/ ¢j1(51)(t - Sl)ldsl) ds =
t

1
=3 / 01 (5) Qe +141)41,(5) s,

where Qa(j, +1+1)+1,(8) is a polynomial of the degree 2(j1 +14 1) + I3.
It is easy to see, that

pi 201 +HI+1)+ls (i 2piH+1)+ls py

13 _
Z Z ]3]1]1( - Z Z C]3]1]1 . (299)
71=0 j3:2l+l3+2 Ja= 2l+13+2 j1=0

. . . P1
Note, that we introduced some coeflicients Cj,j,; in the sum > |
J1=0

which equals to zero. From (2.98) and (2.99) we get:

2 s (is) 2 2pr++1)+l5 py 2
M (Z Z Cj3jlj1 ~j3,3 ) =M Z Z C]3]1]1

J1=0 jz=21+13+2 Ja=21+134+2 ji1=

2(pr+1+1)+ls

) 2
= Z (Z C]’&]l]l) =

Jz=21+I3+2 \ji
(p1+l+1 JERA 1 pl s 2 2
- /¢]3 —5)" (/ i, (s1)(t — Sl)ld51> ds
13_2l+l3+2 Jl =0% p
2
1 2+ 4 (T » 9
:1 Z /¢]3( )(t—sl? </¢]1 81 t—Sl) d51> ds| =
j3=2l+13+2 t 71=0
1 214+ (T s
=7 Z ¢'3S t_313< t— s Qldsl—
4 Ja=2l+13+2 t/ ! ( )( ) t/( )
2 2
N (/ 5 (s1)(t — s1) d81> ds
Jl—p1+1
2

1 2(p1+i+1)+s

> (/¢j3<s><ts>

4 Ja=2l4+13+2

(/ é; (s1)(t — 51) dsl)st)

= 111+1
(2.100)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

In order to get (2.100) we used the Parseval equality of type (2.96)

and the following relation:

T
/¢j3(5)Q21+1+13(s)d5 =0; j3>2+1+1s,

where Qo+141,(s)  is a polynomial of degree 21 + 1 + I3.
Further we have

(/ & (s1)(t — sl)ldsl>2 _

2

(s)
(T _ t)2l+1 2]1 +1 2
= 920+2 / P]l 1 +y dU =

_\2l41
~ g7y (14 260 (Pron (16)) = Paa (:(5) -
z(s) 9

1 [ (Pras) = B (1+9) " dy) <

-1

(T —t)2+12 ((z(s—t))2l (P; 41 (2(s)) — Pj_1 (2(5)))* +

= 22225, + )\\ T —¢
2

2(s)

+ (/ (Piiei(y) — Pi-a(y) (1 +y)l_1dy) ) <
(T B t)2l+1 21+1 2 2

< g 5 (2 (Phan () + Py () +
2(8) 2(8)

H2 [ (49" 2y [ (Paly) - Piea(9) dy)

INA

T — 21+1 o1
< oy ) (27 (P GO + P2 Glo0) +

212 (2(8_1&))”” ’f)(Pz ()+P]_21_1(y))dy)g

a1\ T a1ty
(T =" () o :
< i 1) (2 (Ph ) + Py () +
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

l2 2(s)
Tor1 1 (Piily) + Praly ))dy>, (2.101)
where
(s) = ( _ E) 2
= 2 )Tt

Let’s estimate the right part of (2.101) using (2.65):

s 2 (T _ t)2l+1 KQ K2
(t/ dals)(t = Sl)ldsl) = 202+ 1) (h +27 ]1) *
2 12 2(s) dy )
1 + 1
X ((1_(2(8))2)2 2[—1_-/1 (1_y2)§ <

(T _ t)21+1K2 9 l27r

<—5n P )% T 1) se(t,T), (2102)
where z( ( )

From (2 100) ( ) we get:

2
()
{ stjl]legs ) } <
Ji= 0]3—2l+l3+2

2(pr+l+1)+13

VAN

(/ | $a(s) | (2= 5)" x

1
4 J3=2l+13+2

X (/ b, (s1)(t — s1) dsl) ds)

J1= 1+1

2

2(pr+Hl+1)+s

1o ,
<gT-vr X ( [ 1) | >
%) 5 2 2
DY (/¢j1(31)(t—81)ld81> ds)
Ji=m+1 \}

(T — )4+ A2 2(p1+lz+1)+ls T 2ds n
16 Ja=20+15+2 (1-
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2
2r T ds © 1
+ 1 Z 9 S
-1 / (1- <z<s>>2)4) i 7t )

2
- (T — t)41+213+3K4K2 2p1 + 1 (/1 2r /1 )
= 3 1
64 1 1— 4 21 4 1 — )4
2 1
< (T — ¢y PL T2 1, 0 when py = oo, (2.103)

i
where the constant C' doesn’t depend on p; and 7' — ¢, and z(s) =

((s = 75%) 2
From (2.93), (2.94) and (2.103) follows (2.92), and from (2.92) follows
the expansion (2.90).

2.3.3 The case 3(7),%s(7) = (t—7),, b1 (1) = (7)1 i3 =49 # i3

In this section we will prove the following expansion for multiple
Stratonovich stochastic integral of 3rd multiplicity:

*T %5 *81
[(6=s) [(t=s)! [ (@) atPatiae =
[ t 1
= Y Cipa D (i =iy £ iy i, i3 = 1,...,m),

J1:J2,33=0
(2.104)
where the series converges in the mean-square sense; I,1; =0, 1, 2,...
and

T s
Cisinii = [ dis(s)(t = 9)' [ (£ = 51)' 5, (s1 / (t — 52)" ¢, (s2)dsadsyds.
t t

t
(2.105)
If we prove the formula:

00 (i)
Z Cijle»jl =3

J1,J3=0 2

[a—y

(t— )" [(t—s1)"df) (2.106)
t

where the series converges in the mean-square sense and the coefficients
Cjyjsjr has the form (2.105), then using theorem 1 and standard relations
between multiple Ito and Stratonovich stochastic integrals we get the
expansion (2.104).
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Using theorems 1 and 19 we may write down:

T K]

1
E/t—s”/ s1)ldfds =
t t
1 7
2l i
5/ (t —s1) / —s) dsdfgl) =
t S1
1 20+4L+1 3
=, ¥ GgVwot,
71=0
where
Gy = [ b (s1)(t — s1)!" [(t — 5)"dsds,.
t 51
Then
P1 P3 121+ll+1 ~ (i)
> X Cmsh D) > Gy =
J1=0j3=0 71=0
20+ +1 1 N z]
= Z (Z C]%]'i]l - 50 )C + Z Z CJquhC]
71=0  \js=0 J1=21+1,+2 j3=0
Therefore
1 D3 T s 2
1 21 1 i
pl,lpl_r;goo M (Z > 013]3]1 / (t—s) / (t—s1) ldfs(:l)ds)
J1=0ja=0 t f
) 2l+1;+1 1. 2
= hzo 32: Clajain — 2011) +

+ lim M{( 5 ZC’MM )2} (2.107)

P1,p3—r00 G1=20+1+2 jz=

Let’s prove, that

2
1.
lim (Z Ciujsir — aCh) = 0. (2.108)

pP3—0
js=
We have
1. 2
(Z C]3]3J1 - 2le> =

J3=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

(Z/¢71 32 t_52 l1d52/¢]3 81 t—S1 d81/¢]3 t—s)ds—

Js=0%
T

17 2
T 9 / @5 (s1)(t — s1)" /(t - s)Qldsdsl) =

10 7 T Y
(2 X::t/ )(t — s2)" (S[¢j3(51)(t—31) dsl) dso—

T 2
/61531 s1)(t — 81) /(t - s)Zldsdsl) =

(/gﬁh s1)(t—s1)" (ﬁ O(J% )2—
- / st) d51)2 Al

- (/ Pa(s))(t 5" (/ (t— s)"ds—

- +1 (/¢]3 t_ s ) - /(t - s)2lds) dsl) =

S1 81

Ja=p3+1 \¢

= i (/ Bj, (s1)(t — s1)" io: (/ bj, (s)(t — s)lds) dsl) . (2.109)

In order to get (2.109) we used the Parseval equality, which in this
case may look as follows:

; 0(/@3 ) = [ K*(s,s1)ds, (2.110)

S1

where

_ =38, s1<s.
K(s,51) = {O, otherwise ° O °1€ [t, T].

Taking into account nondecreasing of functional sequence
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

T

ui(s) = 3 ( [ éi(s)t - s)lds) ,

Js=0
continuity of its members and continuity of limit function

T
u(sy) = /(t — s5)%ds
s1
at the interval [¢, T, according to Dini test we have uniform convergence
of the functional sequence uy,(s1) to the limit function u(s) at the interval
[t, 7).
From (2.109) using the inequality of Cauchy-Bunyakovsky we get:

P3 1~ 2
Z Cjajsjl - 701' <
=0 2

2

T T o T 2
< i/d’?l(sl)(t - 81)2l1d81/ ( > (/ b, (s)(t — s)’ds) ) ds; <
t t \J3=p3t+l \s;
1o o [ 42 1 2 +1_2
S 15 (T—t) 1,/¢j'(81)d81(T_t) = Z(T_t) 1+ € (2111)
t

when p3 > N(g), where N(g) is found for all € > 0.
From (2.111) follows (2.108).
We have

3 »1 (1) ps 2(js+Hl+1)+1 (i)
> > CuinGlU =2 2 GG (2.112)

J3=0 j1=2I+1;+2 J3=0 j1=2l+1;+2

We put 2(js + 1 + 1) + [; instead of py, since Cj,j,;, = 0 when j; >
2(j3 + 1+ 1) +{3. It follows from the relation:

T T 2
Cisjoin = %/%(82)@ — )" (/ iy (s1)(t = Sl)ldsl) dsy =
t 32

L T
= 5/(bj](52)Q2(j3+l+1)+l1(SZ)dSQa
¢

where Qy(j,+1+1)+1,(8)  is a polynomial of degree 2(j3 + 1+ 1) + 1.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

It is easy to see, that

pa 2(ja+H+1)+] @) 2(ps+l+1)+l ps
1
Cjaj:;lejl - Z Z C]?J'{]le . (2113)
j3=0 ji=2I+1,+2 1=21+1+2 ja=

Note, that we included some coeflicients Cj,j,;, in the sum %0, which
J3=
equals to zero.
From (2.112) and (2.113) we get:

Ps P 1\ 2 2ps+l+1)+0 ps 2
M (Z Z Cja]&j] ]('Il)> =M Z Z C]3]3]1
Ja=0 j1=21+1;+2 J1=20+142 j3=0

2psHAL+U [ py 2
= > > stjsjl =
J1=2l+11+2 Jj3=0
9 2
2(ps+i+1)+ 1 P3 T !
= /Qs]l 82 t — 52 /¢j3(51)(t — 81) d81 dSQ
J1=2l+1;+2 ]3 0% So
2

4 j=oiin+2 \3 A

1 2(PsH+1)+0 (T

1 /¢11(32)(t — s9)' -~ (/ bj,(s1)(t — s1) d51) ds2)

1 2(ps+Il+1)+1 T

1. > (/ B (s2)(t — 52)" (/(t — 51)"ds1—

4 i —oiin+2 i

- i (/ bjs (81)(t — 81)1d51) )dsz) =

Ja=p3+1 \sy

1 2(p3+1+1)+1;

=7 X (/ B (s2)(t — 52)""

4 o+
2

X i (/ ¢j3(81)(t — sl)ldsl) ng) . (2114)

Ja=p3+1 \$2

In order to get (2.114) we used the Parseval equality of type (2.110)
and the following relation:

T
/¢j1(5)Q21+1+11(S)d8 =0; j1>2l+1+1,
t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

where Qg4+141,(s) s a polynomial of degree 21 4+ 1 + 5.
Further we have

(/ bjs (s1)(t — Sl)ldsl) —

2
T — 2[+12 1
:( B (255 +1 (/P]3 1+ud =

22l+2

_ (T _ t)21+1 ‘
= m((l +2(52)) (P, 1 (2(52) = Py (2(s2))) —

1 / s1(u) — Piy 1y ))(1+y)lldy)2 <

(T - t)2l+12 ((2(52 —t)

= 922255 + N\ T —1¢

) (Paer (2(53)) — Pocor (=(52))" +

+? (5/ (Pi+1(y) — Pia(y)) (1 + y)l_ld?/) ) =
(

52)
(T_t)21+1 ot )
< gy (2 PR (o) + P (o(s0) +
+12 /(1+y)2’ 2dy / ]3+1(y)—Pj3_1(y))2dy) <
2(s2) 2(82)

(T_t)2l+1 214+1 2
< g7y (27 (P (lea)) + P (2(s2) +

2172 59— 21 1 ,
+2§l_ll(1—(%) ) [ (PEa) + P2 ) dy) <
(

z(82)

_ 20+1
: (2T<2Jtil)( (P (2(s2) + Pl (+(52)) +

where z(s3) = (s2 — I51)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Let’s estimate right part of (2.115) using of (2.65):

T 2
! (T—t)2l+1 KQ KQ
(SMS(Sl)(t_S])dS]) = 225+ 1) (j3+z+j3) .

2 2 Fd
8 T 1/ )<
(1- (e(2))?)? 2Ly (1—p):

(2(52))%) (s
(T - " K* 2 Pr ). e 9116
R ((1—<z<s2>)2)5+”—1)’ s e

where z(s3) = (s2 — T51) 72,
From (2.114) and (2.116) we get:

P3 y4l 2
MY Y Chdl <
J3=0 j1=21+1;+2

2(p3+1+1)+1;

> (/ | G5 (82) | (t — s2)"x

1
S —
4 J1=2l+1;+2

2

X i (/ (,ZSjg(Sl)(t — sl)ldsl) dSQ)

J3=p3+1 \s»
1 2(ps+l+1)+1
<@t S [ i(s2) | x
N=24+0+2 \}

2

2
X /¢]3 S] t — S]) dS] d82
Js P3+1

S2

_|_

-lw

(T — )+ K2 2(p3+§1)+ll (( T 9ds,
(1-

(2(s2))”)

16 =20l +2

=

2
2r T dss S|
+ Z - | <
-1/ (1 ((2))") ) 95)

< (T _ t)4l+211+3K4K12 2p3 41 /1 2d /
- L (1— % 25 -1

64 3\
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

2 1
<(T- t)4l+2ll+307p3;— — 0 when p3 — oo, (2.117)
p3
where the constant C' doesn’t depend on p3 and T — ¢, and z(s9) =

T+t) 2
(52— 53 75
From (2. 107) (2.108) and (2.117) follows (2.106) and from (2.106)
follows the expansion (2.104).

2.3.4 The case (1), %a(7),%3(T) = (t — 1)} i1,49,33 = 1,...,m

In this section we will prove following expansion for multiple
Stratonovich stochastic integral of 3rd multiplicity:

*T *8 *S1
[ s) [(t—s) [(t— so)df@dlidf) =
i t i
= Y CipalME A (i ig, 05 =1, ., m), (2.118)
J1:J2,43=0
where the series converges in the mean-square sense; [ = 0, 1, 2,... and

81

]%]z]l /d’]z t - l/ t — 31 ¢Jz 81) /(t - 82)l¢j1 (32)d52d51ds‘
t

i
(2.119)
If we prove the formula:

S (i2)
Z lejsjl s 0, (2120)
J1,43=0

where the series coverges in the mean-square sense and the coefficients
Cj,j»jr have the form (2.119), then using theorem 1, relations (2.92),
(2.106) when I; = I3 = [ and standard relations between multiple
Stratonovich and Ito stochastic integrals we have expansion (2.118).

Since 11 (s), ¥a(s), ¥3(s) = (t — s)! the following relation for Fourier
coefficients takes place

lejlja + lejajl + stjljl = 2012101'3’
where Cj,;,;, has the form (2.119) and

T
le = /¢j1(8)(t - S)lds’
t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

then w.p.1
S (i2) - 2 (i2)
) Z OCj1j3j1 s Z 0 (20110 = Ciijujs — Cijljl) js - (2-121)
J1503= J1,)3=

Taking into account (2.92) and (2.106) when I3 = I; = [ and theorem
19 (see also the Ito formula) we have with probability 1:

1 1 12) o0 (i)
2_: 2_: = 2 CijnG,—

J1,J3=0

Z CJlJSh -

J1,J3=0

l\D \

.- (i2)
Z stjljl .jzz =
J1,33=0
T s
/ (t—s) l / (t— sl)ﬂdsldf i)
t

t

[(t = s)ldfl) —

g
L2
~—y
l\:)\ —

].T s
2/t—52’/t—51 df“ds—

t t

1 T )
Z 0]21 /(t _ s)ldfs(l 3l+1df is)
t

21+

17 T .
-5 [t =s0)' [(t = 5)"dsdf(i>) =
t

81

1L .7 , 17
= — _ f(lZ) _ 3l+1df(zg)
2jlz:jocht/(t s)'df! +2(21+1)t/(t s)
1 7 LT (i2)
(T — )2+ [ (t — s)lafl™) + [(t — s)3F1df0) | =
2(20+1) t/ /
11 T (T — t)2l+1 T .
S C? [(t = g)lagflia) 22— [ Lagplia) —
2]-12:0 ﬁt/( o) df; 2(20 + 1) /( s) df;

1 l T T |
2 (jl—o Ci - / (t- S)Q’dS) [t s)'atl®) =0

t
Here, the Parseval equality looks as follows:

00 1 T (T _ t)21+1
c? = C? = [(t —s)¥dg =1~
]]z::(] n ]lz::(] n t/( S) S 2l + 1
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

and
T ! .
[t —s)'dff = 3 Cj,¢0 wop. 1
t j3=0
The expansion (2.118) is proven.

It is easy to see, that using Ito formula (see sect. 9.3) when i; = i =
i3 we get:

*T *S *81

[t ) [t =)' [t so)deatlae) =
t t t
1<T )3 1 ( )3
- t - S - Z C ]C —
6 / 6 J1=0 I
= .Z_ CrnnGyy 6 G w. . 1. (2.122)
J1.J2,53=0

The last step in the formula (2.122) was made on the basis of formula
(1.38) derivation.

2.3.5 Expansion of multiple Stratonovich stochastic integrals
of 3rd multiplicity. Case of weight functions of polyno-
mial form

Let’s combine in one statement the results obtained in the previous
sections.

Theorem 4. Assume, that {¢;(z)}32  is a full orthonormal sys-
tem of Legendre polynomials in the space Lo([t, T]). Then, for multiple
Stratonovich stochastic integral of 3rd multiplicity

«T «t3 «t2

L) = [ =) [ (=) [ (= 0)hdeariagf)
t t t
(1,199,153 = 1,...,m) the following converging in the mean-square sense
ETPansion
[*(i1i2i3) - 1 bk C. (2) »(i3) def
hbslsrs = py g paboo jz_:ohzog dsiainSi Sia S T
def & ip) p(in) A(is
é . Z Cijle ,]('11) ](22) J(';) (2123)
J1,J2,J3=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1s reasonable for each of the following cases:
Lody # g, dgF# 13, i1 F i3 and ly, Iy, 3=0, 1, 2,..;
2. Z'1:Z'27é1:3 andl1=l27él3 andll, lz, 1320, ]., 2,...;
3. il#igzig andl17$l2:l3 andll, 12, 1320, ]., 2,...;
4. 7;1,1'2,7;3: l,...,m; ll :l2:l3:l (mdl:O, 1, 2,...,
where
T s S1
Criir = [[ (8= 5)"3 () [ (t = 1)y (s1) [ (¢ = 2)"15,(s2)dsudsrds.

t t t

Let’s note, that for expansion of multiple Stratonovich stochastic in-
tegrals of 2nd and 3rd multiplicity theorems 3 and 4 will be very useful.

2.3.6 Expansion of multiple Stratonovich stochastic integrals
of 3rd multiplicity. Case of continuously differentiated
weight functions

Let’s consider one generalization of the theorem 4.

Theorem 5. Assume, that {¢;(z)}52q ~ is a full orthonormal sys-
tem of Legendre polynomials in the space Lao([t,T]) and 11(s), ¥a(s),
Y3(s) — are continuously differentiated functions at this interval.

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

TP = / Ys(ts / Vst / ()t af P af

(t1,49,93 = 1,...,m) the following converging in the mean-square sense
erpansion
5 ] ) (i) (i
FOle=lim S Cuaddd @
J1,42,43=0

is reasonable for each of the following cases:
1.1y # i, 19 # i3, 11 7 13

2. ilzig#ig and1/11( ) ’L/)Q
3. i17é’i2:i3 andwg( ) '(/13
4

» o~~~

Ci1yd2,03 = 1,...,m and ¥y (
Cj3j2]1
T 5 81
- /¢3(s)¢J3(s)/¢2(S1)¢j2(51) /¢ (52)¢j, (s2)dsadsids
t t t
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Proof. The 1st case directly follows from the theorem 1. Let’s

consider the 2nd case. We will prove the following relation:

p P H 2 i)
1;_,% j12:: z:: J%]l]lCJ /1/13 t/d) S1 dsldf

Chajui / s ()i (5) [0(51) 5, (1) [ (52) 5, (52) dsadsnds.
t t

Using theorem 1 we may write down:
1 T s ] 1 o< . ;
§/¢3(5)/¢2(51)d51df3(’3) =5 X CinCl¥ w. p. 1,
t t
where series converges in the mean-square sense and

T s
= [ 5,()s(s) [ ¥*(s1)dsds.
t t

We have:
2 . 2
M{ Z Z CJath ;Cj3) Cj(zq)) } —
j3=0 =0
P 1. 2
Z (Z CJ%]l]l - 2013> =
43=0 \j1=0
12 T 5 )
Jz= (2 Z: t/ (S) (t/ ¢j1(51)’l/)(31)d51) ds—
s 2
;/¢j3(3)¢3(s)/¢2(51)d51ds) —
12 (T b /s )
= 4 Z (/ ¢j3(5)w3(5) (Z (/ ¢j1(51)w(51)d51) -
J3=0 \t jizo \J
M 2
/¢2(51)d51> ds) =
P t 5 9
- Zz (/¢]3 sls h—p+1 </ i (51)% (51 dSl) ds) )
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In order to get (2.125) we used the Parseval equality in the form:

2 T s
(/ b5, (s1)¥(s1) dsl> = /KQ(S, s1)ds; = /1/)2(51)dsl,
t t

J1= 0
where
K(s, 81) — {lb(s), 51< s, s,81 € [t,T].

0, otherwise ’

Let’s write down the following:

(t/s'/’(sl)% (51)d81>2 —

2(s) 2
:<T—t2a1+1(/ = +7jf)dy) _
Tt
~ ti 21 (P06 = Paa(e(6)) 0000~
Tty J(T=t T+t )2
- _/1 ((P+1(y) = Pj-1(y) ¢ (Ty+T) dy) . (2.126)
where 2(s) = (5 - %) %; i’ <= is a derivative of the function 9 (s)

according to variable Tty + TH.
Further proving is similar with the proving of 2nd case from the

theorem 4. Finally from (2.125) and (2.126) we obtain:

M{(i 3 o - ;c) )}<

J3=0 \j1=0

p (] dy / ’
<K= — + | <
P? (/ (1—y?)i /1 1-y 4)

=1
K,
<— —0,when p — oo,
p
where K, K1 — are constants. The 2nd case is proven.
Let’s consider the 3rd case. In this case we will prove the following

relation:

S

3 (s) [ wn(s1)dfds;

Lim.
pP—00 )

DN | =

p p
z_: E_: Jadsh =
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

T
J37371 /1/) ¢13 /1/) S1 ¢]3 S1 /¢1 S9 QS], SQ)dSQdSldS
t

Using theorem 19 (see also the Ito formula) w.p.1 we write down:

T

/w / (s1)df{Vds = - /¢1 s1) [¥2(s)dsdf). (2127

S1

Using the theorem 1 we may write down:

2/¢1 s1 /¢2 Vdsdf® = ~ 3 C;.¢ w.p. 1, (2.128)

where series converges in the mean-square sense and

T
/qﬁh (s1 /1,b (s)dsds;.

Moreover:

S1

T s
]3]3]1 /¢ ¢]3 /¢ S1 ¢]3 S1 /¢1(52)¢j1 (SQ)dSQdSldS =
t t

t

S

T

1(52);, (52 /¢(81)¢j3(81)/¢(8)¢j3(s)dsdslds2 -

S2 S1

H‘\ﬂ

=& [ $i(5)93(52) ( / 1/)(51)@-3(51)451) ds». (2.129)

Using (2.127)  (2.129) we have:
) 1. 2
M (Z Z 01313]1 - 70 ) ) =
J1=0 \jz=0 2
p [P 1-\2
=X (Z Clajain — 2@5) =
J1=0 \jz=0

2
(/Q% 81 ?/11 81 ( 0(/¢13 dsl) -
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

- /1/)2(s)ds) dsl) =

81

2

2
i (/aﬁh s1)¢1(s1) (/qb,g (s) s) dsl) . (2.130)
Js=p+1

In order to get (2.130) we used the Parseval equality in the form:
o [T 2 7
‘Zo (/ ¢j3(s)¢(s)d5) = /KQ(S, s1)ds = /¢2(s)ds,
J3= t S1

where

_ d)(s)a S Z S1 .
K(s 1) = {O, otherwise » * 51 € [t

Further proving is similar with the proving of 3rd case from the the-
orem 4. Finally from (2.130) we obtain:

L 1= (1) :
M Z_:O Z JsJi _5 jl) J1 ) <

p ([ dy Foody ’
< K= 3 + 1 S
’ (/ @t <1—y2)4)

S
K,

<— — 0,when p — oo,
p

where K, K; — are constants. The 3rd case is proven.
Let’s consider the 4th case. In this case we will prove the following

relation:

p D
11_>g Z Z 17351 =0 (wl( ) ¢2(3)a¢3(5) = ¢(S))
71=073=0
In this case w.p.1 we obtain:

Li zp: Ci . (i2) _
e J1jainSga - T

J1,j3=0

» )
d.m. Z (201210 - C.iljljs - ngj]j]) 1(32) =
Ja3=

118



2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

P TR M RV pl_,rgé L s
J1=0 J3=0 J1:53=0
i S C. i)
—pl_)IOI(I) Z JaiSjs T
J1.J3=0
T
1

-5/

t

M8
KR
“\ﬂ
&
E
'-h
-
|

Y2(5) [ (1) ds—
t

T T
[ (s)ds [ v(s)dfl?—
t t

17 7 17 “ .
-a/w@o/W<mwﬂ>—§/w@n/wwww&”=
t S1 t t
T T
/¢2 M/ﬂ) /¢wo/¢<)mmﬁ”:0
t

where we used the Parseval equality in the form:

> 0= (/¢ $)5(s ) /w

The 4th case and the theorem 5 are proven. O

Let’s consider the theorem:

Theorem 5°. Assume, that {¢;(z)};q — is a full orthonormal sys-
tem of trigonometric functions in the space La([t,T]) and ¥1(s), ¥2(s),
¥3(s) are continuously differentiated functions at this interval.

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

«T

xt3 *t2
T re = [ Gs(ts) [ walta) [ won(tr)dES VPl
t t t

(11,42,73 = 1,...,m) the following converging in the mean-square sense
ELPansion

D . . .
J*[’w(s)]T,t = lpl_g(l) ) Z Cj3j2j1 ](:l) ](222) ](32)
J1:J2,53=0

1s reasonable for each of the following cases:
1.1y # i, 19 # i3, 11 7 3;
2. i1 = dip # 13 and P1(s) = Pa(s);
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

3. i1 # iy = i3 and a(s) = h3(s);
4. 41,490,953 =1,...,m and ¥1(s) = Pa(s) = 3(s);

81

T s
Ciiir = [ ¥3(5)85s(s) [ wa(s1) s (51) [ w1(52) s, (s2)dsadsids.
t t t

Proof. Let’s consider the integral

271 (0—t)

\ [ sinZm2C=0 () dp
[on@w@an= Y2 | -

VI Jeos™ 01y 6)df

liT 71 —COS%lﬁ(S) +(t) + fcos ”Tl(at t)w (6)do

2 7 Sinww(s) — jsn}%d}’(G)de
t

where ji # 0 and {¢;(z)}32, is a full orthonormal system of trigono-
metric functions in the space Lo([t, 1)

Then
S K
[ ¢ 0)0(60)dd) < o (j1 # 0). (2.131)
i
Analogously we obtain:
7 K
[ 85 (0)w(0)do < W (jr # 0). (2.132)

Using (2.125), (2.130), (2.131), (2.132) we come to

p [ p 1. (i) 2 K,
M Z Z Cj3j1j1 - ECJ Jja < ? — 0,when p — oo,

J3=0 \j1=0

& 1=\ ) 2 K
M (Z (Zcmm 2031) jll) S? — 0,when p — o0,

0 \Js

where constant K doesn’t depend on p.

The proving of the 4th case is similar to the case of Legendre poly-
nomials. The theorem is proven. O
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

2.3.7 Expansion of multiple Stratonovich stochastic integrals
of 3rd multiplicity. Case of two times continuously dif-
ferentiated weight functions

Let’s formulate the following theorem.

Theorem 6. Assume, that {¢;(z)}5, — is a full orthonormal sys-
tem of Legendre polynomials in the space Lo([t,T]), function 1s(s)

is continuously differentiated at the interval [t,T) and functions
P1(s), ¥s(s) are two times continuously differentiated at the inter-
val [t,T).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

«T «t3 «t2

J*W(?’)]T,t —/ ts/ o(to / 1t dft dft(ZQ)dft(;S)
t

(t1,42,13 = 1,...,m) the following converging in the mean-square sense
ETPansion
P A
J*[w(S)}T-,t = lpl_)roré ) Z Ostjzjlc]('fl)ngz)CJ(';S) (2'133)
J1,02,03=

1s reasonable, where

T s 81
Cisinin = [ V3(5)3s(5) [ 1a(51)85(51) [ Y1(52)85,(52)dsadsrds;
t t t

another denotations see in theorem 1.
Proof. From (1.28); when pi = p» = p3 = p and (2.29) it follows,
that theorem 6 is correct if with probability 1:

p p (i )
lpl_)IOTé. jZ: Z: Jajii = /”,b:} / 81 ¢1(81)d81df (2.134)
p p 1 T s i)
Lim 3 3 Chiy Y=g / Vs (s)¢a(s) / Yn(s1)dfMds;  (2.135)
1pl_>§ Z Z CJlJ?]lCJ - Y (2'136)
J1=0j3=0

Let’s prove (2.134). Using theorem 1 when k£ = 1 we may write down:

1 _—
/¢3 / (51)1(s1)ds1df® = 1. CinCl® w. p. 1,

27

i M”S

1.1m.
—>ooj0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where series converges in the mean-square sense and

8

— [ 61()s(s) [ als) (1) dsads.

We have:
2

» 1.
(Z Jsin T 2Cj3>

p [ p 1-\2
= Z (Z Jajij1 EC]':;) =
Jja=0 =0

£

(Z /d)?: ¢]3 / 51 ¢11 81 /7,[) 52 45]1 82 dSzdslds—
J3=0 3

J1=0% i

_;/@/13(5)%'3(3)/81/)1(51)1/12(81)d51ds) =

]30

_;¢1(51)¢2(51))451d5)2.

(/ P3(s) ), (s )i(jzi:0¢2(81)¢j1(81) 7¢1(82)¢j1(82)d52_
(2.137)

Let’s prove, that for any s; € (¢, T) the following relation is correct:

Z Ya(s1)¢5, (1) ]1¢1(82)¢jl(82)d52 = %1/’1(81)%02(81)-

1= t
Let’s analyze the function

1
K*(t1,t2) = K(t1,t2) + 51{t1=t2}¢1(t1)¢2(t1)3

where ¢, € [t,T] and K (t1,t2) has the form:

K(nto) = { 1) 1<ty e e

122
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Let’s expand the function K*(¢1,¢2) using the variable ¢;, when ¢, is
fixed, into the Fourier-Legendre series at the interval (¢,T) :

ty

K*(t1,t2) = i:o a(ta) [Wr(t) @y (t1)dts - 45, (1) (01 #,T). (2.140)

The equality (2.140) is executed pointwise in each point of the in-
terval (¢,T) according to the variable ¢, when ¢y € [¢t,T] is fixed due
to sectionally smoothness of the function K*(t1,%2) according to the
variable t1 € [t,T] (to — is fixed).

Note also, that due to well-known features of the Fourier-Legendre
series, the series (2.140) converges when t; = ¢, T.

Obtaining (2.140) we also used the fact, that the right part of
(2.140) converges when t; = ty (point of finite discontinuity of func-
tion K (t1,%2)) to the value

1

5 (K (ts = 0,1) + K (124 0,12)) = L (15)0a(ts) = K*(1, 1)

Let’s put 1 = t9 in (2.140), then wehave (2.138).
From (2.137) and (2.138) we obtain:
) |
81

(/ 7/)3 ¢13 t/s< i ¢2 81 ¢]](81)/¢1(82)¢j](52)d82)x

=p+1 t

p 14 (1.
M (Z > ChajiiiGjy” —

1
7120 j3=0 25

2
delds) ) (2.141)

Consider the estimation (2.14) for two times continuously differenti-
ated function v (s):

Z ¢Jl(51)/¢1(82)¢jl(82)d82 <

C 1 1
“p ((1 — s - (z(sl))Q)i) psi€ (6T),  (2142)

where z(s1) = (s1 — I3*) ;2;; the constant C' doesn’t depend on p.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

From (2.141) and (2.142) we obtain:

L& = (is) ’
M (Z > C]S]l]lcj D) Z Oj3Cj3 ) <

{ 0j3=0 Ja=0
p T 1 2(s) dy 2(s) dy 2
<Clz< |¢3(S)|_< T+ 1)d5) <
=0 t/ " _/1 (1—y%): _/1 (1—y?)7

C C
:—Bp——3—>0whenp—> 0,
p

where the constants C7, Cy, C3 doesn’t depend on p.
Relation (2.134) is proven. Let’s prove (2.135).
Using theorem 19 (see also the Ito formula) w.p.1 we write down:

T s T T
% t/ s (5) (s) / r(s1)dE) ds = % / 1/11(51)é]/ () (s)dsdf ).

(2.143)
Using theorem 1 when k£ = 1 wemay write down:

1 T T ' 1 » L i
o/ () [Valenva(sdsidf = Glim 3 CIGY w.p. 1,
t s 1=

where series converges in the mean-square sense and

= [1(5) 5, (5) [ s(s1)a(s1)dsids. (2.144)

(g g1 e
b

2
p
Z_ (Z C]a]s]l 201*1> ) (2145)

J3=0

We have:
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

T s s1

J3]3]1 / ¢73 / (31)¢j3(51) /?/11(82)¢j1(82)d52d81d5 =

t

~

1 (s2)9j, (s2 /1/12 51)Pj, (51 /1/1‘3 s)¢j,(s)dsdsidss.  (2.146)

“\H

From (2.144) — (2.146) we obtain:

L & o) ’
Z Z C]s]s]l - 5 Z le J1 =
=0j3= J1=0

T

= i:0</¢1(52)¢j1(32) /(Z ¢2(81)¢J3(sl)/¢3(5)¢j3(5)d8_

Jj3=0

—;¢3(sl)¢2(sl))dslds2)2. (2.147)

Let’s prove, that for any s; € (¢, T) the following relation is correct:

T

3% dalon)tn(on) [ o) (Sl = galoin(on). (2149
Let’s denote
Ki(t1,t2) = Ku(t1,t2) + %1{t1:t2}¢2(t1)¢3(t1), (2.149)
where 1,15 € [t, 7] and Ki(t1,t) has the form:

it = {2 B < e

Let’s expand the function K7 (t1,¢2) using the variable ¢9, when ¢; is
fixed, into the Fourier-Legendre series at the interval (¢,7') :

o T
Ki(t1,t2) = lZ_Q"/’Z(tl) [ s(t2)y,(ta)dts - b, (ta) (t2 #1,T). (2.150)

The equality (2.150) is executed pointwise in each point of the in-
terval (¢,T) according to the variable to, when ¢, € [¢,7T] is fixed due
to sectionally smoothness of the function K7 (¢1,t3) according to the
variable ty € [¢t,T] (t1 s fixed).
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Obtaining (2.150) we also used the fact, that the right part of

(2.150) converges when ¢; = ¢5 (point of finite discontinuity of func-
tion Ki(t1,t2)) to the value

% (Ki(t1,t1 — 0) + Ki(t1,t1 + 0)) = %7/12(151)1#3(151) = Ki(t1, t1).

Let’s put ¢, = ¢ in (2.150), then we have (2.148).
From (2.147) and (2.148) we obtain:

L ) 1 & k) ’
M (Z > Cigain Gy — 3 > CjG, ) =
J1=0j3=0 71=0

—th:(](j (5205 (2] 7<]s§::+1¢2 (o1 ¢]3(81)J¢ ($)03(s) )
deldsz)Q. (2.151)

Analogously with (2.14) we obtain for two times continuously differ-
entiated function 13(s) the following estimation:

S bils: /1/)3 §)ds5(s)ds

Js=p+1

<

C 1 1
= P ((1 — (2(s1))2)? + (1 — (2(s 1))2)1) ; s1 € (t,T), (2.152)

)
s1) = (31 - T;’t) 7—; the constant C' doesn’t depend on p.
From (2.151) and (2.152) we obtain:

LE i 12 i)
Mol X X ChininGy” =5 X GG 1 <

J1=0jz=0

P’ p
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

where the constants C7, Cy, Cs doesn’t depend on p.
Relation (2.135) is proven. Let’s prove (2.136).
We have:

KZZ%M)?EﬂZ%@i (2153)

0j3=0 J3=0 \j1=0

81

¢3(5)¢j1(3)/51/)2(51)@3(81) /¢1(52)¢j1(82)d52d51ds =

H‘\ﬂ

lejsjl =

= /1/)2(31)(15]'3(51)/]1[)1(52)(]5]'] (SQ)dSZ/¢3(S)¢j](s)dsd51. (2.154)

Let’s substitute (2.154) into (2.153):

p D (i2) 2
M (Z > Ciijsin Gy ) =
J1=0 j3=0

T

</¢251¢1351 Z/’ﬁl ), (0)d [

Ja= 0 J1=0 51

2
¢3(S)¢j1(s)dsdsl> )

(2.155)
Let’s denote

- th), t1 <t
Kty t) = {gjl(otlziler\}vise it € [t 1.

Let’s expand the function K (t1,19) using the variable ¢1, when t; is
fixed, into the Fourier-Legendre series at the interval (¢,7') :

0o B2

K(t,t) = X [di(t)es(t)dt - ¢ (1) (i#1).  (2156)

J1=0%

Using (2.156) we obtain:

= [ 4s(s) (fi 85, (5) 7¢1(9)¢j1(0)d9> ds =

J1=0 t
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- / V3(5)h1(5) Lysas yds—

81

T
_/1/)3( Z (s /1/11 )$;,(0)dbds =

Ji=p+1

T
= [us(s) ¥ @1>/¢aw@xwwm. (2.157)

Pt
Let’s substitute (2.157) into (2.155):

M{ii%m?ﬂ—iﬁmmmmX

j1=0 j3=0 j3=0 t

T ~ s )
x [ta(s) > 8(s) / 01(6)95,(6)dbdsds1) =
81 ji=p+1

= zp: < lim Z Yo (u]) g, (uy) x

ja=0\N—=00 |—q

Ji=p+1

T ) uy 9
X[ Us(s) X ls) [ ¢1(9)¢j1(9)d9d5Au1) _

= 3 (Jim X alu)noi)x

ja=0 \N=00 1=
X Z /¢3 s)¢j (s d8/¢1 )i ( )dHAu,> , (2.158)
Ji p+1u,
where t =y < uy < ... <uy =T; Au; = w41 — w; uj is a point of

minimum of the function (1 — (2(s))?)™® (0 < a < 1) at the interval

[wi_1,w); max Aw; — 0 when N - o00;1=0, 1,...,N — 1. The
0<I<N-1

last step in (2.158) is correct due to uniform convergence of Fourier-
Legendre series of the sectionally smooth function K (s, u}) at the any
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2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

interval [uf +¢&,T —¢e] Ve > 0 (K(s,u}) is continuous function at the
interval [u], T).
Let’s write down the following:

T

[ 1(5),(s)ds =

~

— - z(z) .
_ N_V;jl (P (@) = Pua(2(2))) 1 (o)

7t T—t T+t
o [ (Beal) = P (5 v+ 5 ) dy), (2159)
51
where z € (¢,T); j1 > p+1; 2(z) = (:v — %) %; i’ — is a derivative
of the function 91 (s) according to variable Tty + 31,
Note, that in (2.159) we used the following well-known properties of
the Legendre polynomials:

]. / /

Pi(z) = 25 +1 (Pj+1($) - Pj—1($)); j=1

(2) ™ Pia).

dx J

From (2.65) and (2.159) we obtain:

T

[ 1(s)é5 (s)ds

t

NI

C 1
< ((1—(2(@‘))2) + Cl> ; (2.160)

z € (¢,T), where the constants C, C; doesn’t depend on jj.
Similarly to (2.160) and due to Pj(1) =1; 7 =0, 1, 2,...we obtain:

T

| ¥a(s)és (s)ds

z

C 1
<5 (acamra) oo

z e (t,T).
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From (2.160) and (2.161) we have:

T

7 ()65, (s)ds [ 1s(s)85,(5)ds
t

T

<3t la=ewm ")

z € (t,T), where the constants K, K; doesn’t depend on ji.
Let’s estimate right part of (2.158) using (2.162):

{(z&zcam@ )}_

N-1 SN |
($m T on)| X ox
— 1

# 5l 2 (e
+u—é2m%JA”><

Li(T—t)? 2 (] h 2
- ( 2 ) Z(/ 3 / l)
4p J3=0\"q (1_ )i S 1=y
L Lo
< 2p———)0whenp—>oo (2.163)
p p

where the constants L, Lq, Lo doesn’t depend on p.
We used the inequality

1 Tdz
Zai ]t

and estimation (2.65) in (2.163). The relation (2
6 is proven. O

%Mg
DO

.136) is proven. Theorem

130



2.3 Expansions of integrals of 3rd multiplicity. Case of Legenrdre polynomials

Let’s consider the trigonometric version of the theorem 6.

Theorem 6. Assume, that {¢;(z)}32, s a full orthonormal sys-
tem of trigonometric functions in the space Lo([t, T]), function )s(s)
— is continuously differentiated at the interval [t,T] and functions
1(s),¥s(s) — are two times continuously differentiated at the inter-
val [t,T].

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

*t3 xt2

«T
T @)r, = / Ys(t3) / Unlts) / (1) dE dEf 2 d )

(t1,32,13 = 1,...,m) the following converging in the mean-square sense
eLPansion

D
w1 (3. 1 (i2) (i)
' ]T,t—lz;l_-g- . Z CJ?]Z]IC] J2 S
J1,J2,3=0
s reasonable, where

81

T s
stjzjl = /w3(3)¢j3(5) /¢2(51)¢j2(31)/¢](82)¢]‘1(82)d82d81d8;
t t

t

another denotations see in theorem 1.
Proof. Let’s consider the inequality (2.21):

K,
ay 2.164
’ (2.164)

i ¢2(81)¢j1(81)/¢1(82)¢j1(82)d82d81 <

t Ji=p+1

where constant K7 doesn’t depend on p and s is fixed.
Analogously we obtain:

(2.165)

T T
L/ Z Va(s1)dj,(s1) /¢3(S)¢j3(s)dsdsl <=t

2 Ja=p+1

where constant K7 doesn’t depend on p and s is fixed.
Using (2.164) and (2.141) we obtain:

p 2
{(Z Z 0.71.71]1<] %2:: C ) }:

0jz=

S1

0(/ P3(s)dj, (s /5 i Pa(s1) ¢J1(81)/¢1(52)¢j1(52)d52x

t Ji=p+1 t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2
xdslds) <
p T s S1 2
<K Y (/ [ 5 ta(s1)di(s1) [ $i(s2) s, (s2)dsadsy dS) =
Js=0¢ [t i=p+l t
P N-1 uf 00 S1 2
Ky ( Tm Y[ F (s () [ (s2) (s2)dsads, Aul)
7a=0 YT =0 |3 ji=p+1 t
p N-1
<K ( lim —Au) <
]2::0 N—oo ;25 p :
Ky 2 L
<SS Y(T-t)<— =0, (2.166)
pP” ji=0 p

if p — oo, where constants K, K;, Ko, L doesn’t depend on p;t = uy <
w < ...<uy=T; Auy = w41 —w; uf € [w_1,w]; max Ay — 0
0<I<N—-1
when N - o00;1=0, 1,..., N — 1.
Analogously using (2.165) and (2.151) ‘we obtain:

12 s« (1) ’
Z Z C]a]s]l - 5 Z le J1 =
J1=07s=0 71=0

T

p T
:zx/wa¢ha/ Z7M&MMM/%@%$WM
J1=U Mg

59 Jja=p+1

2 L
Xd81d52> <— =0,
p

if p — 0o, where constant L doesn’t depend on p.
Moreover, from (2.131), (2.132) we have:

z T
[ $1()és (s)ds [ s(s)és (s)ds

Lz, e
I

where the constant K doesn’t depend on 7.
Using (2.158) and (2.167) we obtain:

2 » i
Kzzqm ”=z@m%wwmww

073=0 Ja=0 \V=00  1—0
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2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

X Z /¢3 )i, (s d5/¢1 )i ( )d@Aul> <

= ;D+1

AU:) <

*

<k 3 (im ¥ ¥ ¥ L/% ()65, (5 ds/wl )65, (6)d8

ja=0 \V—r00 l 0 ]1—;D+1

N-1 o 1 2
§K22<hm >y —Aul) <

Ga=0 \N=00 =0 j, p+1J1
K L
<—22(T—t)2§— -0,
p 73=0 p

if p = oo, where constants Ky, Ky, L doesn’t depend on p; another
denotations see in (2.166).
Theorem 6’ is proven. O

2.4 Expansions of multiple Stratonovich stochastic
integrals of 3rd multiplicity, based on theorem
1. Trigonometric case

In this section we will prove the following theorem.

Theorem 7. Assume, that {¢;(z)}52o — is a full orthonormal sys-
tem of trigonometric functions in the space Lo([t,T1).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

«L xt3 xto

[ ] atiVdeags?

Pt
(11,42,13 = 1,...,m) the following converging in the mean-square sense
expansion
T stz xta (i2) relin) relis) ) pL P2 p3 0 ) def
t/ t/ t/ dfy,dfy,* dfy, :pl,Aln.zl,i)I;l—.)oc ,ZOHZOE szhCJ J2 ]3 =

Y Gl (2.168)

J1:J2,43=0

is reasonable, where
Cj3j2j1 =

T s s1
= /¢ja(s)/¢j2(51)/¢j1(82)d82d81ds.
t t t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Proof. If we prove the following formulas:

P1 b3 o 1 T 1
. (i3) def _ 1 f(lg)
p11711’3r1>100 120];0 C]SJI]I ]1% 00.73]1]1 2 //dsd T( s )
2.169
pP1 P3 o, o ) 1 T Tdf(i )d
Lim, 1 1
plalgiir_r)loo jlz:(]]gz_: JaJsn ]1,]232—0 FEVEV) Qt/t/ s T,
(2.170)
. P11 D3 C iz) def C 5 171
llgl Z > ]1.73]1C]3 Z .71]3]1(] = 0. ( . )
P1,p3—0 f1=0j3=0 o

then from theorem 1, formulas (2.169) (2.171) and standard relations
between multiple Stratonovich and Tto stochastic integrals the expansion
(2.168) will follow.

We have:
3

P33 D (T_t)§
ZO Z Cruinin () = —t Z Cozin2n 66"+ Z Cozir-1.25-160" +
J3 j1=0 j1=1 n=

S G o) LSS S i)

+ 2 Co00G;y + 2 20 Cojy2ji 25 G +
ja=1 jz=1 =1

D

D3
+ 3 X 0213,211—1 211—1C2J3 + Z 0213—100@]3_14-

J3=1j1=1 ja=1
pP3s D1 P3N
+ 20> Oy 120 27 Gl + Zl Zl Cjy12i- 127 1G5 1, (2:172)
J3=1j1=1 Js=1j1=

where the summation is stopped when 2751, 271 —1 > p; or 253, 273 —1 >
p3 and
I (T —1)} . 3(T —t)s V2T —1)7
021,21 = Sr22 0,21-1,21-1 = Sn22 21,00 = An22
(2.173)

V(T — )2
Q, Cor—19i-121-1 = 0;  (2.174)

Cor—12121=0,Co100 = —

4l
VAT-1)? =9
_var-pt o tor o
Coroi21 = 1o , Corgi191-1 =4 _ VAT 1} r=1"
4722
0, r#2l
0, r#1, r#2l
(2.175)

134



2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

After substituting (2.173) (2.175) into (2.172) we get:

f: 21: CJle]l = (T - t)% ((1 Z ) C(g”)_

92
J3=041=0 6 2m J1=1 Jl

\/5 P3
Z C?]q 1) -
47'(' ja= 1]

Using theorem 1 and the system of trigonometric functions we find

(2.176)

T

! Tsd dfti) = 1 dfli) =
Et/t/ S101g —5/(8705 -

:i(T—t)%< —\[Z ¢ ) (2.177)

i

From (2.176) and (2.177) it follows

. p3 D1 23 1 T s (1) 2
Ih}?lsrgoc M > X Clsjii 3 Et/t/dsldfs =

J3=041=0

1 1 2
_ 3
71)1}71;3& (T—1) ((6 272 Z ) +

ji= 1]1

1 (72 ps 1 ))
tesl a2 5] =0
87T2 ( 6 ja=1 ]g

So, the relation (2.169) is executed for the case of trigonometric sys-
tem of functions.
Let’s prove the relation (2.170). We have

hooB (T t)% h (i1)
Y Y Gl = — T Z Cojn2in 0G0 + 32 Cojymr 2jo—1.0G5
J1=0j3=0 jz=1 ja=1
P D3 P D3
+ Z Z 02]372]3,211 1C2]1 1+ Z Z 02]3 1,2j3—1,251— 142]1 1+
J1=1j3=1 J1=1ja=1
P1 P3
+ Z 0002]1—1<2]1—1 + Z Z 02]312]352.71C2]1
J1=1 J1=1j3=1
D1 P3
+ > Y Cojyi9js- 121142]1 + Z 0002]1@]1, (2.178)
J1=1j3=1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where the summation is stopped, when 233, 273 —1 > p3 or 2751, 2j; —1 >
p1 and

c (T 1) c _3(T —t): c V2T 1)
20200 = g5 Camr-10= —g 5 Cooar = T 5 5
(2.179)
V2(T — t)3
Cau-1,91-12r-1 = 0,Co0,2--1 = Q, Coa120-1=0;  (2.180)
4mr
_ﬂ(Tﬂf)% r=29]
\/i(T—t)% _ 167212
— e > T =2 .
Coro10r = y Cau—12i-120 = \/’{ETJJV’ r=1
0, r # 2l i
0, r#1, r#2l
(2.181)

After substituting (2.179) — (2.181) into (2.178) we get:

P1 P3 3 1 1 D3 i
Z ZCJ373]1 :(T_t)5 (( +727: )COl

J1=0j3=0

Z <2]1—1

(2.182)
47T' J1=1 -7

Using the Ito formula, theorem 1 and the system of trigonometric
functions we find

a3 (i fao  fe- o) -

t t

J’

1

:4@_0(

From (2.182) and (2.183) it follows

py c ) (2.183)

s 2
/ dfs(fl)ds) } =
t

2
1 1 21 1
= 1l T—t3 |-+ 5——
PhPlSIEOC ( t) ((6 + 27['2 ]32::1 _]§ 4) +

1 w2 ol
— (-5 )] =o.
+87r2 ( 6 jlzzzl .712))
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2.4 Expansions of integrals of 3rd multiplicity. Trigonometric case

So, the relation (2.170) is also correct for the case of trigonometric
system of functions.

Let’s prove the equality (2.171).
Since ¢1(T), ’(ﬁg(’r), 7,[}3(7') =

1, then the following relation for the
Fourier coefficients is correct:

lejljs + lejsjl + stjljl = CZ C

2 J1 Jar
then w.p.1
RS (i2) .- 2 (i2)
) Z Olejsjl ja ] Z (20110 - lejljs - Cj3j1jl> 3 * (2184)
J1,J3= J1,J3=

Taking into account (2.169) and (2.170) w.p.1 let’s write down the
following;:

Z 0C11j3j1<j32 = icgg(gh) - Z lejljsgj(';z) - Z CJ?]IJlCJ
J1,13=

J1,33=0 J1,33=0

From (2.169) — (2.171) and theorem 1 we get the expansion (2.168).
Theorem 7 is proven. 0.

The expansion (2.168) may be also obtained by direct calculation
according to theorem 1:

/T 7?@ A ag® = 3 Gy (i) i) ()
J1:J2:J3=
(i -5 s
+%(T — )i + 2Tlrz(T — 1) (12:2 _ 7% ) géig))
+2i7r2(T e (é % _ 7:) Cé’”)Jr
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 3 (201 i i
Ty (T—02 [ = — )¢, 2.185
+ {i1 s}ﬂ_g( ) (Er )CO ( )
where

Ju:J2.J3=

i3 i2 il 3 1 il i2 i3

2\1/—;2[ {<2r10 C CQT 10 C )}+

1 1 2 -2 . .1 . _2 .1
b {7 2 + ] +

I X 1 i1 b2 ] b2 i1 i
53 { { (i) i) lia) _ olin) i) i)

T2 - l2 2r S0 21 +
T;-I;ll
+ C2 Cz COZ? - le C2 21 1} CQT ) Oz ( )1}
5 [ {6 — I -

+C2r 1 2zr C(g“)}‘F

8 2,2 {3C2r 1 2?1 023 +C2 er C 6C2r 1 2r 1 (()12)‘1‘

+3C21TZ 1 2r 1 0 2(2 1r Cm + CQ ;2 Cé“)}] +

1 o) ;
4\/_7T2{r2 [7 C2r 1 2m 1 2m +C2r 1 27‘ C2naq 1+

m=1

+C2r 1 Q:n 1577131 1 C2r 1 2m 1] +

1 ) (is)

+m(7,+m) [ <2 (m+r) 2'r 2m _C 2(m+r) 1(21" 1 2m

C 1C2 Cz +CQ (m+r) CZT‘ 1 2m 1H+
v §

B m [Cz(z(})—m) ‘22) )+ Céz 1C21 1 5
*CQ(})—m)—1C2 CQ 1+ CQ Cz C2 ]
1

+l(l— m) [_CQZ(})—T”) éﬁ)é?) +C2( 1CZm 1 21 -
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2.5 Expansions of integrals of 4th multiplicity

Gl g B — L st ] 1).

. x 2 .
Since Y T% = % and according to theorem 1:
r=1
T

fie -yt = Lo -2 5 L .

t r=1T
then, from (2.185) we get the required expansion:

o T t3 ty )
. (i3) (i3) ia) 3p(i1
Y GGGy = [ [ [ deide agg
J1,42,43=0 ttt
T
1

+1{il=12}2/t/Tdf ) dr+

~

*T xt3 xto

T 1 .
+1{i2=i3};t/t/d8dff‘“)—t/t/t/d D g

2.5 Expansion of multiple Stratonovich stochastic
integrals of 4th multiplicity, based on theorem
1. Polynomial and trigonometric cases

In this section we will develop the approach to expansion of multiple
Stratonovich stochatic integrals, based on theorem 1, to integrals of 4th
multiplicity.

Theorem 8. Assume, that {¢;(z)}5<y — is a full orthonormal sys-
tem of Legendre polynomials or trigonometric functions in the space
L([t,71).

Then, for multiple Stratonovich stochastic integral of 4th multiplicity

«T sty xt3 xto

st = [ [ ] [ awiawlawlawt

(11,99,13,44 = 0,1,...,m) the following converging in the mean-square
sense expansion

Insiere =Lim Y Cijua (GGG (2.186)

J1 )2 )3 S)4
—oo . . .
P J1:J2:03,34=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1s reasonable, where
Clisiainin = / iy (s / i (51) / i, (52) / ¢j, (s3)ds3dsadsds;

T .
)= I ¢ (s)dw!® are independent standard Gaussian random
1

variables for various i or Ji (if iy # 0); w f — are indepen-
dent standard Wiener processes; 1 = 1, .. .,m and WS_) =7, =01
3 =0 and)\lzl ifilz 1,...,m.

Proof. From (1.29) it follows:

Lim, 3 Gy (Ol plia) _ pliviziaia)
pooo .~ JaJ3J2J1551 Sz Sjiz Sia T F(Adadsh) Tt
J1:J2,J3,Ja=0

F i AV 4 L i AP 4 1 AF 4

+1{i2=i3760}Af; Wy 1{i2=i4760}Ag e 1{i3=i4¢0}A61”)_
=14, =i 20y Liz=iu 20y Bt — (i, Zig 20y Lin=is 20} Ba—
—Lii=irop Liamis 20} Bs, (2.187)
where
T tyg t3 to
11927314
()\1/\2?3\3/\4 ////dwtl th th th ;
tt tt
.. p i i
Agm“) = 11_)IOIé > Cligaiin J(’:S) J(Z4);
P Ja,J3,51=0
. p i i
Aéw“) - lpl—>r£> > Clijaiags ](ZZ) J(j4);
J4,J3,J2=0
(igi3) 3 S (iz),
A3 = lpl_’IoTé Z C]Us]zhcj J3
Ja,J3,j2=0
. p i i
A = Lim. 32 Chijjain e
Ja,J3,1=0
. p i i
Agl V= lpl—>ro% Z Cj4.isj4.il 1(11) ]('33);
Ja,J3,1=0
(i1i2) : 2
AG - lpl—)rorclz Z CJst]zil CJ Jz ’
J3,J2,51=0
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2.5 Expansions of integrals of 4th multiplicity

B, —p]l}m Z CJ4J411]1’ By = lim Z CJaJUs]u

P
J1:J4=0 % j4,j3=0

Bz = lim Z C]A]z]'&h
pooc . 4
Ja,Ja=0
Using integration order replacement in Riemann integrals, theorem 1

for k = 2 (see (1.27)), relation (2.3), Parseval equality and theorem 19
(see also the Ito formula) we obtain:

Agim) _
. o117
= Lim. 14,_%:1:05 / i / bia(s1) (/ bi, (52) dSQ) dsydsC? ¢

p 17T 2
- 1131—310%' Z 5/9%(8) / ¢J’s(51 . (/4511 52 dsz) dsuis@ s
/545]3 ( 81 — t)—
t
2
(/ ¢]1 52 dSQ) )dsldsC] ja =

= lpl_)lg(l} i /¢]4 /¢]3 81 51 — t)dsldsC] ]4 — Ag’m“) —

Il
”jf
g8

Jl—P+1

1Ts
5// s1—t) dw ’3 dw(“)—i—
Pt

1
+§1{i3=z4750} hm Z /(]5]3 /¢]3 81 81 - t)dslds A(““) =
1 T s 51 ) ) 1 ( )
=3 / / / dSdegf)dwg“) + il{iszj‘i?éo} /(51 —t)ds; — A" w.p.1,
bt t
) (2.188)
where
(isia) 1 Lo b i) plia)
AP =lim. Y a ; ;

P L~ JaJsSis Sja



Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2
]4]2 - /‘7514 /¢Js 51 (/ ¢11 82 d82) dsids.

J1=p+1

191
Let’s consider A 2i4)

A _
s 2 5
( [.06) ([ sutoiis) | enoniods-
t t
s s1 2
309 [ 600 ([ 81 ) s
t t
17T s 5 2 L
=3[ 66) [ 6a6a) ([ o) ) dsais) ) -
t t S3
i B (L 0 [ 6 (s1)dsyd
=Lim. Z(2/ $i.(s)(s 1) / $5,(s1)ds1ds—

_%/¢j4(s)/s¢j2(sl)(81 — t)dslds—

—*/423]4 /qb]z s3)(s—t+t— Sg)ngdS) Zz (Z")

_A21214 +A12214 +A31214 —

= — AP 4 AP L AP G p 1, (2.189)
where
(i2ia) _ 7 - L (i2) -(ia).
A2 - lpl—>m p Z JajaSja Sja
1 T
bi]z = 7/¢j4 (_/ ¢]3 51 dSl) /(]5]2 51 dSldS;
2 t J3_P+1

A(i2i4) —lim Xp: & (i2) ~(ia),
3 T P 4 Jaj2>j2 Sja 2
Ja,32=0
1 T s 2
c§-’4j2 = —/¢j4(3)/¢j2 (83) (/ (]5]3 51 d81> dssds.
2 t t Ja=p+1 \s3
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2.5 Expansions of integrals of 4th multiplicity

Let’s consider Ay (inig)

A(‘l“ —
T
= lpl_gcl; ngzl 0/¢]1 83 /¢J4 82 /¢]3 81 /q&h d8d81d82d83><
(_21) (13) —
J1 3)3
=Lim Z / ;i (s3 / (s / Dja(s1 / ;i (82)dsadsidsdszx
Ja:J3:51=0%
XC] ja
T
:lbi.m p3 ( /qs,l (s3) (/ i (s ) / s)dsdss—

T

s 2
% / éju (53) / Bjs (s (/ ¢j4(sl)dsl> dsds;—
2
/(ﬁj1 83 /(ﬁ]3 82 (/ ¢J4 51 d81) dSQng) :1 ja (ia) =
= 1m zp: ( /qﬁh s3)(T — 53)/¢j3(s)d5d53—
17 3
5/ (s3 /¢J3 (s — s3)dsds3—
t

-3 / (59 / 81 (T = s2)dsads ) S0

_Afli1i3) + Agili3) + Ag1i3) —
= — AP Al A

where

. p . ]
AP =Lime S 60

27
J3]1 = 2/%1 s3) P (/ ), (s 3) S[fﬁjg(é’)dsds?);

53
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

A(ilix) —1; P (1) »(is)
o=kl X GG
Ja:J1
1 T T oo 2
€ = 5 [EACEACEDS (/ biu(s1 dsl) dsdss;
t 53 Ja=p+1
(i1d3) _ 1 (i1) ~(is)
AGI V= 1pl—>ror<1; ; ]Z Js]l J ]33 3
3 l—

T
]3.71 /¢]1 53 /¢]3 82

Ja=p+1

2
(/ ¢J4 S1 dsl) d82d83 =

2 4
1 T
5/ SQ (/ ¢]4 S1 dsl) /¢]1 S‘; dS‘;dSQ
t Ja=p+1

S2
Let’s consider A(ZM) We have:
A§i2i3) + Agi2i3) —

p . .
. (i2) (i)
im. 3 (Ciijgaia +Ciagainia) Gy Gy =

Ja,J3:52=
XCJ Js
p T T
=Lim. > /¢js(31)/¢12(52)/¢j4(53)d83d82/¢j4(8)d8d81><
Ja,J3,J2=0% t t $1
(i2) #(is) _
XGjy Gjy =
= Lim. y ] ( [ #5,(s1 / iy (5 / ¢;, (s3)dss / ¢;, (s)dsdsads; —

- oo oo et amn)ii -
t t $1
P T S1 9
=1im. Z /¢]3(51)/¢]2(82) (( —51 (/ ¢]4 s3 ng) >
=0 Ja=0

p—00 5
XdSstlcj ];3 —QA (izts) W.p.l.

144



2.5 Expansions of integrals of 4th multiplicity

Therefore
Agizis) _ 2Aé®’2’i3) _ Agiz’is) _ Aiizis) _ Agzis) + Agz’ia) w.p.1. (2.191)

Z 7
Let’s consider A ia)

P T s s s
=Lim. 3 [ 6ii(5) [ @i (53) [ 63, (52) [ 8,(s1)ds1dsadsgdsx
Ja,J3,)1=0% t 83 $2
(i) i) _
J1 dJ4
» 17T 2
= ]p]_gé ‘Z_ 5/ /¢]1 83 (5/ (]5]3 82 dSQ) dsgdsx
Ja,j1=0 < % j3=0
XCJ Ja

) » 17T .
im. 37 5/ i ( /(ﬁh (s3)(s — s;;)ds;;ds@ G = Al —
t

1 T s ] .
A Jeppes
t t

o T
+ 1{1‘]_“#0} (Z /(S -1 ¢]4 /¢]4 S3 ngds—
]4=0t
[ee] T s
_ Z /¢]4(S) /( _t)¢j4(53)d83d.5) A(hu)
j4:Ut t
1 T 32 81 ) . N
=5 [ [ [dwiPdsidwl) — AL wp.. (2.192)
t t t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 .
S00
P J3:J2,1=0

p T T T T
1m Z /(]Sj] (83) /(,25]‘2(82)/¢j3(81)/(ZSjB(S)deSldSQngX
t S2 S1
XC] ]2 =

T 2
= lpl—)ro% i ;t/¢]1 (S3)3/¢j2 (82 ' (5{ QS]3 S) d82d83X

J1,J2=0 ja=0
XC] J2
1131_'}0%' /¢Jl (s3) /¢Jz (s2)(T — 52)d52d83C] ]2 - Aé’”z) =
Ji,Ja=
lpl—gé i ] 02 /¢J2 52)(T — 2 /¢]1 S3 d53d32C] Cz - Agm) =
1 T So
5/ — 59 /dw“dw“—i—
t
L = f (i)
Q1%
+§1{i1:i27é0} ]Zo/qsh —.82) /qﬁh (s3)dsadsy — Ay =
2=0%
1 T s1 S2 (jl) 12 mz)
D) /// dw(Pds) + 1{11 méO}/ — s2)dsz — w.p.1.
ttt

(2.193)
Let’s consider By, By, B3 :

2
B; :pli)rgo 5 /¢J4 /¢J4 s (/ b, (s2 d52) dsids =

J1;§a=0
T 5 »
- JE& t/ (s) / $i,(s1)(s1 — t)dsids — lim j§0a§4j4 —
L T
it/ s1 —t)dsy — hm Z a (2.194)
1T 2 s
By Zpli_;glo = ( /¢]3 53 (/ b, (s s) t/¢j3(sl)dsld53—
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2.5 Expansions of integrals of 4th multiplicity

T

2
_;/ 81 /(]5]3 82 (/ ¢J4 83 d53) dsods)—
t
1t st 2
,§/¢j3(51)/¢h (/ ¢]4 52 dSQ) dsdsl) =
t t

:pli)r& 32_: /(]5]3 83 83 —t /¢J3 81 d81d83 — llm g_:obijg_

. 1
= Jim, j§0§/¢j3(sl)/ — 1)), (s2)dsadsy + lim Z Ty —

A y; 2
~lim j;oit/%(sl)t/qus(s)(sl —t 4+t — s)dsds +plggoj32 &=

Jads
—0

. p p . p . p
= plg& Z jyjs +pll>n§o Z C§3j3 - pll,%lc Z b?sjs; (2'195)

J3=0 J3=0 Js=

p
By+ By = lim 3. . (Cissagiis + Clajaiass) =
J4,J3=
= lim M% 0 t/ bjs (s / C) / ¢;,(52) / bjy (53)dssdsydsds =

= lim 5 / di, (s1 / i, (s /¢,3 s3)dssds; / ¢j,(s)dsds; =

Ja,J3=0%

= plggo ( / }j.(s1) / bj.(s3) / b, (s2)dss / bj,(s)dsdssds;—

Ja,§3=0

*/¢j4(51)/1¢j4(83) (/ ¢j3(s)ds) d53d51> =

||M8

T 51
2 [0 (T = 50) [ 6. (su) s~
Ot t

p
_ Z /¢j4 81 — 81)/¢j4(53)d83d81 + 2p1l>1’£10 420 f]ﬁj‘; =
Ja=

Jja=0%

=2 lim Z Juin-

4_
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Therefore

p y4 p P
=21 [ P -
33 o 21113%10 420 fjﬁj-“* p]ggo ‘ZO aJR]B plg?o 'ZO Cf?]ﬁ + lim 'ZO bfs]s'
J3= J3= J3= J3=

P00
(2.196)
After substituting the relations (2.188)-(2.196) into (2.187) we obtain:

p ) ] ) )
i i) s(d2) m(is) A(ia)
lpl_,?o i Z CJ4]3]2]1 g1 Sja Sjz Si T
J1:J2:J3,34=0
s 81

T
= [((f\‘lljﬁl:i)“ b {11—12;&0}///d@dWﬁ“f)dwg“)—i-
ttt

T s2 51 T s1 82

1 . 1 . .
+§1{i2:i3¢0}///dwg“)dsldwg;) + 51{1-3:,-47&0}///dwg“)dwgg")dsl
t tt t tt

T s
+- 1{11 22760}1{13 14760}//d82d81 + R =

= [y + R wop 1, (2.197)
where
T xta xt3 xta

Isishee= [ ] [ dwidwidwi? dwh?

tot t ot

(ilﬂiZ)i33i4 = 05 1; .- ’m)

R= 1{21 zzgéO}Al + 1{21 23750}( A(7224) +Agi2i4) +Agi2i4)) +
+1{i]=1'4750} (Aflzzls) _ Agzis) + Aélzls)) 1{12 13760}A (i144)

lyymis) (_Agi1i3) + Ag'lis) + Agn‘s)) — giymisro} A (iris)

p
+1{il=i2¢0}1{13=i47ﬁ0} pll,r{}o z_: azjjsjs_

D 14
1{11 22750}1{22 =iy 70} (hm Z a]?]? + hm 'ZO C?sj.% _ph—)Iglo ) Ob;%ja) -
J3= J3=

—Lgi,=isz0} L{iy=iz 20} X
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2.5 Expansions of integrals of 4th multiplicity

P P P p
X (2 plg?o Z fjpsjs - plggc Z a?a]é - plg?o Z c?sjs + plggo Z b?s]é) :
J3=0 Jz=0 Js=0 j3=0
(2.198)
From (2.197) and (2.198) it follows, that theorem 8 will be correct if

y P P
Ag.i):(]; pli—glo_zo D ,}H}}csz =
J3=

P P
:plglolo Z Y, = lim Z fhin =0, (2.199)

where k=1, 2,...,6; 4,7=0, 1,...,m
Let’s consider the case of Legendre polynomials. Let’s prove, that
AP = 0 w. p. 1. From (2.277) it follows:

{( > dj, (;3 44) } Z Z( ]maJ,JHr

J3:Ja=0 75=073=0

+ (aﬁs.i) + zaJsJéajéjs + ( ajy 73) ) +3 Z (‘1' '>

p p -1 9
) QZ) +2 S () +2 % () Ga=ia 0y
3 ’ (2.200)
2
{( Z a]u% ': 1(24)> }:
J3:J4=0
= ZI)::O( ]4]3)2 (i3 # 145 i3 # 0; 14 # 0); (2.201)

(T—t) % (ah,0)" if i = 0,is 70
p 02 =
(i3) »(i) _ e .
M{(Z a5, .Gy’ 1‘24) }— (T — )% (aoh) ifi4=0,i3#0"
J3,J4=0 J3=0
(T — )2 (aby)? if i3 =44 = 0
Let’s consider the 1st case (i3 = i4 # 0):

(- E DR

JaJs 39
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 Y 00 Y1 2
x/&@/@m)zmnum/&wmgwmﬁ
-1 -1 Ji=p+1 =1
_ (M- D) +1)
B 32
1 0 1 ) 1
i — (P — P _ P, (y)dydy: =
xlﬂ@ﬂgg%+ghmm 51 ())° [ P )y,

(T2 F1 |
- 32m [ Pi(n) (P 1(n) = Pia () x
J4 1

X - (P: _ P d
,-1:2,;“ 251+ 1 (Pi+1(y1) = Pjy1(v1))” dyn

if 54 # 0 and

p (T2 +1

Ajyjs = X

32
1 o 1 2
X P; 1— _* (P _p p
_Anmx w) 3 ooy (Bon) = Pica(on)) dn

if j4 = 0.

From (2.13) and estimate |P;,—1(y) — P,+1(¥)] < 2; ¥y € [-1,1]
(| Pi(y) |< 1; y € [-1,1]) we obtain:

Co &2 1 p dy
.| < S ja#0 2.203
0l U, S ] ot S GO e
x 1 ' dy Cq
a < C 35 <—; 2.204
bl = 0]1:Zp+1 ]12_/1 (1—y2)i = p (2.204)
o 1 dy Ch
ahyl < C e 2.205
|ago| < 0;'1:%1 Bl oSy (2.205)

where Cj, C7 — are constants, which doesn’t depend on p.
Taking into account (2.200) (2.205) we write down:

P 2 2
M{( Z a§4j3 ](32) ](44)) } = (a00+ Z a]sjs) +

J3,Ja=0 Ja=1
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2.5 Expansions of integrals of 4th multiplicity

n Z (a +a,0)2+ ijf( dh o+ )2+

jh=1 Js=17js=1
2
1 ) Kl

+2 (Zp: (agéjéf + (000)2) < Ko ( . Z =

3=1

w5 S A () -
+ K9
]3_11311’ \/7 \/_

1 1 %de Ki K3 2 1
<SKy|l-4-[—=]| +—+=Y =<
(p po/x/f) p pj;]s

2 p
12\ KK d
§K0(+) + 2 14 [ <
P /P p P iz

Ky N K3 (Inp+1)
p p
when p — oo (i3 = 14 # 0).

The same result for cases (2.201), (2.202) also follows from the esti-
mates (2.203) — (2.205). Therefore

<

— 0,

Al =0 wp.1. (2.206)
Not difficult to see, that formulas
A =0, A =0, AP =0 wp.1 (2.207)
may be proved similarly with the proving of the relation (2.206).
Moreover, from estimates (2.203) — (2.205) we obtain:

p
lim 3 af . =0. (2.208)
0

Relations lim Z Be
p= ]3

P
o Oiin = = 0 and pll)rgo '20 fi.i» = 0 also may be proved
J3=

analogously with (2 208)

Let’s consider Aj (inia)

Af# = Al 4 Ag““) — Al — Al 1 (2.209)
where
A(iziai) _ 1 1 m ZP: 12 (i4).
7 - ﬁ—}oc' ; ]4]2 J2 Sjs
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

T

9?41'2 = /¢.i4(s)t/¢jz(sl - (/ (15]1 52 d82/¢]] 52 dSz) dsids =

t 51

= Z /¢74 /¢]1 59 dSQ/(ZS]Z S1 /(]5]] 32 dSzdSldS (2210)

Ji=p+1%

The last step in (2.210) follows from the estimation:

© 1+ 1 | K
‘gJPAJé‘ <K Z _2/ T / ldmdy < _1
WS R )i - o) v

Note, that

Gjsjs =

T 2
j1—p+1 2 (/ ;i (s )!¢j1(52)d52d3) ; (2.211)
T T r
gijz +g§zj4 = Z /¢]4 )/¢j1 (52)d82d8/¢j2 (S)/¢j1 (52)d82d5
s t s

Ji=p+1%
(2.212)
and

» (T =15/ +1)(2j2+ 1)
Giajy = 16 X

1

[ Piu) (Pi-1(1) — Pya(m)) X

io: 1
X .7
Ji=p+1 2-71 + 1_1

Y1

x [ Py(y) (P 1(y) = Pia(v)) dydys; js, 52 < p.
—-1

Due to orthonormality of Legendre polynomials, we obtain:

p y (T t)2\/(2j4 +1)(2j2+ 1)
ngjz + gj2j4 - 16 X

1

le=2p:+1 2j1+1;/1 in (1) (Pi-1(y1) = Pia(y1)) dyn

o0

1

X / P]z(y) (le,l(y) - ]Dj1+1(y)) dy =
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2.5 Expansions of integrals of 4th multiplicity

T—t)2(2p+1 T—t)2 oo .
: )1ép+)2p+3<fp2(1/1)d1/1) _mlf.h:M:p_

)

0, otherwise
(2.213)

y (Tt
g]4]4 - 16

1

D T (/ P(w) <ﬂ11<yl>—al+l<yl>>dyl) =

et 251+ 12

2
(T—t)2(2p+1) S € Y
_ T e (f Pg(yl)dyl) = @) TP oy

0, otherwise
From (2.200), (2.213), (2.214) it follows:

2 ) 2 =1 2
{ Z g]puzC] Ja ) }: (Z ggsjs) + Z Z (913]3 +g]3]3)

2,Ja=0 J3=0 =0J3=

v 2 (T —1)? 2
+2 ba) < +0+
= () < <8<2p+ 3)(2p + 1))

+2 (T—1) : -0
8(2p+3)(2p+1) ’
when p — oo (ip = iq # 0).
Let’s consider the case i # 44, i9 # 0, 44 # 0.
Not difficult to see, that

T

T = /¢j4(5)t/¢jz(51 3 (/ b, (52 d82/¢]1 52) dsz) dsids =

t 51

T
/ S S1 ¢J4 ¢]2 (Sl)dslds
t

H.\H

is a coeflicient of the double Fourier-Legendre series of the function

K, (S 81) - 1{31<s} Z /¢]1 d0/¢]1 (2.215)

Ji=p+1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

The Parseval equality in this case has the form

TT
p}l_r}n gm2 // (s,81)) dslds =
Ja.j2=0 t ot

T s 2
z//( > /% d9/¢h dG) dsids. (2.216)

Ji=p+1s

Let’s consider the integral
T 1 1
[ 61(0)d8 = 251 + VT =t [ Py(y)dy =
51 z(s1)

T—-1

2\/2]17‘1‘( Ji— 1( ( 1))_le+1(z(81))),

where z(s1) = (s1 — 5) 2,
From (2.13) we obtain:

L/ ¢, (6)dd

1
< —71, 2.217
J(1—22(s1))" .

where s; € (¢, T).
From (2.217) we have:

3 /¢Jl de/% )df <

J1=p+13s

/ ¢;, (0)db 9)do <
]1—p+1 s
noo1 1 1
<C > , (2.218)

o1 JT (1= 22(s))7 (1= 22(s1))1
where s, s1 € (¢, T).
Let’s execute the passage to the limit lim in inequality (2.218):

z /d)h de/d)h )d6) <

=p+ls
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2.5 Expansions of integrals of 4th multiplicity

x 1 1 1
<C 5 T TS
- ,-szﬂ 7t (1= 22(s))7 (1 — 22(s1))*
coft 1 L1
p (1= 22(s)) (1= 2%(s1))*
C 1 1
< — g T (2.219)
P (1= 2%(s))* (1= 2%(s1))"
where s, s1 € (¢, T).
Then )
( > /¢n de/@, ) <
J1=p+1s
CZ LI LI (2.220)
P (1 22(s)) (1~ 22(s1))”
where s, s1 € (¢, T).
From (2.219) it follows:
M
z/% w/% w—z/% w/% (O)ds) <
71=0

in the domain D, = {(s,s1): s € [t+¢,T —¢],s1 € [t+¢,s]} Ve > 0,
where the constant M doesn’t"depend on s, s1.
Then we have a uniform convergence

z/qs,l de/qﬁh )df — z/qs]l dG/qﬁh (2.221)

J1=0%

at the set D, if p — oo.
Because of (2.221) and continuity of functions

p T T
S [ 0(0)d8 [ 6, (0)as
Nn=Us 81
we obtain continuity of the limit function
o T T
S [ 00)d8 [ 6, (0)as
Nn=Us 81
at the set D,.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Using this fact and (2.220) we obtain:

//s( Z /d)]l da/d)]l ) dSlds =

't ji=p+13s
T—¢ 2
= lim / ( Z / ¢;, (6)df / ;. (6 de) dsids <
the tre \J1=
2 T—e s
g%lim// don ds
pT ety (1 —2%(s1))? (1 — 2%(s))”
2/7 “
1722 D) (1= 22(s)F
K Y K
72 // yz T < 721’
S14 1—y y?)? P

where constant K7 doesn’t depend on p.
From (2.222) and (2.216) we obtain:

D1 9 [e's) 9
: D _ D
0< Z (914]2) < p}l—rgo ) Z (gj4jz) - Z (gj4jz) <
J2,Ja=0 J2,Ja=0 J2:Ja=0
K
S 9 — 01
p

if p — oo. The case i3 # 14, 19 # 0, 14 # 0 is proven.
The same result for the cases

22:0324#07
ig =0, ig # 0;
12—0 24—0

also may be obtalned Then Ay (2i4) — 0 and AgQi“) =0w. p. L

'I Z
Let’s consider A via)

Af) = Ag’ﬁ“) + AP - ALY w1,

where
A =1,

im. Xp: (i (13)
oo ]3]1 J1 Sj3
Ja:1=

T

(2.222)

(2.223)

hi]] / 53 /(r/)Js ‘L (/ ¢]4 d9/¢]4 da) dsdss.
Ja=p

~

53

156



2.5 Expansions of integrals of 4th multiplicity

1113

Analogously we obtain, that Ag"® = 0 w. p. 1. Here we consider the

function:

Kyls,58) = Lses) 3 / $;,(6)d0 / $i,(0

Ja=p+1s3

and the relation

J3]1

S—

T
/Kp s, 83)0j, (s3)Pj, (s)dsdss
t

for the case 41 # i3, 41 # 0, i3 # 0.
For the case i; = i3 # 0 we use (see (2.211), (2.212)):

2
o 1(7T
hgl]l :j Z Py (/ (15]1 /(15]4 81 dslds) s

T T T
W+ W= 3 / 20 ! $,(s2)dsads / 0! ! $,(s2)dsads.

Ja=p+1%

Let’s consider hm ij & .. We have:
.72

0 VEVER

. BOW

Jaja J3da Jajs 9;;]'3- (2.224)

D
We proved, that plggo _Zo fjpsj3 = 0. Analogously we obtain, that
3=

lim Z & =

p—)oo =0 Jajs
From (2. 214) it, follows:

. T —t)?
g;:je hm ( )

0<lm =Y,
= S0 L= Tl 8(2p—|—3)(2p+1)

| A

M=

J

then
p

g, 30 ¢y =0
J3=0
Relations (2.199) are proven for polynomial case. Theorem 8 is proven
for the case of Legendre polynomials.
Let’s consider the trigonometric case. In this case we have:

2
Jm - /‘ﬁh /‘75]3 (s1) (/ ¢]1 $2) dSQ) dsids =

J1=p+1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 T
=5 [dils) ¥ U@ﬁﬂm>/% )dsdsi;
t Ji=p+1

51 V2 { sinLjTlf;t) ds
[ 65, (s2)dsy = T« ‘ =
t o f cos%ft—t)ds

271']1 271 (s1—t) ’

T-t

\/—\/— { —cosLJl(slt Y41

sin

)
27r]4 _gin 2mia(s1—t)
T—¢

T 27r]4 51 t) 1
[ 8y (s)ds = V2T = { ‘

Ky . 7 Ky .
1 (s2)dsa < =2 (51 # 0); s)ds| < =" (ja # 0);
n 51 Ja
T
T~ S1
5]/ d)U(S)dS = T — ta
K2 1K K,
al ;| < — <= (Ja £ 0); |ab s | < —, 2.225
| ]4]3| ]4 W ]% p ( ) | qu| p ( )

where Ky, K1  are constants.

Taking into account (2.200) — (2.202) and (2.225) we obtain: A =
Ow.p. L

Using the same arguments we find, that:

A =0, AP =0, AL =0 wp.1,
. p p . p
plg& Z jyjy = 0, pll>r£10 Z b?sjs 0, hm Z Js]a =
Js=0 Js3=0

Let’s consider Agm). In this case for iy = i4 # 0 we will use (2.209)
- (2.212). We have:

fgzﬁ- (s) (lfco 27T]173t) ds
ﬁ«/T—t 3 P

T T

/¢j4(5)/¢j1(52)d52ds = :
2 T s (sm

t 3 Uw)! tf¢j4(s) (7sm%) ds
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2.5 Expansions of integrals of 4th multiplicity

where 71 > p+ 1, j4 = 0, 1,...,p. Due to orthonormality of trigono-
metric functions, we obtain:

T A \/iQ(Tt)or01fj4—0
[ 6ii(s) [ ¢ii(s2)dsads = a 1> p+ 1. (2.226)
t 8 0, otherwise

From (2.226) and (2.210) - (2.212) we obtain:

{ (Z,Tﬁ;;% or 0if jo=7js=0

oc
g]P4j2 + gfzh = Z

Ji=p+1

)

0, otherwise

, o [G=h or0if jy =0
Giaga = > :

J=ptl | 0, otherwise
Therefore
{ ‘gfu'z + g§2j4 < I;; if jo=74=0 (2 227)
gﬁjQ + gfm = 0, otherwise ’
{95')41'4 < Bifjy =0
: (2.228)
95')“'4 =0, otherwise

where K7 — is a constant, which doesn’t depend on p.

From (2.227), (2.228) and (2.200) it follows, that A" = 0 and
A = 0 w. p. 1 for iy = ig # 0.

Analogously to polynomial case we obtain A(”“) 0 and Agizi“) =0
w. p. 1 for g # 44, 19 # 0, 34 # 0.

The similar arguments prove, that Ay (is) _ ) . p. 1.
Taking into account (2.224) and relatlonq
P
: P _
pll%lo Z Jads p]l)%lo 'ZO dj3j3 =0,
=0 oz
which follows from the estimates:
K K, K,
|13, |< , |dj |< \foo|<?|d|<*

we obtain:

p
Jm 3 iy =~ Jism, _Z i’
J3= j3=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Finally, we have

P
Jm, > iy = 0.
o
Relations (2.199) are proven for trigonometric case. Theorem 8 is proven

for trigonometric case. Theorem 8 is proven. 0.

2.6 Expansion of multiple Stratonovich stochastic
integrals of kth multiplicity, based on theorem
1. Polynomial and trigonometric cases

The author thinks, that generalization of the theorem 8 for the case
of any fixed k (kK — is multiplicity of multiple Stratonovich stochastic
integral) is correct (without the proof).

Let’s formulate (without the proof) the following theorem.

Theorem 9. Assume, that {¢;(z)}72q — is a full orthonormal sys-
tem of Legendre polynomials or trigomometric functions in the space
L([t,T1).

Then, for multiple Stratonovich stochastic integral of kth multiplicity

«T xlg %2
I = [ dwiVdwl? L dwi (2.229)
t bt
(il,iz,...,’ik = O,l,...,m)

the following converging in the mean-square sense erpansion

Tt =lim Y O (2230)
Js---Ji=0

1s reasonable, where

Cir..i / ¢ (tr) - / ¢ (t2) / ¢, (t)dtrdts ... dty;

T .
) = J ¢ (s)dw are independent standard Gaussian random
i
variables for various 4, or ji (if i # 0); wf) = fT(") — are indepen-
dent standard Wiener processes; © = 1,...,m and WLO) =T7; N=01f

il=0 and)\lzlifilzl,...,m
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2.7 Expansions of integrals of any multiplicity

Theorem 9 allows to approximate multiple Stratonovich stochastic

integral I/\“ ;:Tt by the sum:

I(*/\(:I;:));t: Z Cj.. thCJ PR ](,:k), (2.231)
J1,---Jk= 0

where )
. *(i1...78) *(i1...0k)D .
Jim, M {(I(Aﬁ..x,fmt - 1) } =0.
Integrals (2.229) — are integrals from the Taylor-Stratonovich expan-
sion (9.22). It means, that approximations (2.231) may be very useful

for numerical integration of Ito stochastic differential equations via the
truncated expansion of the form (9.22).

2.7 Expansion of multiple Stratonovich stochastic
integrals of any fixed multiplicity k£, based on
generalized repeated Fourier series

2.7.1 The case of integrals of 2nd multiplicity

Let’s analyze the approach to expansion of multiple stochastic inte-
grals, which differs from the approaches examined before [45], [35], [32],
taking multiple Stratonovich stochastic integrals of 2nd multiplicity as
an example.

Thus, let’s analyze the<multiple Stratonovich stochastic integral of
the following type:

«T o

T Phre = [ o(ta) [ aha(0)dEV L inin =1, m,

t t

where W,Ei) = ft(i) wheni=1,...,m; Wt(o) =t 4,...,5, =0, 1,...,m;
£f0) (i=1,...,m) areindependent standard Wiener processes; 1(7)
(I=1,...,k) — are continously differentiated functions at the interval
[t, T];

Let’s analyze the function

1
K (t1,12) = K(t,t2) + L=y Y1 (t)¢2(t),
where 1, € [, T] and K (t1,t2) has the form:

K(tta) = { ) < By e 1)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Due to lemmas proven in chapter 1 and formula
T t2 . .
TP rs = [wa(ts) [ 1 (tr)dwt; dwiy”+
t t

1 T
+§1{i1:i27é0} / o (t2) 1 (t2)dts
¢

with probability 1, we have

N—-1N-1
Ty Jre=1im. > 3 K* (1, ) AWV AWS) wop 1, (2.232)

N=00 1= 1,=0
where the sense of formula (1.8) notations is kept.

Let’s expand the function K*(1,¢2) using the variable ¢1, when s is
fixed, into the Fourier series at the interval (¢,7) :

K'(tit) = 3 Ci(t)gi(t) (W #6T),  (2233)

J1=0

where

T
Ci\(ta) = [ K*(t1,12) gy, (t)dty = /K tr,t2) by, (t1)dty =
t

= 1y (t2) j¢1(t1)¢jl(t1)dt1,

{#j(z)}32o — is a full orthonormal system of continuous functions in
the space Lo([t, T).

The equality (2.233) is executed pointwise in each point of the in-
terval (¢,T) according to the variable ¢;, when ¢y € [¢,T] is fixed due
to sectionally smoothness of the function K*(#1,t2) according to the
variable t; € [t,T] (t2 — is fixed).

Note also, that due to well-known features of the Fourier series, the
series (2.233) converges when ¢; = ¢,T (not necessarily to the function
K*(ty,t2)).

Obtaining (2.233) we also used the fact that the right part of
(2.233) converges when ¢; = t, (point of finite discontinuity of func-
tion K (t1,t2)) to the value

5 (K (b~ 0,0) + K (124 0,15)) = Laba(t2)dha(t) = K* (12, 12)
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2.7 Expansions of integrals of any multiplicity

Function Cj, (t2) is a continuously differentiated one at the interval
[t,T].
Let’s expand it into the Fourier series at the interval (¢, T):

Cj(t2) = Z Chjn9in(ts) (b2 #t.T), (2.234)
j2=0
where
12

T
Jz]l /C.h (3) ngz t2 dt2 = /¢2 ts d)]z (tQ)/¢1(t1)¢j1 (tl)dtldtQa
t

t

and the equality (2.234) is executed pointwise at any point of the interval
(t,T); the right part of (2.234) converges when ¢t = ¢, T (not necessarily
t0 C), (t2)).

Let’s substitute (2.234) into (2.233):

K'(tit) = 3 3 Crady ()di(ta); (t,ta) € (1T)%,  (2.235)

J1=0 j2=0

moreover the series in the right part of (2.235) converges at the boundary
of square [t, T]? (not necessarily to K*(t1,t3)).
Hereafter, using the scheme of proving of theorem 1 and (2.232) w.p.1
we get:
T PN = Z Z Crin (V¢ + RRP, (2.236)
J1=072=0
where

T ta Tt
REP = [ [ Gy (1, t2)dw (i dw i + [ [ G (ty, to)dwii? dwiy) +
t t t t

T
+1{i1:i2¢0}/Gplpz(thtl)dtls
t

P11 P2
G, (t1,12) & K (t1,1) — ZO ,ZO Ciojs i (1) 5, (£2);
N=Ug2=

p1, p2 < 00.
Using standard evaluations (9.3) and (9.4) for the moments of

stochastic integrals, we obtain

2

M {(RPIPQ } ”(7/ p1pz t1,t2 dt1dt2—|—
t t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Tt T
+ // pip> tl’ t2 dt2dt1 + 1{i1=i2760} / (GP1P2 (tlﬂ tl))Qn dtl) s
t t t

(2.237)
where C,, < o is a constant which depend on n and T'—¢; n =
1, 2,...

Note, that due to assumptions proposed earlier, the function

Gplpz (tl’ tQ)

is continuous in the domains of integrating of integrals in the right part
of (2.237) and it is bounded at the boundary of square [t, .
Let’s estimate the integral in the right part of (2.237):

to

T
0< // D1p2 tl t2 dt]dtZ - (/ /) Pip2 t17t2 ) ndtldtZ <
t t

N—

IN

Z ax (Gpips(t, t2))2n AT ATj + MSt, <

i=0 j=0 (t1, tZ)E[Tz it X7, 7j41]

N-1

<y g( G 73))™" AT+

N-1 i

+2 >

i=0 j=0

2n
(G (8™, 22 —(Gppo(Tz"Tj))Q"‘ATiATﬂLMSFE <

§ 1 1
< Z ( plpz(Ti,Tj))2n ATZ'AT]' +61§(T—t— 36)2 <1 + N) + MS]"E,

(2.238)
where D, = {(t1,t2) : tg € [t+2¢,T—¢],t1 € [t+e,ta—¢]}; Te = D\D;
D = {(t1,t2) : t2 € [t,T], t1 € [t,t2]}; € — is any sufficiently small posi-
tive number; Sr, is area of I';; M > 0 — is a positive constant limiting
(G (t1,£2))"" 5 (77 #%P2)Y i 4 point of maximum of this function,
when (tl, tQ) S [Ti7 Ti+1]X[1Tj, Tj+1]; 7 =1t+ 2 + 1A (l =0,1,..., N),
=T—-¢ A= (T—t—3e)/N; A <e¢; e >0—is any sufficiently
small positive number.
Getting (2.238), we used well-known properties of integrals, the first
and the second Weierstrass theorems for the function of two variables, as

well as the continuity and as a result the uniform continuity of function
(G, po (1, 12))°" in the domain D, (Ve; > 0 35(e1) > 0, which doesn’t
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2.7 Expansions of integrals of any multiplicity

depend on ty, ts, p1, p2 and if v/2A < 8, then the following inequality
takes place:

2n

‘(Gplpz (tl(Plpz)’ t;:lllpz))) _ (G«p]p2 (Tz‘, Tj))Qn < 51)-
Considering (2.235) let’s write down:

lim lim (G, (t1, 12))*" = 0 when (t1,8,) € D,

P10 P2a— Q0

and execute the repeated passage to the limit lim lim hm in in-
e—+0 P1—0C p2—

equality (2.238). Then according to arbitrariness of 1 we have

lim lim
P1—Q p2—00

(Gpupy(t1, £2))*" di1dty = 0. (2.239)

~—
——

Similarly to arguments given above we have:

t
[ (G, 12))?" dtadty = 0, (2.240)
t

=

lim lim
P1—00 Pa—00

—

T
. . 2n
Jim lim [ (G, (t, 1)) ™ diy = 0. (2.241)
t

From (2.237), (2.239) <(2.241) we get

lim lim M{(Rplpz) }:0; n € N.

P1—OQ pa—00
The last equality and (2.236) provide a possibility to write down:
J*[ ] Z(] Z C]zhC] _72 7 (2242)
Ja=0

where convergence of the repeated series is regarded in the mean of
degree 2n; n € N.

It is easy to note, that if we expand the function K*(t1,¢2) into the
Fourier series at the interval (¢, T') at first according to the variable ¢5 (1
is fixed), and then expand the Fourier coefficient of the obtained series

T
Vi(tr) [ valta) g, (ta)dtz
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

into the Fourier series at the interval (¢,7T') according to the variable ¢1,
then taking into account, that

T T
[ 1t (1) [4a(ta) i, (ta)dtadts = Ci,
t

ty

we will come to the following formula of expansion of multiple Strato-
novich stochastic integral of second multiplicity:

2 SR (i2) +(i2)
TP =3 ¥ CuiGlG-
J2=071=0
Note, that directly from (2.242) follows (5.6) — (5.8), (5.11) — (5.13),
(5.43).
2.7.2 The case of integrals of 3rd and 4th multiplicity
In the previous section we examined the following equality:
1 o
wl(tl) <l{i1<t2} + il{tlztz}) = Z /¢1(t1)¢11 (tl)dt1¢11 (t1)7 (2243)
1=0%

which is executed pointwise at the interval (¢,T'), besides the series in
the right part of (2.243) converges when t; = ¢, T.
Using (2.243) we get:

0o o t3 ta
'ZO 'ZO 1,[13(t3) /wQ(tQ)quz (t2) /¢1(t1)¢j1 (tl)dtldtgx
Nn=UJ2= t 4

X @), (ta) ), (t1) =

to

= f:o Us(ta)ua(ta) [n(t1) g, (1)dts (1{t2<t3} + %1{t2:t3}> i (t1) =
= t
= 11 (t1)ha(t2)s(t3) (1{t1<t2} + %1{t1:t2}) <l{t2<t3} + %1{12:13}) :

(2.244)
On the other side, the left part (2.244) may be represented by ex-
panding the function

t

Ualts) [ Yalta)ds(t2) [ 1(t2) (1)t
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2.7 Expansions of integrals of any multiplicity

into the Fourier series at the interval (¢, T) in the following form:

HMS

3, 5% O ()93 (2)655), (2:245)

where

T t3 ty
Ciaiain = [ Vs(ts)dss(ts) [ ¥a(ta)ds,(ta) [ 1(t1) by, (1) dtrdtadts,
t t t

So, we get the following equality:

§ S S i i (1) (12) 65 (t3) =

71=0 ja=0 j3=0
1 1
= 1 (t1)Va(t2)es(ts) (1{t1<t2} + El{tlztg}) (1{t2<t3} + El{tzztg}) =
3 1
= ZH Ui(tr) (1{t1<t2}1{tz<t3} + il{tlztz}l{tz<t3}+
=1

1 1
+- 1{t1<tz}1{t2 t3}+ i SR e tg}) K*(t1, 9, 3), (2.246)

which is executed pointwise in the open cube (¢,T)3, moreover series
(2.245) converges at the boundary of the cube [t, T3
Using (2.243) and (2.246) we get:

t4 tZ

S5 5 wnttn) [t ) [alta)s(12) [ ) 1)

t

||M8

3
xdtidtadts I ¢, (1) =
=1

oo o0 1

= > > Yalts) (1{t3<t4} + il{tgzu}) X
J1=0 j>=0

t3

xa(ts) [ Ya(ts) . (t2) /2 bi(tr) b, (t)dtrdtag, (t2) 85, (1) =

t
1
= Py(ts) (1{t3<t4} + §l{t3:t4}) X
t'; t2

XY 3 dalts) / 2(t2) i (t2) [ 1(01) s, (h)dtadtady, (t2) 65, (1) =

J1=0j2=0 t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 3 2 1
= 14(t4) <l{t3<t4} + §l{t3:t4}> 11:11 Yi(t) 11 (1{tz<tl+1} + 51{t1=tl+1}> =
4 3 1
= _lwz(tz) l[ll <l{t,<t,+1} + §1{t,:tl+1}) . (2.247)

The left part of (2.247) may be lead by expanding the function
tg t3 to

a(ta) /¢3(t3)¢j3(t3) /¢2(t2)¢j2(t2)/¢1(t1)¢j1 (t1)dt1dtadts

t t t

into the Fourier series at the interval (¢,7') to the following form:
0O 00 00 00 4
Z Z > Z Oj4jsj2jl ll:Il ¢jl (tl)7 (2'248)

where C},j,j,j, is defined using the formula (1.6).
As a result we get the following equality:

) 4

i i Z Z CJ'4]'3]'2]'1 1¢jl(tl) =

J1=0j2=0j3=0 js=0 =

3

4 1 ef
ll:[1 i(t) 11 (1{n<tl+1} + 51{t1=tm}> E

=1

K (1, t, £, 14), (2.249)

which is executed pointwise in the open hypercube (¢, T')*, moreover the
series in the left part of (2.249) converges at the boundary of hypercube
[t, T)*.

Due to lemma 1, remark 2 and formula of connection between multi-
ple Stratonovich and Ito stochastic integrals:

T t3 ty ) . .
T = [s(ts) [ ats) [ 1 (t)dwiPdw (P dw( +
t t t

1 T ts3 o
+5Ha—ir0) / V3(t3) / (b2 (o) dtadwi) +
t

t
t3

1 T .
+§1{i2:i37é0}/¢3(t3)¢2(t3) /¢1(t1)dwt(, dt
t t
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2.7 Expansions of integrals of any multiplicity

with probulity 1, we get:

N-1N-1N-1
T WO =Llim. ¥ z K*(71,, 7, 71,) AW Aw 2 A (59
N=00 1,=0 1,=0 I;=
(2.250)
where the equality is fulfilled with probability 1.
Hereafter, using the scheme of theorem 1 proving and (2.250) w.p.1
we get:

y4I P2 p3
J [ }Tt* Z Z Z C]3J2]1 ]1 ]2) ](3 Rp1p2p3 (2251)
=072=0j3=0
where

N-1N— 1

D1P2P3 __ i i i

RpPP =1lim. 3 ) Gp]p2p3(Tl,,712,Tl3)Aw 1) AW 2) Aw )
N—=oo 1.=0 1,=0 ;=0

1N-—

Gplpzps (tl,t?at3) déf K*(tlatQatS)_
P2 P3

- i S S Chuiin 65, (1)85, (12) 5, (t3).

=072=0j3=0
Using formula (2.276) for muliple sum we get:
R:Umzps = lim. Nzl NZI NZI G (’T T )A (h)A (22)A (13) —
N pip2p3\Tlis Tlas Tly w w Wo. =
—0 l3 0 l5=0 l1=0
—1l3—11=1

Clim Y S 9 (Gpapaps (71 71 71, ) AW A ) o)+
N=00 1,20 1,=01,= ' ' ! 2 3

+GP1P2P3 Tll? Tl3) Tlg A Zl A‘V’ ZZ)AW(ZS)—i—

(i i A
Plpzpa Tlys Tlgs Ty o AW ) AW 3) —{—

( )

Gpipaps (Thas Tty Tlg)A Zf)AWg:)-i-
( )Aw
(

i) 13
P1P2P3 Tigs Ty Ty )AW AW AW

+Gpypapa (1, 71, 7,) AW ) Awij Awli ) +
N (i1) Ao (i2) A i)
+lim. - Z ( plpzps(lelez’Tls)AWn; Awﬂj AWT:: +

N—-oo I3=0 l,=

+Gp1p2p3 (TIQ, Tl3s le)Ang)AW%)Ang)"‘
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

+G:D1p2ps (7—137 Tlys TIQ)AW‘(I;;) AWS.;?AW,E;?) +
—113—-1

+11II1 Z Z ( P1P2P3(TllﬁTlsﬂTls)Aw i) AW i2) AW is) +
N—oo 13=0 ;=

+GP1IJ2P3 (Tls’ T Tl3 ) AW AW s Awgg)—i_

+Gppops (T135 715, 71, ) AW “)AW “)AW(“)) +

N-1
i i i3) __
+1im. Z Gp1p2p3(713,713,7'13)Aw 1 Aw 2 Aw 3) —

N—oc I3=

“\ﬂ Pﬁ\ﬂ H\H \*\H H‘\H N‘\ﬂ
T T T Tt T Y5
Fe— TS — “\S. “-\S. “\:3“ e

GPIPZPS (tl, t2, tf;)dwt(f‘)dwt(?)deS)—i—

Gplpzpa(tl ts, tg)dwt th dwt(,zf)—i—

+

Gpupaps (t2, 11, t3)dw i dw (™ dw (™ +

+

G s (t2, 85, 11 ) dw 2 dw ™) dw () -

+

+

G (t3, o, 11)dw (™ dw (™) dw () +

+

Gmpzpz (t3, tl, tg)th th Wt(?)—i‘

T t3 .
1 (is=isp0) | [ Goupaps (b2, o, ta)dtadwis )+
tt

Tty .
+14,=i,20) / / Gpupops (t2, t3, t2)dt2dwg2)+
t t

T tg .
+1{i2:i37é0}//GP1P2p3 (t3’ Ly, tQ)dthng)—i_
tt

T t3 )
+14isis0) | [ Gorpons (ta, 3, ta)dwy, dts+
tt
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2.7 Expansions of integrals of any multiplicity

T tg .
+1{i1=i3750}//Gp1p2p3 (t3’t1’t3)dW§:2)dt3+
t t

Tty _
+1{i1:i2¢0}// GPlPZPB (t?n ts, tl)dwt(ig)dtii'
t t

Now, using standard estimations for moments of stochastic integrals
we will come to the following inequality:

M{ ()™} <

t3 i

T
2
n(t/t/t/( Prpops t17t2’t3)) + (Gplpzm(tlat?nt?)) n+

2n 2n
+ (Gp1p2ps (tQatla tS)) o + (GP1P2P3(t27 tSatl)) + (Gplpzps (t3, tQatl)) +

+ (Gplpws (t3: i1, tZ))Qn) dt1dt2dt3+

t3

!

2 2
+1{i1=i3#0} <(GP1P2P3 (tQ: i3, t2)) " + (GIJ1P2P3 (t37 ta, t3)) n) +

+

H‘\’ﬂ

2 2
(1{11 12750}< P1P2p3 (tQ’ ta, t3)) " + (GP1P2P3 (t?n i3, t2)) n) +

+1(i,=is0} ((Gplpzps (t3,t2,12))"" + (Gpupups (t2, 13, t3))2”> dt‘zdts) :

(2.252)

It is important, that integands functions in the right part of (2.252)

are continuous in the domains of integration of multiple integrals and

in accordance with comment to the formula (2.246), are bounded at

the boundaries of these domains, moreover, everywhere in (¢,7)* the
following formula takes place:

p}l_f)f(l)c legno0 p}l_l’)l’(l)c Gpripops (1, 12, t3) = 0. (2.253)
Further, similarly to (2.238) (two dimensional case) we realize the

repeated passage to the limit lim  lim lim under the integral signs
P1—00  Pr—00 p3—00

in the right part and we get:

lim lim lim M{(Rp7)™} = 0.

P1—=OC Pa—00 p3—X
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

The last relation in it’s turn means, that

oo o0

T = > 3 3 Cipnnli¢i ¢, (2.254)
j1=0 j2=0j3=0

where the repeated series converges in the mean of degree 2n (n —
natural), that is

P2 P3

1 . ) i 2n
lim lim lim M{(«]*[?/J(?’)}T,t— P Cisjoia J(H“) J('um J(ZS)) }

P00 p2m300 Paroc 71=0 j2=0 jz=0

=0.

2.7.3 The case of integrals of multiplicity &

In this section we will formulate and prove the theorem about expan-
sion of multiple Stratonovich stochastic integrals of any fixed multiplicity
k of the form (1.2), based on the repeated Fourier series according to
the Legendre polynomials or the system of trigonometric functions. This
theorem provides a possibility to represent the multiple Stratonovich
stochastic integral in the form of repeated series of products of standard
Gaussian random variables.

Let’s define the following function on the hypercube [t, T]*

k k-1

K(t1,...,ts) = [T wi(t) 11 i<t} k>2. (2.255)
=1 =1

Let’s formulate the following statement.

Theorem 10. Assume, that the following conditions are met:

1.¢i(7); i=1,...,k  are continuously differentiated functions at
the interval [t,T].

2. {¢j(z)}52o — is full orthonormal system of Legendre polynomials
or trigonometric functions in the space Lo([t, T)).

Then, the multiple Stratonovich stochastic integral J*[d)(k)]m of type
(1.2) is expanded in the converging in the mean of degree 2n; n € N,
repeated series

JE=

e 00 k X
J*[T,b(k)]T,t = -ZO. .. Zo Cjk___j] ll_[l C](l“)a (2.256)
n= =
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2.7 Expansions of integrals of any multiplicity

T .
where QJ(I“) = [ ¢j(s)awl®  are independent standard Gaussian ran-
t

dom variables for different i, or j; (if 3, # 0);

k
Cioi= [ K, ta) 11_11 &, (tr)dty . . diy. (2.257)

[t.T]

Proving of the theorem will consist of several parts.
Let’s define the function K*(t1,...,%;) at the hypercube [t,T]*
follows:

k-1

k 1
K*(tl, ey tk) = H ’L/)l(tl) (1{tl<t,+1} + El{tl:tul}) =
=1

=1

k k—1 k-1 1 k-1 k—1
= H d)l (tl) ( H 1{t1<t1+1} + Z 2 Z H {tsl—tgl+]} H 1{t1<t1+1 }) -
=1 =1 r=1 s’l‘> s;sll I=1 l#sﬁj}-,sr

(2.258)
Particular cases of (2.258) for k = 2, 3, 4 were examined in detail
earlier.

Theorem 11. In conditions of theorem 10 the function K*(t1,. .., tx)

is represented in any internal point-of the hypercube [t, T|* by the re-
peated Fourier series

o0 e k
K*(t1,...,ts) = ... > Cjj I 65 (), (2.259)
J1=0 Jr=0 =1

where Cj, _j, has the form (2.257). At that, the repeated series (2.259)
converges at the boundary of hypercube [t, T]*.

We will perform proving using induction. This theorem is already
proved for the cases k = 2, 3 and 4.

Let’s introduce assumption of induction:

th—1

i i Z Yp—1(tr=1) /1/% 2(tr-2)dj, , (te—2) - .

J1=0j>=0 Jk—2=0

tz k-2
i) ()t dty ll:Il &3 (1) =

t
k-1 k=2

1
= l(tl) (1{tl<tl+1} + 71{tl:tl+1}> . (2260)
=1 =1 2
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Then

ii Z%Dktk/d)kltkl%“(tkﬂ

71=052=0  jr_1=0
to

[ty (0)dt -ty ];1_111 bi(t1) =

t
00

o0 oC 1
=3 > ... > Ur(te) (1{tk71<tk}+§1{tk4=tk}) Yr—1(tg—1) ¥
71=032=0 Jr—2=0

ta

k—2
X[ rea(ti-2)@i s (th2) - [ r(t1)dy, (t1)dtr .. dtys I (1) =
t =

t

th—1

= d]k(tk) <1{tk—1<tk} + %1{1‘/1971:&}) i i s i wkfl(tkfl)x

J1=072=0 Jk—2=0
tr1 to

k-2
x [ roa(ti-2)di . (ti2) - [ r(ti)dy, (t1)dt . drs I 6:(t) =
t t =

1
= Uy (tr) (1{tk,1<tk} + 51{tk l:t,ﬂ}) X
k-2

1
X H djl(tl) H (1{tz<t1+1} + El{tl:tlJrl}) =
k=1

k 1
= ll:Il Yi(te) ll:ll (1{t,<tl+1} + 51{1,‘,:,:,“}) . (2.261)

On the other side, the left part of (2.261) may be represented by
expanding the function

k(tk) /¢k 1(tk=1) b5, (tr=1) /1121 t1)@j, (t1)dty .. . dtp_s

into the Fourier series at the interval (¢, T) using the variable ¢ to the
following form:

Z Z C]k 1 H ¢]l (tl)

71=0 =0
The theorem 11 is proven. O

Let’s introduce the following notations:

(k)151,.-,51 def !
JW’ }T,t = Hl l{isp:jserl?éO} X
p:
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2.7 Expansions of integrals of any multiplicity

ts;+3 ts42

T
X /¢k(tk) L t/ ¢sl+2(t31+2) t/ ¢s,(ts,+1)¢s,+1(tsl+1)><

t

t51+1 t51+3 t51+2
X /d)slfl(tsz*l)"' / ¢51+2(t51+2) / 1[)51(t51+1)’([)51+1(t51+1)><
t t t
tg]+1
< [ () /¢qt1dwh dwidt pdw
cdwy Vb dwi Y L dwl, (2.262)
«T *t2 )
ﬁwwm:/¢mwm/¢mmMQ.dm, (2.263)
t t
T to .
TPz = [Gate)... [atr)dwi? . dwil, (2:264)
t t

where in (2.262) (2.264): ™ % (. ahy), 0 &gy
-Ak,l :{(sl,...,sl) s >spe1+ 1,000,890 > 8514 1,

Sty si=1,.. . k—1}, (2.265)

(S1y...,81) € Apy; L = 1,...,[%];2'320, 1,...,m;s=1,...,k; [z] —
is an integer part of number z; 14 — is an indicator of set A (14 =1 if
the condition A executed and 14 = 0 otherwise).

Let’s formulate the theorem about connection between multiple Ito
and Stratonovich stochastic integrals J[yy®]z,, J*[4®)]7; of fixed mul-
tiplicity k.

Theorem 12. Assume, that ¥;(7); i =1,...,k — are continuously
differentiated functions at the interval [t,T).

Then, the following relation between multiple Tto and Stratonovich
stochastic integrals is correct:

ﬁwmm:mem+

HME

1
— Y IRt wpd, (2.266)
2 (s ,81)EAL

where Y is supposed to be equal to zero.
0

Proof. Let’s prove the equality (2.266) using induction. The case
k =1 is obvious.
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If k=2 from (2.266) we get

J*W@)]T,t = J[lﬁ(Z)]T,t + %J[?/J(Z’)PTJ w.p.1. (2.267)

Let’s demonstrate, that equality (2.267) is correct with probability
1. In order to do it let’s examine the process my,; = ¥a(t2) J[Y1]e, 45
ty € [t,T] and find its stochastic differential using the Ito formula:

ity = J 1]t edids(t2) + i (£2) o (t2)dwie. (2.268)

From the equality (2.268) it follows, that the diffusion coefficient of
process 1y, 4 t2 € [t, T] equals to 1y; 20311 (t2)Ya(t2).

Further, using the standard relation between Stratonovich and Ito
stochastic integrals (see sect. 9.2) with probability 1 we will obtain the
relation (2.267). Thus, predicating of this theorem is proven for k = 1, 2.

Assume, that predicating of this theorem is reasonable for certain
k > 2,, and let’s prove its rightness when the value k is greater by unity.
In the assumption of induction with probability 1 we have

J*['(/)(Hl)]ﬂt =
a k ] 1 I (ikr1)
= [ I e+ X 5 OF T fawe)
t =1 (Sryeny$1)EAR 1

«T

= [ A1 ()T D], dwlise 4
t

5] 4 T |
+Y o X [ tea(m)I®t dwlie). (2.269)

"
r=12 (8r0,81)EAR, T

Using the Ito formula and standard connection between Stratonovich
and Tto stochastic integrals, we get with probability 1

«T
[ () T B dwlise) = J[gE D]y, 4 JW“ b (2.270)
t

T
[ () IO dwlie) =
t

[+ its, =k 1,

_ (2.271)
T[pE]sry5 4 LT[pR+D]ptro®tif g < b — 1.
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2.7 Expansions of integrals of any multiplicity

After insertion of (2.270) and (2.271) into (2.269) and regrouping of
summands we pass to the relations which are reasonable with probability
1

[]
T E ], = T[], +3 Y T (2.272)

Srpens81) €A1

1
127
when £k is even and

[%']
SRl e

r=1 2r (8rseer81) €A1 41 1

J*WWH)]TJ — J[¢(k’+1 ]

(2.273)
when k¥ = k + 1 is uneven.
From (2.272) and (2.273) with probability 1 we have
k+1] 1
TR e = T+ 3o X Tt
(Sr,ee381)EAR41,r
(2.274)
The relation (2.274) accomplishes proving of the theorem. O
For example, from the theorem 12 w.p.1 we obtain:
/ Y1t del /T,bl (t1 thl )
T st T to ) ]
/ ot / i (tr)dwidwl) = /¢2(t2)/¢1 (tr)dw}, dwi) +
t i

1 T
+5ii=inz0) /¢2(t2)1/)1(t2)dt2,
t

+T b2

t t
T t2 . .

= /1/)3 tg) .. / 1 (t1)dwt(fl) ce. dwgS)—l—
t t

+§1{i1:i2¢0}/¢3(t3)/¢2(t2)¢1(t2)dt2dwg3')+
t t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 T t :
+§1{i2=i3960} /¢3(t3)7/12(t3) /?/11(751)dwt(1 dts,
t t

«T 2]
dalta) .. [ n(t)dw! L dwy! =
t

——

T t2 . .
= [alta) . [ s (t1)dwi) . dwii)+
t t
1 T ty t3 ) .
o Limizso) [ Va(ts) [ alta) [ (t)a(te)dtadwly! dwiy +
t

t t

1 T ty ts i .
+§1{1:2:7:3¢0}/¢4(t4) /¢3(t3)¢2(t3) /¢1(t1)dwgll)dt3dwt(4 Iy
¢ t t

1 T tg to ; ;
+§1{i3:i4¢0}/’¢4(t4)1/13(t4)/¢2(t2) /1/;1(t1)dw§11)dwt(;)dt4+
t t

t

1 T t
+Zl{i1=i2760}1{i3:1’4760} / Yalta)hs(ta) / o (ta) i1 (t2)dtadty.
t t

Let’s analyze the stochastic integral of type (1.12) and find its rep-
resentation, convenient for following verbal proof. In order to do it we
introduce several notations. Assume, that

N-1 Jo—1

SP@=3 .Y Y aG.

Jx=0 91=0 (j1,err)

Jsr42—1 Jop41—1 Jsy+2=1Jsy 411 Ja—1

CST...cslsﬁ>(a)=E;... YOY .Y Y LY x

Jsr+1=0 Js,—1=0 Jsy+1=0Js;—1=0 J1=0

X > ar o
r IT g, g1 (G15-53k)

11 Lisy g g1 Groesdi) =20

= “l=]sl+l Jisdk

where

T

1_[1]:.7'3,7]'3#1 (jla e ajk

def . .
) = I.].sy-ajsr+1 cee Ijs] 2Jsy+1 (-71’ s ’]k)’
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2.7 Expansions of integrals of any multiplicity

(k) (k) 0 : . . ,
Csy---CsiSy'(a) = Sy (a); T Ly jops (1, - -5 k) = (s - - )

=1

L. (i S . o .\ def

1,141 (]qn ey Jgary Js Jgzs - ooy Jap—as Iy Jq_as + - - a]qk) =

def /. N

= (]qu s a]qza]l+1a]qq """ JIIk 2a]l+la]qk IERR ;.]gk)a
here | = 15 271 l 7é q1,---,42,43, - - -, k-2, k-1, - - -, Gk = 17 27)
Sty 8, =1,...k=1;8. > ... > sq; Aoy roniag) — scalars; g1, ..., qx =
1,...,k; expression Y  means the sum according to all possible

(qux---vjqk)

derangements (jg,, - - -, Jg)-

Using induction it is possible to prove the following equality:

N-1 N-1 k—1 _ ®)
Z T Z A(j1 s Z Z CST s CslsN ((l), (2.275)
Jk=0 71=0 r=0 sr,..., 51.71

where k = 1, 2,...; the sum according to empty set supposed as equal
to 1.
Hereafter, we will identify the following records:

Ajy,ejr) = OQjy.gx) = Bjrooji

In particular, from (2.275) when k& = 2, 3, 4 we get the following
formulas

N-1N-1 ( @)
Z Z A(j1,5) (a) +ClSN (a’) =
J2=0j1=0
N-1
Z Z > At 2 i) =
J2=0 71=0 (j1,j2) Jj2=0
N—-1j2—1
Z Z (ah]z + a]z.h) + Z a]z]z1
J2=0j1= J2=0
N-1N-1N-1

3 3
A(jyja,gs) = SI(V)(a) + ClSJ(V)(a)+

+C58 () + C2C1SY (a) =

N-1j3—1j>—1 N-1j3—1
=X XX X aGpmt X X X Gt
J3=072=071=0 (j1,j2,53) 73=052=0 (ja,j2,3)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

N-1js—1 N-1
+ X X X gt X e =
J3=071=0 (j1,j3,j3) J5=0

N—-1j3—1ja—1
= Z Z Z (aj1j2j3 + @3, 3 5o + jp i1 js + Qjp s + Qs oy + a’j3jljz) +
J3=0j2=0j1=0
N-1j3—1

+ Z Z (a]2]213 + jojsjo + a]3]z.72) +
J3=0j2=0

N-1j3—1

+ ZO ZO (ah]%]e + a]’%]l]? + a]‘?]’%]l) +
N

N-1
+ Z a‘]s]a]s’ (2276)

J3=0

N-1N-1N-1N-1 @) @) )
> Y- Qs = SN (a) + C1Sy (a) + CaSy ' (a)+

Ja=0 j3=0 j>=0 j1=0

+C38W(a) + C2C1SW(a) +C3C1SY (a)+
+C3C28Y (a) + 030201553) (a) =

N-1j4—1j3-1ja-1 —1j4—1j3-1

= Z Z Z Z Z (s jajaja) T Z Z Z Z Q(jj25351)

J4=053=0 j2=0 j1=0 (j1,j2,J3,ja) J4=0 j3=0 j2=0 (j2,ja,js,ja)
N-1js—1j3-1 N—1js—1j2—-1

+ Z Z Z Z (1 jajaja) + Z Z Z Z a(j1j21'4]'4)+

Ja=0 j3=0 j1=0 (j1,j3.3.j1) Ja=0 j2=0j1=0 (j1,j2,4,44)
N—-1js—1 N—-1jsa—1

+ Z Z Z A(jajsjaja) T Z Z Z Ay jojaja) T

31=0 j3=0 (js,j3.73.s) 340 12=0 (j2.2.,j4)
N-1js—1 N-1

+ Z Z Z Q(j1jajads) + Z Qj4jajaja =

3a=0 j1=0 (j1,j4,j4,Ja) Ja=0
N-1ja—=1j3—1j>—1

=3 > > > (Wjajsia T Qjrjjags T Urjsjaga + Wjsgaint
J4=0 j3=0 j2=0 j1=0

Fjijigaje T Qjijajejs T jojijajet
FQjsjijags T Ajogagigs T Ujajajagi T Foania
+aj2j3j4jl + @jyjijojs + Ajajijagat
Fjsjojijs T Qjygagagy T Ujsjajige T Xgjadoin T
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2.7 Expansions of integrals of any multiplicity

i jajs T Wajrgads T Ujagojijs T
T Qijojas T Qjyjagige T aj4j3jzj1) +
N—-1js1—1j3—1

+ Z Z Z (aj2j2j3j4 + Qjyjojajs T Ajajajajat
J4=0j3=0j>=0

T jsjagogs T Fosiads T Ajajajajo
FQajajojs T Fjsjogojs T Ajsjajajo
+@jijojsis T Cajsgage + Wsiangs) T
N—-1js—1j3—1
+ 2 2 X (@ajasiin + Gsgagann + Gaigass
J1=0 j3=0 j1=0
+aj3j4j3j1 + Q3544153 + aj311.7413+
+aj1j3j3j4 + Q3,333 + aj4j3j1j3+
+aj1j3j4j3 + Q31 jagsgs + aj4jlj3j3) +
N—-1js—1j>—1
+ Z Z Z (aj4j4j1j2 + Ay 54521 + aj4j1j412+
74=0 j2=0751=0
FQjjojajs T Cagogiis T Gjajijojat
Fajjajags T Cjsgijagi T Xjojagijat

+ @rjagoia ¥ Cirjojage T Wjogrjaga) T

N-1j4—1
+ 30 X (yiagsis T Dsgaiais T Vsjagads T Wjagaisgs) T
Ja=0 j3=0
N—-1j4—1
+ 3 X (hojaia + Wnjagois + Unjajajo
7120 j2=0
+a.i4j2jzj4 + Qg jajado + a.i4j4j2j2) +
N—-1j4—1 N-1
+ ‘ZO 'ZO (aj1j4j4j4 + Q51 jaga + Qjsjagrja + aj4j4j4j]) + 'ZO Qjsjajaja-
Ja=Un= Ja=

(2.277)
Possibly, the formula (2.275) for any k was founded by the author for
the first time.
The relation (2.275) will be used frequently in the future.
Assume, that

k )
=& (15,...,7,) lnl Awl,

a( 5

J1oeesd)
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where ® (t1,...,1) is a nonrandom function of k variables. Then
from (1.12) and (2.275) we have

k—

e = ¥ x

=0 (35,...,81)EA

[uy

] N-1 Jsr42—1 Jopp1—1 Jsiv2=1ds41—1 Ja—1
dim 208 TS LY Y LS 5 x

Jk=0  Jsp+1=0Jjs, 1=0  J5;41=0js; 1=0 =0 r
° ° o o l:[ sy J¢,+1(117 k)

@ (lea s Ths 1 Thsrgns Tisygns - o0 Tisp—1 Tispans Thspqas - - = Tjk) X

XAWE,I) AW(“I DAwn) Awlint)

Jsq—1 Tisy+1 Tisy+1

LA Awlin) Awli), Aw#] _

Tisp—1 Tigp+1 Tigp+1 k

k-1
N s e teen 2w
=0 (s,,...,51) €A,

T t37+3 t-ir+2 tsr tsl+3 tsl+2 tsl ta

e R I S I A Y D

t t t ot t T
ll;llltsl,tslﬂ(th---:tk)

~

X |® (th BERE) t51—17tsl+17tsl+17 RN tsr—17tsT+la tsr+la B 7tk) X

(151 1) (151)

xdwi) . dwi D dw i) dw i) gl

tsy41 tsy 42

..dw;' Z“ ' dwtl“ dw!ir ) g ior2) ..dwt(zk) , (2.279)

sr+1 sr+2

and Z def 1, k > 2; the set Ay, is defined in theorem 12 (see (2.265); we

suppose that right part of (2.279) exists as Ito stochastic integral.
Remark 3. The summands in the right part of (2.279) should be
understood as follows: for each derangement from the set

r
ll_[l Itslytlerl (tla cee tk)
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2.7 Expansions of integrals of any multiplicity

it is necessary to perform replacement in the right part of (2.279) of all
pairs (their number is r) of differentials with similar lower indezes of

type dwt( )dwt( 9) by values 1i—j40ydtp.

Us1ng standard evaluations for the moments of stochastic integrals
we get:

2n k-1 2n
w{s@f"l<ony  x m{meEe ) easo
r=0 (sy,...,51)EAg »
(B)81eensr |21
M { @) <
T tsrt3 topt2 tsr tsy+3 sy 42 ts)
S AR Y AV R B B /T X%
t t ot ot tHItsptsl_'_l(tl,...,tk)
XBH (1, oo te 1ty Esrtdy o tspdtsntdy Esntly oy TR) X

thl A dtsl—ldtsl+1dt51+2 A dts,—ldtsr+ldtsr+2 . dtk, (2281)

where derangements in the course of summation in (2.281) are performed
only in ®2*(...); Cpp, Cii*" < 00,
Lemma 4. In conditions of theorem 10 wvalid the following relation

JIESE = W, w. p. 1. (2.282)

Proof. Substituting (2.258) in (1.12), using lemma 1 and remark 2,
it is easy to see, that w. p. 1

2:) J[w }3“ R (2.283)

1
12" (SpyeeesS1)EAE -
where the meaning of theorem 12 notations is kept.

The affirmation of lemma results from (2.169) in accordance with
theorem 12 0.

Using lemmas from the proof of theorem 1 we get:

T mfz zqmng J[Rpy.p )8 w. p. 1, (2.284)

j1=0 Jx=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

where stochastic integral J [Rpl___pk]gf 2 defined in accordance with (1.12)
and

Rpl...pk(tla---atk):K*(t17---7 ) Z(] ZOCM Nl H(b]z( )
S (2.285)

_IQSJI() );pl,---7pk<00-

At that, the following equation is executed pointwise in (¢, T)* in
accordance with theorem 11:

lim ... lim Ry, ,(t1,...,t) =0. (2.286)

p1—00 pr—oo

Lemma 5. In conditions of theorem 10

1. %) 2n
im ... lim M ‘J[Rpl..-pk]ﬂ

P1—00 Pr—00 ’

}:O,neN.

Proof. According to (2.258) and (2.285) we have the following in all
internal points of the hypercube [t, T*:

Rm---pk (tl, RN tk) =

k-1 1 k-1
= H ( )(H 1{t1<t1+1} + Z Z H l{tsl*tsl+l} H 1{t1<t1+1}>

=1 Ls1=1]=1
PSS, Ssp l¢51 ..... sr

- Z Z C]k Ji H ¢Jl(tl) (2'287)
n=0  jx=0
Due to (2.287) the function Ry, p,(t1,...,t) is continuous in the
domains of integration of stochastic integrals in the right part of (2.278)
and it is bounded at the boundaries of these domains (let’s remind, that
the repeated series

0 o0 k
> 2 Ciy [T 63 (t)
71=0 Jk=0 =1
converges at the boundary of hypercube [t, T]F).
Then, taking R, p,(t1,...,t;) instead of ®(¢q,...,1%;) in (2.280),
(2.281) and performing the repeated passage to the limit lim ... lim

p1—00 Pr—0oC
under the integral signs in these estimations (like it was performed for

184



2.7 Expansions of integrals of any multiplicity

the two-dimensional case), considering (2.286), we get the required re-
sult. Lemma 5 and theorem 10 are proven. O

Note, that in accordance with theorem 10 we may approximate the
multiple Stratonovich stochastic integral J *W(k)]T,t using the expression

J*[d)(k)]p = Z Z C]k J1 H C]l ; P1y- .-y PE < O0. (2288)
70 Jk =0
It easy to note, that if we expand the function K*(¢1,...,%) into
the Fourier series at the interval (¢, T') at first according to the variable
tr, after that according to the variable t;_1, etc., then we will have the
expansion:

K*(tla cees ) Z Z C]k 1 H ¢Jz(tl) (2-289)

Jr=0 1=

instead of the expansion (2.259).
Let’s prove the expansion (2.289).
Similarly with (2.243) we have:

¢k(tk) (1{tk—l<tk} + %l{tk—lztk}> Z / 11/)147 122 ¢]k (tk)dtk¢]k (tk)

=04,

(2.290)
which is executed pointwise at the interval (¢,7'), besides the series in
the right part of (2.290) converges when ¢; = ¢, T.

Let’s introduce assumption of induction:

Z Z a(t2) /1/)‘; t3)¢j,(t3) ..

Jr=0 Ja=

[ el et di H B3 (tr) =
ty 1 =

1
1{t1<t1+1}+ 1{t, t!+1}) (2291)

I
-
<
’:@
—

Then ;
2 3 it [a(ta) 5, (82) - .

. / 1/)k(tk)¢jk(tk)dtk...dt2l1:k[2 (1) =

tr—1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

oo 00 1
= ... > hi(t) (1{t1<t2} + 51{11:12}> o (t2) X
Jk=0 Jj3=0

T T K
x [ Ws(ta)dis(ta) - [ ult)di(tr)dti .. dts I g () =
) th—1 =
1 o0 oC
= Y1(th) (1{t1<t2} + El{tlth}) Z -2 Pa(ta) ¥
=0 j3=0
T k
x [ aba(ts) s (ts) / Vi) @i ()t dts T1 6, (1) =
ty k—1 =

k-1

1 1
= 11 (t1) (1{t1<t2} + 51{t1=t2}> 11:12 Yi(tr) 11:12 <1{tl<tl+1} + 51{tl:tm}) =

k k-1 1
= 1[11 Yi(tr) 1[11 (]—{t,<tl+1} + El{t,:t,+1}) . (2.292)

On the other side, the left part of (2.292) may be represented by
expanding the function

1(t /¢2 ta) @, (t2) - / Ui(te) )i (tr)dti - . . dis

te—1

into the Fourier series at the interval (¢,T) using the variable #; to the
following form:

Z Z C]k gt H (]5]1 (tl)

Jr=0 J1=

where we used the following replacement of order of integrating:

T
[ () / a(ta) s, (1) / U (t1) B ()t ... dtadts =
t tr—1
T t3 ta
= [r(tr)B5(tr) . [ a2y, (t) [ 1(t1)85, (tr)dtadts ... dty =
t t t
= Cjk---jl'

The expansion (2.289) is proven. So, we may formulate the following
theorem.

Theorem 13. Assume, that the following conditions are met:
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

1.¢i(7r); i=1,...,k  are continuously differentiated functions at
the interval [t, T].

2. {¢j(®)};2q — is full orthonormal system of Legendre polynomials
or trigonometric functions in the space Lo([t, T)).

Then, the multiple Stratonovich stochastic integral J*[",b(k)}T,t of type
(1.2) is expanded in the converging in the mean of degree 2n; n € N,
repeated series

8

Jk

J*[t/)(k)}T,t = o G 11 C_}:l)’
0 51=0 =1

where -
= [ 5(s)dw®
t

are independent standard Gaussian random variables for different i; or
g (if iy # 0);
lec---jl =

k
= [ Kt ) I] 65, ()t ... dt.

2.8 Expansion of multiple Stratonovich stochastic
integrals of 2nd, 3rd and 4th multiplicity, based
on generalized multiple and repeated Fourier se-
ries. Another proof of theorems 3, 6 and 8

In this section we analyze the method of expansion of multiple
Stratonovich stochastic integrals of the 2nd, 3rd and 4th multiplicities,
which is a modification of theorem 10 (we analyze new passage to the
limit in this theorem for k = 2, 3, 4) and provides a possibility to obtain
new and significantly differ proofs of theorems 3, 6 and 8 than those,
that were presented earlier. See theorems 14 — 16. These results create
an entire picture about expansion mechanism of multiple Stratoinovich
stochastic integrals, using multiple and repeated Fourier series.

2.8.1 The case of integrals of 2nd multiplicity. Another proof
of the theorem 3

Let’s formulate here the theorem 3 and consider the another proof of
this theorem.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Theorem 14. Assume, that the following conditions are met:

1. The function s(T) is continuously differentiated at the interval
[t,T] and the function ¥1(7) is two times continuously differentiated at
the interval [t,T).

2. {¢j(z)}320 — is a full orthonormal system of Legendre polynomi-
als or system of trigonometric functions in the space Lo([t, T1).

Then, the multiple Stratonovich stochastic integral of the second mul-
tiplicity

)

J* [ t—/ () t2/ P1(t dwt th()(i17'i2:0,1,...7m)

1s expanded into the converging in the mean-square sense multiple series

£0(2) b1 P2
J [’l/} ]Tt— llm Z Z C]2]1<] ]2 7
PLP200 5,20 jo=0
T ,
where CJ(IZ’) = [ ¢;(s)dwl)  are independent standard Gaussian ran-
@

dom wariables for various 1, or j; (if 1; #.0);

iy = [ K(t,12)j, (1) &y, (t2)dtrdts;
[T

t t t1 <t
R T |

Proof. Using the scheme of proving of theorem 1 and (2.232) w.p.1
we get:
P P2
T =3 3 CniV¢ + mpP, (2.293)
J1=052=0
where
ta ty

T
[ ] Gou (1, to)dwtdwi®) + [ [ Gy, (1, to)dw (P dwry) +
t tt

P1P2

S—

T
+1(i,=ir20) / Gpup, (t1, 11)dt1;
t

Goup(t1,t2) & K*(t1,15) — 20 zo Cis 52 (1) 85, (t2);
J2
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

P1, P2 < OQ;

1
K*(t1,t2) = K(t1,t2) + El{tlztz}"’bl(tl)wQ(tl)’

where ¢, € [t, T).
Using standard properties and evaluations for the moments of
stochastic integrals, we obtain

M {(Rplpz) } —
T t2 Tt ‘ ‘ 2
- {(/ [ G (1, t2)dw dwt? + [ [ sz(tl,tg)dwt(f)dwt(f‘)) }
t t t t

T 2
+1{i1:i2760} (/ G:mpz (tla tl)dtl) <
t

t

T t2 T
2 (// D1D2 tlatQ dtldtQ +// P1pa tl,tQ dtgdtl) +
t t tot

T

2
+1{i,=ir0) (/ (Gplm(thtl))dtl) =

t

T 2
=2 / (Gplpz(tl:t2))2dtldt2 + 1, =ir 20} (/ ppe(t1, 1)) dtl) .
[t.T]? t

(2.294)
We have:

/ (GPIP2 (th tQ))Q dtldtg =

[t.T]

=/ (K*(thtz) 5 icml%(tl)%(t?)) dirdby =

[t.T)2 71=0j>=0

D1 D2 2
= / (K(t17t2) Z Z CJ2JI ¢]] (tl)(bh(tz)) dt1dts.
[t.T]2 71=0j2=

The function K (t1,t5) is sectionally continuous in the square [¢, T]?.
At this situation it is well known, that the multiple Fourier series of
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

function K (t1,t2) € La([t,T]?) is converging to this function in the
square [t, T]? in the mean-square sense, i.e.

D1

lim HK(tl,tQ) Z %C]ﬂlﬂéﬂ(tz)H

P1,p2—00 —0 j2=0

where || f]| = ({t I f2(t1,t2)dt1dt2)2.

So, we obtain:

plite [ Gon (o) dtds =0 (2.295)

Note, that

| (Gpipu(t1, 11)) dty =

~—

= / (;¢1(t1)¢2(t1) Z Z ]2]1¢j1(t1)¢j2(t1)) dt; =

J1=0j2=0
1 T D1 D2
é/ tl ¢2 tl dtl ZO ZO Jz]1/¢j1(t1)¢j2(t1)dt1 =
t J2
]_ T y4 D2
= 5/1/)1(t1)1/}2(t1)dt1 =2 2 Cijlg=py =
t j1=0 ja=0
1T min{p;,pa}
- §/¢1(t1)¢2(t1)dt1 - Y Cii- (2.296)
t J1=0
In the section 2.1 we proved, that
17 o0
5/1/11 (t)a(tr)dts = - Cjij- (2.297)
t J1=0

From (2.294) — (2.297) it follows

lim  M{(Rp)’} =o.

P1,p2—0C

Theorem 14 is proven. O
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

2.8.2 The case of integrals of 3rd multiplicity. Another proof
of the theorem 6

Let’s formulate here the theorem 6 and consider the another proof of
this theorem.

Theorem 15. Assume, that {$;(z)}52o — is a full orthonormal sys-
tem of Legendre polynomials or trigonomentric functions in the space
Ly([t, ), function 1hs(s) is continuously differentiated at the in-
terval [t, T and functions 11(s), ¥s(s) are two times continuously
differentiated at the interval [t,T).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

«T
T ®r, = / Vst / Valts / v () dE " df)) )

(11,492,173 = 1,...,m) the following converging in the mean-square sense
ETPansion
P ~
e . (i1) +(i2) ~(is)
PROlre=Lim ¥ (PG (2.208)
J1,j2,J3=0

1s reasonable, where

S1

T s
Cigisin = [ 3()85(5) [ (1), (1) [ ¥1(52)85, (s2)dszdsrds;
1 t

t

another denotations see in theorem 1.
Proof. Let’s consider (2.251), when p; =ps =p3=p:

‘][ ]Tt— Z Z Z C]3]2]1 (i ]: 73 +Rppp (2'299)
0)2 0]37

w.p.1, where

N—-1N-1N-1
Rppp =lim. > Y X Gppp(nlaleaTlg)Af i1) Af i) Af is)
N—oe 13=0 I,=0 1;=0

Gppp(tlat%tii) o K*(tlat%ts) Z Z Z C]ﬁ]2]1¢]1 (t1)¢12(t2)¢1q(t3)

=072=0j3=0

3 1
K*(tl’ t2’ t3) = lH ¢l(tl) <1{t1<t2}1{t2<t3} + 51{t1=t2}1{t2<t3}+
=1
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

1 1
+§1{t1<t2}1{t2:t3} + Zl{tlzt2}1{t2:t3}) :
Using (2.276) for multiple sum w.p.1 we get:
N—1N-1N-1
Rg«pf =Lim. Y > Y Gy, 7, ’7'13)Af i) Af i) Af is) —
N=00 120 1,=0 1,=0

—11l3—-11y-1

= lim. Z > > < ppp(Tl]’le’Tlg)Afll Af’z Af”

N—oo 15=0 Ly=0 1, =0

+Gppp (T Ty T, ) AL £l Af i2) Af is) 4

oo (Tl iy s Tig ) AL £ Af i) Af is) 4
+Gppp(le,Tlg,Tll)A £l Af iz Af(“)
+Gppp (71> T 7'11)Af,.,:q Afn‘2 Afn’l3

+GPPP(TI37 Tl s 7-12)Af,g:)Afglz)qu(_f;)) +
N-11l3—-1

ﬂ\’l—’r& 1320 122 o< e (le’Tl”Tl3)AfT(:;)AfT(:Z;)AfT(zZ;)+

+GPPI7 (le y Tla > Tls ) Af‘l('ZZI)AfS:) Af7('lZ;) +

+GPPP(Tl37 Tlys le)Afggl)AfillZZ)Af"('lZz?)) +
N-11l3~1

flim. Y Y (Gppp(nl,7'13,TIS)AfT(l"I)AfT(liz)AfT(Iis)-i-
N=oo 1220 1,=0 ! ’ ?

+Gppp(Tizs T Tla)Afr(,i;)AfT(ff)AfT(ﬂ:)_i_
+G (T35 Tt Tll)AfT(il)AfT(ﬁ)AfT(i.g)) n

—Hlm Z Gppp(nsﬂ'lgﬂ'lz)Af i1) Af ia) Af i) —

N—oo j,—

= RO 4 RO,

where
Ré}’)tppp _

t3 1o

T
- ///Gppp (t1,t2,13) dft dft(;Z)dft(Sls)—‘r—
tt

o~
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

+ Gppp(t1, 13, tg)dft(fl)dftgﬂ)dft(;z)+

ey
——
e

Gppp(t2a tl, ts)dft(IzZ)dft(jl)dft(?)—i—

+
P&\H
N\;“
s\.?

Gppp(ta, t3, t1)dft(f3) dft(jl)dft(sm) n

+
ﬂ\'ﬂ
a\;
H‘\S‘

t3

/

T
+f
t

t3 ta

T
+///Gppp tg,tl,tz dft dft dft 5
t tt

Gppp t3,ta, tl)dft dft(ziz)dft(:])-i-

&\W
&

R g?)tppp _

T t3 ‘
= 1{i1=i2¢0}//Gppp(t21t27t3)dt2dft(;3)+
tt

T ts |
+1{i1:i3750} //GPPP(t21t3;t2)dt2df§:2)+
tot

T t3 |
+1{i2=i3¢0} _//Gppp(t3:t2,t2)dt2dft(;l)+
t t

T ts
+1{72 73#0}//GPPP t1’t3’t3)dff(“)dt3+

T t3
+1{21 1?760}//Gppp t37t17t3)dft22 dt3—|—

T t3 .
+1{i1=méo}//Gppp(tg,,t3’t1)dft(fs)dt3.
tt

We have:

M {(RE7)’} < 2m {(R%)tppp)Q} +2M {(Rggppp)i’} .

(2.300)



Chapter 2. Expansions of multiple Stratonovich stochastic integrals

Now, using standard estimations for moments of stochastic integrals
we will come to the following inequality:

m{ (R} <

t3 to
( g (11,12, 13))° + (Gipypapy (1, 3, £2)) +

T
<cff

t ot
+ (GP1P2PH (t2, t1, tS)) + (GPIPZPS(t27 t3, tl))2 + (Gplpzps (t3, ta, tl))2 +

+ (Gplpzpa (t?n t1, t2))2> dtdtodts =

t

- / (Gppp(tla to, t3))2 dtldtgdt‘;,

[t,T7?
where C is a constant.

We have: ,

[ (Gt ta, 13))* dtrdtadts =

[t,T]3

. p p D 2

— [ (Rt - £ 5 G )6 1000
[t,T]2 J1=072=0j3=0

X dtldtgdtg =

2
p D p
— [ (Kt £ £ £ Ciiont)oulss) x
[t,‘T]ﬂ J1=0 j2=0 j3=0

thldthtg,
where

K(t, s, t3) = {¢1(t1)¢2(t2)¢3(t3) t <ty <t3,

0, otherwise i t1,t2,t3 € [t,T).
So, we get
Wppp\ 2| _
plg{.lo I\/I{(RTt ) }_
. ) 2
lim, / (K(tl,tg,ts)— > > Z mmgzﬁ,l(t1)¢]2(t2)¢h(t3)) %
! [T 41=0 j>=0 j3=0

X dtldtgdtg = 0,

(2.301)
where K(tl, ta, tg) € LQ([t, T]S)
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

After the integratlon order replacement for Tto stochastic integrals
(see theorem 19) in R 2P 3 b1 we obtain:

2
ng 7)tppp _

T t3

= 1{1'1:1'2760} (//Gppp tg,tQ,tg dthff("s)
t t

t3

+ /GIJPIJ(t?nt3at1)dft(li3)dt3)+
¢

H‘\’ﬂ

t3

T
+1{i2:i37é0} (//Gppp t3,t2,t2 dtzdff3 )
t t

t3

T
+ t/ / Gpp(t1, t3, t3)dE" dt3>

t3

T
+1{i1:i37£0} (//Gppp tQ, tg, t2 dthff(Zz)
t t

T t3

+t/t/Gppp(t3at1,t3)dft dt3)
t1

= Liii=i, 0y (//Gppp t2:t27t1)dt2dff(zs)
¢t

+t/t/Gpp”(tz’t2’t1)dt2df§f3)>+
Th

+1{i2:i3¢0} (//Gppp tl,t2,t2 dtzdft“
t t

TT
+ t/ / Gopp(tr, b, to)dtadf" )
ty

T
+1{i1:i37é0} (//Gppp tQ, t1, t2 dthftlz
t t

TT
+/ /Gppp(t2:t1,t2)dt2dft(f2)) _

i
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

T
— l{ilziﬁeo} (/ Gppp tz,tz,tg dtQ) dfth
t

T
/
T /T

Ty ( [ Gupp(tr 2,2 dtg) dfi 4
t i

T
1 miss0) / ( / Gpp(t3, o, 1 dtg) dfl =
t

T T

= 1{i1=i2¢0}//<( e ]‘{tz te})iﬁl(t?)%(tz)%(tz)
t t
D

p

= 35S Gl (1205 12 1) )+

J1=0 ja=0 j3=0
+1i,— 23760}//(( 1{t1<t2}+ 1{t1 tz})wl(tl)'(bQ(t?)?/}S(tQ)
t t

- Z Z Z CJszhd’Jl(tl)qsh(t2)¢]3(t2)>dt2dftl'

=072=0j3=0

—i-l{il:i#o}//Gl{tzztg}lﬁl(t3)¢2(t2)¢3(t3)—

- Z Z Z 191211¢]1(t3)¢]2(t2)¢12(t3))dt3dft(;2) -

J1=0j2=0 j3=

t3
| (;¢3<t3> [ (e a(ta)dts—
t t

Loy (iz)
- Z Z Cj3j1j1¢j3 (t3))dft33 +

J1=0j3=0

T 1 T
+1{¢2:i3¢o}/<§¢1(t1) /¢2(t2)¢3(t2)dt2—

- Z Z CJs]3J1¢J1(t1))dft(1il)+

J1=0j3=0

+14,= 13760}/ Z Z Cliinin b3 (tZ)dftgiQ) =

J1=0j2=0
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

= 1{i1=i2¢0}<§/¢3(t3) [ rt2)uinto)dtadfS —
t t

L (43)
- Z Z stjljl 3 +

J1=0j3=0

1 T T ;
+15,—is20) (5/7,/)1 (t1)/¢2(t2)¢3(t2)dtgdft(ll)_
ty

t

-3 3 Caadl?) -

073

1{11 =iz#0} Z Z C]l]s.h ( )

J1=0j3=0

From theorem 6 we obtain:

t3

1 T .
= C<1{i1:iz¢0}M{(§/ s(ts) [ n(ta)a(ta)dtadfly”) —
t

t

-5 % G J

J1=0j3=0

17 T .
FLimiapM{ (5 [ 61(8) [ dalta)b(t) ot -
t t

- % Cuud?)

0j3=0

P P (i2) ?
+1{i1:i3¢0}'\/|{<2 > CjijsinGj ) }) —0

Jj1=0 j3=0

(2.302)

when p — oo, where C' is a constant. From (2.299) - (2.302) we get

the expansion (2.298). Theorem 15 is proven O.
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

2.8.3 The case of integrals of 4th multiplicity. Another proof
of the theorem 8

Let’s formulate here the theorem 8 and consider the another proof of
this theorem.

Theorem 16. Assume, that {¢;(z)};2, — is a full orthonormal
system of Legendre polynomials or trigonometric functions in the space
Lot T)).

Then, for multiple Stratonovich stochastic integral of 4th multiplicity

T xty xt3 xta

i = [ [ [ [ dwldwidwidw

tot ot ot
(11,92,13,94 = 0,1,...,m) the following converging in the mean-square
sense expansion
*(i1i2izia) _1; o p8n) m(i2) f(d5) (ia)
(AdadeAgTyt = L. Z CigsinirGir G i G
J1:J2,J3,34=0

18 reasonable, where

T

Claisiir = [ $3(5) [ &4 (s1) / ¢jz(52)/¢j1 (s3)ds3dsadsids;
t t t

t

T .
i | ¢;(s)dw(® — are independent standard Gaussian random
t
variables for various 4 or 5 (if 41 # 0); 5’ T(i) — are indepen-
dent standard Wiener processes; 1 = 1,...,m and Wgo) =71; N =01f

ilZO a,nd)\l: 1 ifil:].,...,m.
Proof. Let’s consider (2.284) when k =4, py = po = p3 =ps = p
and ¥1(s), ¥a(s), ¥3(s), a(s) =1

P 2SS S G (O R 1,
71=0 j2=0 53=0 j;=0
(2.303)
where

N-1N-1N-1N-1
Rpppp_llm Z Z Z Z Gpppp(n1’T127TlaaTl4)Aw ) AW 22)

N—oo 14=0 13=0 I,=0 1;=0

X Awg:) Awg:),
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

Gpppp(tla ta, t3,t4) & K*(t1,to, t3,t4)—

- Z Z Z Z CJ4131211¢11(t1)¢12(t2)¢13(t‘5)¢14(t4)

=0 j2=073=0 ja=0

x def 1
K*(ty,t,t3,t4) < T (1{t,<t,+1} + 51{t,:t,+1}> =

= 14, <ty<ty<tsy T §l{t1:t2<t3<t4} + 51{t1<t2:t3<t4}+
1 1 1
tlt=t=toct T 5 Litictacta=tt T Lti=tocto=ti} +

1 1
+Zl{t1<t2:t3:t4} + gl{t1:t2:t3:t4}-
Using formula (2.277) for muliple sum we get:
Rpppp Z R PPPP (2304)
i=0
where

N—-11l4—11l3-11—1

0
R(Ty)pppp_llm Sy >y s (Gpppp(Tll,le,Tl3,Tl4)X
N—oc 14=0 13=0 15=01,=0 (I1,l,l3,l4)

¢ Awrlit) A ) A gy (is) Aw(m)
i i, Ty T, |0

where summation according to derangements (Iy, Iy, I3, l4) is performed
only in the expression, which is enclosed in parentheses;

N-1
(1)pppp ;
Rry™™ = L=, 20l.im. > Gpppp (Tt Ty Tigs T1,) X
N—oo I4,l3,11=0
11#3 11#4 371y
XATZIAW(Z3)AW,(F;4),
(2)pppp RS
Ry = 1{i1=i3760}11(;1;>m' > Goppp(Tiys Thys Tiy s T1,) X
o0

I4.19,11=0
L#lg,l1 £y la#ly

x An, Awl? Awli),
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

N-1
= Lgi,—i,z0plim. > Gpppp (Tt s Ty Ty T ) X
N—voo 13,12,11=0
1171501 g dalg

x Am, Aw(? Aw(i),

R (3)pppp

7

N-1

= Liy—iy 7oyl im. > Gpppp(T1ys Ty Tty T1,) X
N— [
LA by g

4
R gr }pppp

wa An Aw

N-1

= 1{i2:i4¢0}1'1'm' Z GPPPP(Tllﬂ Tlys Tls Tl;)) X
N—oo Ig,lo,l;=0
L #l2,l1 713,12 713

R(5)pppp

iy

X Awgf‘ ) ATl2Awg3),
1 3

N—-1
= 1{i3:i47£0}1'1'm Z Gpppp(Tl] ) lea Tlsa Tls) X
N—oo

13,l2,11=
11?‘12;’1#’&12#13

R gfj 1pppp

)

X Awgll)Awg‘;)ATls,

N-1
(")pppp _
RT,t = i =io 20} Lig=is 20} hmoo > Goppp(Tiys Ty, 145 71, ) X
14,l9=0
la#ly

XAleATl4+

N-1

140, =i, 20y L= =ia#0} o lim 3. Gpppp(le’Tl4alea7'l4)X
=00 1,4,19=0
271y

XAﬂQATl4

N-1
+1{11 147“]}1{12 13750} lim Z Gpppp(leaTluTlule)X

0C 1,,19=0
la#ly

XAT12A7'14.
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2.8 Expansion of multiple Stratonovich integrals of 2nd, 3rd and 4th multiplicity

From (2.303) and (2.304) it follows, that theorem 16 will be correct
if
lim M{(RTW’) }:o; i=0,1,...,T7.

p—00o
We have (see (1.13)):

ty t3 to

T t.
Rg],)tpppp:////( > Gppp(t1, t2, 13, 14) X
t ottt

t1,ta,t3,t4)

xdwt dwt dwt dw§ )),

where summation according to derangements (¢1, ta, t3,t4) is performed
only in the expression, which is enclosed in parentheses.
From the other hand (see theorem 1):

. Tty ty ty
Réﬂy)pppp = ////Gpppp t17t27t3: t4)
(t17t27t31t4 tttd
xdwt dwt dwt dwt ,
where derangements (¢1, . . .,t4) for'summing are performed only in the
values dwt(f‘) ... dwg"), at the same time the indexes near upper limits

of integration in the multiple stochastic integrals are changed correspon-
dently and if ¢, changed places with ¢, in the derangement (¢1,...,¢4),
then 4, changes places with ¢, in the derangement (1 .-, 14).

So, we obtain:

T tg t3 to
0 2
M{(R;}mﬂp) } <C //// oopp(t1, B2, 13, t4))
(tl,tz,ta,t4 tttt
thldtgdtgdt4 =
=C / (Gpppp(tl, to, t3,t4)))2dt1dt2dt3dt4 — 0,

[t 17"
if p— oo; K*(t1,12,t3,t4) € La([t, T]*), where C s a constant.
Let’s consider R%)tpppp:

N-1
= 1{11—22#0}1 1.11. Z GPPPP(T11 y Tlys Tlgs 774) X

—00 Ig.l3,l1=0
I #l3,l1 #1g, 1371y

R grl)pppp

)t
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

x A, Awl Aw (i) =
3 4

= Yol 30 Gppp (715 71y Ty 71,) X
0 1y,13,11=0

1371y
x A, A Awli) =

N-1 1
= 1,407 Lim. S TR
{i= 2760}]\,_)1110 14,1§0<2 {m, <my< 14}+
(e

1 1 1
+ {nl—r,3<r,4} + {T11<773—T14} +3 3 {nI:nS:TM}*

p . .
- Z Cj4j3j2j1 ¢j1 (Tll)¢j2 (Tl1)¢j3 (Tls)d)ﬂ (Tl4)> ATh AWS—::)AWS%)

J4,J3:J2:51=0

N-1 /1
= 1{11 227é0}11m Z (21{T11<Tl3<ﬂ4}_
T s =
3#la

p . .
- Z 0 Clisgsiois i (m1,) i (7,) s (715) iy (774)) A, AW%?AWS_;’:)
J4,33,J2,1=
N-1N-1N-1

_1{21 72750}1111'1 Z Z Z (2 {m, <my<m }
=0 14,=013=0 =

p . .
- X ijjzjlcbjl(Tll)d)jz(Tll)¢j3(Tlg)¢j4(Tl4)>AThAW£§§)AW5Z‘)

J4,J3:J2,51=0

N-1N-1
— L =20y L{ig= lﬁé(]}llm > % <0_

=00 [,=01,=0
p
= X Cijpidi (Tll)¢jQ(Tl1)¢js(Tl4)¢f4(Tl“)> Am AT, =
Ja,J3,42,51=0
1 Fit L (i5) -(ia)
(3 14
:1{1'1:12#0}(5/// tldwt dwt = 2 ChginiGs G >+

t it Ja,J3,51=0

+1{Z] 12750}1{23 =i4#0} Z CJ4J4]1]1 w.p.1.

Jasj1=0
In theorem 8 we proved, that

1Tt
hm Z Ciijagiis = Z//dtldt?;
tt

Ja,j1=0
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ty 13

- ¢ (i _ LT
lpl_)m Z C]4]371]1 2 ]44 = 5///dt1dwt dwt +
t t t

Ja,33,51=0

T t3
+1 {is= 14750} //dt1dt2 w.p.1.
t

Then
lim M{(R(Tl)m’p) }:o.

p—oQ
Let’ id (2)pppp,
et’s consider Ry,

N-1

= Lg,=i,zoplim. > Gup(Tiy, Ty Ty ) X
N—oo 141,11 =0
Uy oty 2l ol

R g?)pppp

)t

XAt AWl Aw (i) =
2 4

= 1{11 13750}1 1.m. Z Gpppp(Tlu Ty Tl 774) X
00 14,0501 =0
1ol

X AT, AWS_Z)AWS_Z) =

N-1 1
= 1{11 13760}1 L.11. Z <Z1{7’11:7'12<T14}+§1{T11:T12:7'[4}_

00 1,197 =0

lo#ly
- Z Cmsjzjl‘ﬁjl(Tll)¢jz(m)¢j3(Tll)ﬁi’n(m))><
Ja,J3,42,51=0
X An, AwlD Aw(i) =
N-1N-1N-1 ¥4
= Lia=izoplim. 3 3 (1) X Ciepnir X
= 14=01y=0 ;=0 J4,33,J2,51=0
X ¢]1 (Tll ) ¢]2 (le)qs]? (Tll ) ¢]4 (Tl4 ) ATll AW 12 AW 14
N—-1N-1
~Lizigzo) =izl m. 3 Z( 1) Z Cliajagain X
X 14=0 ;= J4:J3:J2,51=0

X ¢J'1 (Tll )quz (7—14)451'3 (Tll )¢j4 (nA)ATh ATI4 =

u (i2) (i)
= —Lg—igz0y 2 Cigiioin G G

Ja:J2,51=0
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Chapter 2. Expansions of multiple Stratonovich stochastic integrals

F 1 =ip 201 L {in=i, 20} Z 0014111411 w.p.1.
Ja,J1=

In theorem 8 we proved, that

P .
Lim. > Gl @)l — 0 wap.1,
Ja:J2:51=0

P
lim > Cjjjun = 0

p—oQ

Ja,j1=0
Then )
lim M {(Rg?)fm’) } = 0.
p—oo ’
Let’s consider RT Yoo,
(3)pppp ; =
Ry = =i z0yl.im. > Goopp(T1y, Ty, iy T1y) X
N—o0 I3.19,1; =0
L1 #lg,l1 #1310 #l3
x A7, Aw' Awl) —
=1y,= 147é0}1 im. - Gpppp(nn Thys Tlys Tly ) X
00 3,151 =0
Ia7#13
X A7, AW Awlis) —
N-1
=14 _; 2onlim. 1y o 1 —
{1,177,47&0}1\]_)00 13,122,2—0(8 {1, =m,=75}
15413
p
- Z Cj4j3.72j1 ¢j1 (Tll)¢j2 (Tl2)¢j3 (Tl3)¢j4 (Tll)> X
J4,J3:J2,51=0
X Am, Aw' Awlis) —
) N-— —1N-1
= 143, =i, 20yLi.m. Z Z Z (=1) Z Clsjajoin X
N=voo 1,—0 1,=0 I,= Ja,J3:J2:51=0
><asjlm)gbjz(nz)asjg(mwn(m)AnlAwﬁ?)Aw:?—
N—-1N-1
1{21—14760}1{12 137’:0}1 1.1m. Z Z (_1) Z Oj4j8.72j1 X
N—=oo 1,0 1,=0 Ja5J3:J2,51=0

X ¢j1 (Tll)¢12 (Tla)¢js (Tls ) ¢j4 (Tll)ATll ATla =
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P ) )
= Limizor > CiuinisGi G+
Ja,J3:J2=0

p
1t =i 20} L {in=is 0} ) Z 0 Clirjadags W-P-1.
Jas)2=

In theorem 8 we proved, that

p . .
i (i2) ~(i3) _
lpl_}oré ) Z Cj4j3.72j4 jo Sjz T 0 w.p.1,
J4,J3,J2=0

p
lim ) Z Cj4j2j2j4 =0.

p—0oo

Ja,j2=0
Then ,
. (3)pppp _
s () o
Let’s consider R,Sfl’)tpppp:
(4)pppp . Nl
Rrj = 1{i2=i3¢0}£\',1;)n; > Gopppp(Tiy s Thys Ty Tiy) X

Ig,l9,l1=0
1119l 2ty g

xAw' Ar, Aw) =

N—-1
= Lip—igzopl i 30 Gpppp(71,5 7155 715, 71, ) X
N—rec I4l9,11=0
l1#ly

XAw(f‘)ATl, Awli) =
Ty 2 Tiy
. N-1
= 1{i2:i3760}11§,1'_>m' > (51{T11<T12<T14}+

O 1y,l9,01=0
L #ly

1 1 1
+Zl{ﬂ1:nz <m,} + Zl{nl <m,=7,} + gl{ﬂl =TIy =Ti}

p . .
- Z Cj4j3j2j1 ¢j1 (Tll )quz (le)qus (T12)¢j4 (Tl4)) AW%;)ATZQAWS_;:)

Ja:J3:J2:.51=0

N-1 /1

= 1 s lim. (—1 e —

{ia=is# }N—>oo 14,t§,t:1—0 2 {n, <ny<n,}
117l

p . )
- Z Cj4j3jzj1 ¢J'1 (Tll )¢j2 (T12)¢.i3 (Tl2)¢j4 (Tl4)) Awg:)ATlaAng) =

J4,33,J2,51=0
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N-1N-1N-1

= 1{12 137é0}1 1. I?o 1420 g::o l1§=:0 (51{711 <Ty <, } T

14 . .
- Z Cj4j3j2j1 ¢j1 (Tl1)¢j2 (le)¢js (le)¢j4 (Tl4)) AWgJ)ATbAWgz)

J1:J3:J2:.51=0
p
—Lip=is201 Lii = 14¢0}11m Z Z( 1) ¥ Chujpinx
N=oo 1,=0 1,=0 J4:J3:J2:.51=0
X ¢j1 (Tl4 ) ¢j2 (le ) ¢j3 (le ) ¢j4 (Tl4 ) ATl2ATl4 =

T ty t2

p . .
= 1(i,— 23¢0}< ///dwt1 Jdtrydwi) — Y Gl (Y ,(4“)>+

Ja,J2,51=0

1 iy mig20} L iy =iat0} Z OCj4j2j2j4 w.p.1.
Jas)2=

In theorem 8 we proved, that

lim Z Clrjoinis=0;

o0 . &
PO yj2=0

ty to

/T//dwt(fl)dtzdwt(ﬁ“) w.p.1.
t tt

w\»——x

14
E)l_)g j4,jzz,j:1 OCJ4J2J271 N
Then )
lipg M{(R%ﬁm) }:o.

P00

Let’s consider R pppp

N-1
= 1{i2=i4#0}1'1'm' Z GPPPIJ(TII y Tlyy T3y le) X
N—-oo

I3,19,l1=0
Iy #1901 #1319 #l3

R é?)pppp

X Awg:)AnzAwg:) =

= 1{12 74¢0}1 1.1m. Z Gpppp(nn Tlyy Tls le) X

N—=00 1,15.1,=0
L1713
x Aw ) An, Awis) =
Ty L2 Tig

N1 /1 1
= 1{12 14760}1 L. Igo Z <Z]‘{Tll<772:Tl3}+§1{7_l1:7'l2:7—13}_
I3,l5,11 =0
hh#l3
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Y4
- Z Cj4j3j2j1 ¢jl (Tll)quz (le)¢j3 (Tl3)¢j4 (le)) X

J,J3,J2,51=0

x Aw!) Az, Awlis) =
1 '3

N-1 p
= 1{i2=z’47é0}k,1-m~ Z (_ 1) Z 014131211 X
O 13,l9,11=0 Ja,j3,42:51=0
L1#l3

X qul (Tll ) ¢j2 (7-12 ) ¢j3 (Tls ) ¢j4 (7-12 ) Awﬂ('fll) Ale AWS':) =

b (in) (i)
= 71{12:1'4#0} . Z Cj4j3j4jl<jl Cj B
Ja,J3.51=0
) N-1N-1 p
*1{1'2:1'4760}1{i1=i37£0}¥\-r1;>m~ > > (_1)‘ Z Cj4jsj2j1><
X [3=0 lo=0 Ja,J3:42,1=0
X ¢.71 (Tls ) ¢j2 (le ) ¢j3 (Tls ) ¢j4 (le ) Ale ATla =
u (i1) p(is)
= _1{i2zi4960}_ Z Cj4jaj4jl g1 Sis +
Ja.J3,51=0

D
+Li=isr0y Lir=iaroy 22 Ciaijuin w-p-1.
J1,51=0
In theorem 8 we proved, that

p . .
lpl_>m Z Cj4j3j4j1<](fl) ](;3) =0 Wpl7

Ja.J3.5v=0
p
e > G, = 0.
Ja,1=0

Then )
lim M{(Rg?gw) }:0.

p—)oo

. 6
Let’s consider ng’)tpppp:

N-1
(6)pppp __ :
RT,t = 1{i3=i4750}1'1'm' Z GPIJPIJ(Tll s Tlas Tl Tls) X
N—oo I3.05,11=0

I #lg,l #lg 1o #l3
(i) (i2) —
><Ale1 AWTIQ AT, =
N—1
= 1{i3=i49ﬁ0}11v1;)m' Yo Goppp( T, Ty Tigy 15) X

OO 13,15,11=0
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xAw AW Ag, =

N-1 /1
- 1{13 247&0}1 1.m. Z (51{711 <712<713}+

=0 3,05,11=0
1,7y

1 1 1
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1{13 147é0}1{11—1ﬁf':0}1 1.1m. Z Z ( ) Z Cj4j3j2j1x
N—=oo 1,—01,=0 J4,33,J2,51=0

x ¢j1 (Tll)¢j2 (7—11)¢j3 (T13)¢j4 (Tla)ATl1ATl3 =

T t3 t2

p . .
1{13 24750}( ///dwt 3 th Z)dtg Z Cj4j4j2j1 .]('11) ](22)>+

Ja,J2,51=0

+1{11 12760}1{13 =iy #0} Z C]4J4]1]1 =

Ja,51=0
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t

t3

!

- Z Ciijainir J(,“) J(-f))Jr

Ja,J2,51=0

T t3
dw!D dw(™ dt, + 1{Zl i 0) / / dtydts—

Se— =
<

DN | =

= ]-{z'3=i47é0}(

T t3

1t =ir 20y L {is= méﬂ}( > Cijijiin = / / dtldt3> w.p.1.
Ja:j1=0

In theorem 8 we proved, that

1Tt
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Ja,j1=0
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t3 t2

/T//wgl)dwgﬂdtg—f-
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p
- Z Cj4jsjzjl ¢j1 (le ) ¢J'2 (le ) ¢ja (Tl4)¢j4 (Tl4)> ATl-z ATL; +
J4,J3:32,1=0
N-1N-1/1 )
+14i,=is20) L{in= 14790}111“1 > > <81{n2:n4}— > Ciijsiin X

N—voe 1,=0 1,= J4,J3,52.1=0

X ¢j1 (7-12 ) ¢j2 (Tl4 ) ¢j3 (7-12 ) ¢j4 (7—14)) Ale AT14 +

N-1N-1/1 P
i =igpop =izl im. 3 Z( Liny=ng— 2 Clijsiin X
=0 1,=0 1,y Ja,J3,J2,51=0

x ¢j1 (le)quz (774)(,25]'3 (Tl4)¢j4 (le )) Ale ATL; =
T t4

1
:1{i1:i27é0}1{i3:i47é0}( / / dtadty — Z Cmum)

Ja:51=0

*1{1'1:1'3760}1{1'2:1'4760} ] Z Cj4j1j4j17

Ja,j1=0

Y4
i =izoy Hiz=igroy 2= Cisjsioia-

Ja,32=0
In theorem 8 we proved, that
1Tt
Jim S o = A [ [ dtadts;
Ja,n=0 t ot

p
lim Z Cj4jlj4j1 =0

— 00 .
P J1,51=0

p—oQ

p
lim Z C]‘4j2j2]‘4 =0.
J2=0

Ja,jo=
Then
lim Rgz PP — .
p—oo i

The theorem 16 is proven 0.
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Chapter 3

Expansions of multiple stochastic
integrals of other types, based on
generalized multiple Fourier series

In this chapter we demonstrate, that approach to expansion of multi-
ple Ito stochastic integrals considered in chapter 1 (theorem 1) is essen-
tially general and allows some transformation for other types of multiple
stochastic integrals. Here we consider the versions of the theorem 1 for
multiple stochastic integrals according to martingale Poisson measures
and for multiple stochastic integrals.according to martingales. Consid-
ered theorems are sufficiently natural according to general properties of
martingales.

3.1 Expansion of multiple stochastic integrals ac-
cording to martingale Poisson’s measures

Let’s introduce the following stochastic integral in the analysis:

P[X(k)]T,t =

ta

T
= [ [xslty) - [ [xat,y0)o® (dt, dyr) ... 5% (dty, dyy),
t X

t X
(3.1)
where %" ¥ X 4, .4, =0, 1,....m; v (dt, dy) are inde-
pendent Poisson measures, which defines on [0,T] x X (see sect. 9.6);
79 (dt,dy) = v (dt,dy)—TI(dy)dt are martingale Poisson measures;

i =1,...,m; 5Ot dy) ¥ W(dy)dt; xi(r,y) = Gi(r)enly); i(r) :
[t,T] — §R1; <pl( ): X — R xi(s,y) € Ho(IL [¢,T]),l = 1,...,k;
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Chapter 3. Expansions of multiple stochastic integrals of other types

is a class of nonanticipative random functions ¢ : [0, 7] x Y x Q — R,

for which
T

[ [ M{lo(t, y)PyTI(dy)dt < oo

(see sect. 9.6).
Theorem 17. Assume, that the following conditions are met:

1.9Yi(7); i=1, 2,...,k — are continuous functions at the interval
[t,T7.
2. {¢j(z)}32y — is a full orthonormal system of functions in the

space Lao([t, T]) each function of which for finite j satisfies the condition
(%) (see p.45).
3. [o(y) H(dy) < oo; l=1,...,k; s=1,2,...,2F1
X

Then, the multiple stochastic integral according to martingale Pois-
som measures P[X(k)]Tyt 1s expanded into the multiple series converging
in the mean-square sense

im X [6m) [e 0 mma)dy). (32)

N=0o (3,.05)€Gy =1 X

Gk:Hk\Lk; ch:{(ll,;lk) ll,...,lkzo, 1,...,N—1},

Lk:{(ll,...,lk): Ly ..\ lp=0,1,...,N —1;
l!]#lr(g%T)a g,T’Zl,...,k};

) T )
7rj(-l’”) = [ [ ¢j(T)eu(y)? " (dr,dy)  are independent for different i; #
tX

0 and uncorrelated random wvariables for different j;

k
C]kjl = / K(th RO ) tk) H ¢JI (tl)dtl PPN dtk,
[t,T]k =1

_ ’l/}l(tl) .. .d)k(tk), t < ... <t
Kty ) = {O, otherwise ’

ti, ...ty €[t, T
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3.1 Expansion of integrals according to martingale Poisson’s measures

Proof. This theorem may be proven as well as theorem 1. Small
differences will take place only in proving of analogues of lemmas 1 3
for the considered case.

Lemma 6. Assume, that ;(T) — are continuous functions at the
interval [t, T, and the functions ¢i(y) are such, that}f( loi(y) [P TI(dy) <

oco; p=1, 2;1=1,...,k. Then, we have with probability 1:

Ji

N-1 2—
Pb_((k)}T,t = Lim. Z Z H /Xl T]ny )([le77—jz+1)7dy)7 (33)
N—oo =0  ji=0I=1%

where {Tj,}g:_(]l is partition of the interval [t, T), which satisfies the
condition (1.7), 9 ([r,5),dy) = #9([r,s),dy) or v@([r,s),dy); the
integral P[x®p diﬁ‘ers from the z'nfeqml Px®]z; by the fact, that in
P[x®z,; instead of 00 (dt;, dy,) stay v (dt), dy;); 1 =1,... k.

Proof. Using estimations of stochastic integrals accordlng to Poisson
measures (see sect. 9.7), and the conditions of lemma 6, it is easy to note,
that the integral sum of the integral P[x*)]z; under conditions of lemma
6 may be represented in the form of prelimit expression from the right
part of (3.3) and of value, which converges to zero in the mean-square
sense if N — oc. O

Let’s introduce the following stochastic integrals in the analysis:

N-1 k ; .

L S B m) 1)), dy) * PRI,
N=00 i jk=0 I=1%

7 7 i i def
[ [ot, .. t) [euly) o™ dts, dy) ... [ or(y)o™ (dty, dy) ©
t t X X

def A k
< pla)y),

where the sense of notations included in (3.3) is kept; ®(t1,...,t) :
[t,T]¥ — R! — is bounded nonrandom function.

Note, that if the functions ¢;(y); I = 1,..., k satisfy the conditions
of lemma 6, and the function ®(¢y,...,#) is continuous, then for the
integral p[@}g‘?‘ the equality of type (3.3) is reasonable with probability
1.

Lemma 7. Assume, that for 1 = 1,...,k the following conditions
are executed: gi(1,y) = hi(7)pi(y); the functions hy(7) : [t,T] — R
satisfy the condition (%) (see p.45) and the functions ¢i(y) : X — R!
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Chapter 3. Expansions of multiple stochastic integrals of other types

satisfy the condition [ |o(y)|PTI(dy) < co; p=1,2,3,...,2¥ 1 Then
X
T

a (k)
11 //gl s,y)7% (ds, dy) = P[®]r; w.p1, ®(ty,...,t) = [I hu(tr).
I=1% x

Proof. Let’s introduce the following notations:

ol & z:/qzn, (7, 7341). dy),

Jj=0%

Jlgi]r t—//gzsy () (ds, dy).

It is easy to see, that

— é(:ﬁll J[gq]T,t) (Jgln = Jlailr.) ( ﬁ J[gq}N)'

q=l+1

Using Minkowsky inequality and inequality of Cauchy-Buniakovsky
together with estimations of moments of integrals according to Poisson
measures [2] (see sect. 9.7) and conditions of lemma 7, we get

2}>2 < Ckl_ikjl (M{[Jg]n — Jlgi)r.| })1Z
- (3.4)

W{ﬁﬂﬂN—ﬁﬂmm

=1

where C} < oo.
Since it is clear, that

N-1
Jaln — Jalr: = Zo A VAV7] P
q=
Tog+1

J Agl Te+l,Tq / / g1 Tqa ( Y)) “)(ds dY)

then due to independence of J[Ag]

N-1
f
j=0

for different ¢ we have [27]:

"

Tq+1,Tq

[Agl]T_H»] \Tj

4 N-1
}: Z M{|J[Agl}ﬁ'+hﬁ
7=0
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3.1 Expansion of integrals according to martingale Poisson’s measures

+6 z M{\J . }ZX::(I]M“J[AMTQH@Z}. (3.5)

Then, using estimations of moments of stochastic integrals according
to Poisson measures [2] (see sect. 9.7) and the conditions of lemma 7,
we get, that the right part of (3.5) converges to zero when N — oc.
Considering this fact and (3.4) we come to the affirmation of lemma. O

Proving of theorem 17 according to the scheme used for proving of
theorem 1 using lemmas 6, 7 and estimations of moments of stochastic
integrals according to Poisson measures (see sect. 9.7), we get:

M{M%Wk}<cﬂl/%
X

x (K(tl,...,) $ .3 G JIHgb],(tl)) dtr ... dty <

[t,T]* n=0  jx=0
2
<G <K(t1,..., NI ST S H @,(tl)) dtr...dty — 0
[t,T1 n=0  jx=0
if p1, ..., pr — oo, where constant Cy depends only on k (multiplicity of

multiple stochastic integral according to martingale Poisson measures)
and

k
1yeees Ly
Ry = PlxM]ni— Z Z Cj,.. JI<H iy~

71=0 Jk=0 =1
Cim Y H b3.n) [ 07 [ 7m), ay)).
N2 (1, k)G =1
Theorem 17 is proven. O
Let’s give an example of theorem 17 usage. When i1 # 49, 41,72 =

1, ..., m according to theorem 17 using the system of Legendre polyno-
mials we get

//‘p2 // 1(y2) 7% (dta, dy2) 7" (dtr, dyr) =

T t(ﬂ_lzl (2,i2) § 1 (
2 —1v4:12 -1

T
//901 Zl dtl,dyl) VT — tﬂ'((]l’zl),
t X

1

Rty
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Chapter 3. Expansions of multiple stochastic integrals of other types

1, T ~(i .
where 7r](- - tfj(f ¢j(r)<pz(y)u( l)(dT, dy); 1=1, 2 {¢j(7)};‘;0 15 a
full orthonormal system of Legendre polynomials in the space Lo([t, T1).

3.2 Expansion of multiple stochastic integrals ac-
cording to martingales

Assume, that the fixed probability space (2, F,P) is preset and as-
sume, that {F;,t € [0,7]} — is a non-decreasing collection of o-
subalgebras F. Through Mjy(p,[0,7]) we will denote a class of Fy-
measurable for each ¢ € [0, T] martingales My, and satisfying the condi-

tions M {(M, — M,)?} = [ p(r)dr, M{|M, — M,["} < C,|s — t|, where
t

0<t<s<T;p(r) is a non-negative, continuously differentiated
nonrandom function at the interval [0,7]; C, < oo is a constant;
p=3,4,....

It is obvious, that the martingale from class Ma(p,[0,T]) is D-
martingale [2].

Assume, that {Tj}é-v:(] — is a partition of interval [0, T}, for which

O=7m<m<...<7y=17T, max |7j41 — 75| = 0 when N — oo.
0<j<N-1
(3.6)

In accordance with features of the function p(7) we will write the
condition of membership of Fy-measurable for each ¢ € [0, T stochastic
process &;t € [0, T] to the class Ha(p, [0,T]) (see sect. 9.5) in the form

({TM{IEtIQ}p(t)dt < oo.

Let’s assume the step random function ft(N) at the partition {Tj}év:(] as

follows: ft(N) = &;,_, with probability 1 when t € [1;_1,7;); 5 =1,...,N.
In the section 9.5 (see also [2]) we defined the stochastic integral from the
process & € Hsy(p,[0,T)) according to martingale. In accordance with
it, the stochastic integral according to the martingale My € Ms(p, [0,T7)
is defined by the following equality

= (N) def A
lim. M, —M.)=E M, .
Nl—>n;olc Jg(] 57'_7‘ ( Tj+1 T]) 0/£td b (3 7)

where {Tj}j-vzo — is a partition of the interval [0, T, satisfying the con-

dition (3.6); gt(N) is any sequence of step functions from Hs(p, [0, T])
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3.2 Expansion of integrals according to martingales

T
for which gM{|§§N> — &|?}p(t)dt — 0 when N — oco.

Using Q4(p, [0,T7]) let’s denote the subclass Ma(p, [0,77]) of martin-
gales My, t € [0,T], for which in case of some o > 0 the following
estimation is true:

R
8

where 0 < 8 < 7 < T g(s) — is a bounded non-random function at the
interval [0, T']; K4 < 0o — is a constant.
Using G, (p, [0,T]) let’s denote the subclass My(p, [0,T7]) of martin-
gales My, t € [0, T, for which
n
} < o0,

f
where 0 < 0 <7 <T;n € N;g(s) is thesame function, as in the
definition of Q4(p, [0,T]).

Let’s remind (see sect. 9.1), that if (§)" € Ha(p, [0,T]) when p(t) =
1, then the estimation [2] is correct:

g
[4

Assume, that

}<K4/|g )|%ds,

T

[a(s)

0

dt

2"} <(r- 9)2”‘1]M{|§t\2”}dt, 0<B<r<T. (38)
[

TP, &
dif 7 7 (lzil) (k7i‘€). ; y, —
S ) [ (t)dM MY i =01, m,
t t

where M9 (r = 1,...,k) — are independent for different i =
1, 2,...,m

Let’s prove the following theorem.

Theorem 18. Assume, that the following conditions are met:

1. MED € Qup, [t,T)), Gu(p, [t,T)); n = 2,4,...,25 k€ N; i) =
1,....m;l=1,...,k.

2. {¢j(x)}32 — is a full orthonormal system of functions in the
space Lo([t, T)), each function of which for finite j satisfies the condition
(%) (see p.45).

3. i(r); i=1, 2,...,k are continuous functions at the interval
[t, T).
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Chapter 3. Expansions of multiple stochastic integrals of other types

Then the multiple stochastic integral J['l/} }Tt according to martin-
gales is expanded into the converging in the mean-square sense multiple
series

T = 5 O (I~

JseesJb=

“lim X g (n)AME g, () AME),

N=oo (1, . 1,)eGy
where Gy = Hi\Lx; Hr = {(ly,-. -, k) : Li,..., g =0, 1,...,N — 1},
Ek:{(l],...,lk): Lo dy=0,1,... N—1;
ly # (g #1); g,r=1,---,k};

T .
l“ {(ﬁﬂ( s)dM ) are independent for different iy = 1,...,m;

l = 1,...,k and uncorrelated for various j; (if p(r) — is a constant,
i # 0) random variables;

k
Ciogi= [ Kt te) 11_11 i, (t)dty . . . diy;

(.71

_ 1)[)1(151).. -¢k(tk)a 1 <. o<t
Kty ty) = {07 h) B b€ [T

Proof. In order to prove theorem 18 let’s analyze several lemmas.
Lemma 8. Assume, that M&®) € My(p, [t,T)); = 1,...,m; | =

ok, and (), =1, 2,...,k  are continuous functions at the
interval [t,T].
Then
N-1 Jj2—1 k )
IR, =l S ) AMEY wpt, (39
T Noo =0 5i=0i=1 "

where {Tj}j-v:(] — is a partition of the interval [0, T), satisfying the con-
dition of type (3.6).
Proof. Since (see sect. 9.5)

wf 9/ ganr) | = 9/ M6 P} o(s)ds
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3.2 Expansion of integrals according to martingales

M{(H/Tfssds)Q} <(r- 9)9/TM{53|2}d8,

where & € Ha(p,[0,T]);t <0 <7 <T;u=1,....m;l=1,...k,
then the integral sum of integral J[@b(k)]qﬂf{t in conditions of lemma 8 may
be represented in the form of prelimit expression from the right part
(3.9) and the value, which converges to zero in the mean-square sense
when N — oc. O

Assume, that

k
Lim. z ®(ry,, ..., 7,) 11 AMED & 1e)E) (3.10)
N—oo =1 a '
where {7;}); is a partition of the interval [0, T], satisfying the condition
of type (3.6).
Lemma 9. Assume, that M € Qu(p, [t,T)), G.(p,[t,T)); 7

2,4,...,2% 4 = 1,...0m; 1 = 1,...,k, and gi(s),... ,gk(s) are
functions satisfying the condition (x) (see p.45).

Then
T . k
1 [ ai(s)aM ) = 181 w.pd, O, .. 1) = T1 it
1=1% =1

Proof. Let’s denote

T
Igly € % a(m) AME, Igir, « /gl(s)dM.‘gl’”)-
Jj=0 4

Note, that
k k sl1-1
1T ol 11 Tars = 32 (10 Tlaglre) (o ~ Talzo) (11 Toy).
=1 =1 =1 \g=1 g=l+1

Using the Minkowsky inequality and inequality of Cauchy-Bunyakov-
sky, as well as the conditions of lemma 9, we get

(e

where Cy < oo — is a constant.
Since

2}>2 < C’“lé( {Tlaly — Tlalra})".
- (3.11)

k
[giln — 11;11 Igi] 74

gy — gz = Z I[AG]r, 41 7,5

q=0
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Chapter 3. Expansions of multiple stochastic integrals of other types

Tq+1

[[AG i, = [ (91(7)) = ai(s)) dM

Tq

then due to independence of I[Ag]
N-1
g
j=0
N-1 9y 41 2
+6 3 M {l1agl,,..., }20 M{11Ag7,,/"} - (3.12)
i= =

Then, using the conditions of lemma 9, we get, that the right part of
(3.12) converges to zero when N — oo. Considering this fact and (3.11)
we come to the affirmation of lemma. O

Then, using the proven lemmas and repeating the proof of theorem
1 with correspondent changes we get:

M{(Rg ™)< [ (K(tl,...,tk)—

[T

for different ¢ we have [27]:

Tq+1:Tq

[Agl}Tjﬂ \Tj

4 N-1
} =T M{j1iaal,,.")+

-5 qun%m)mwpmmwg

J1=0 Jk=0
_ 2
<G [ (Kt - S S G n QS],(tl)) dty . dby = 0
[t.T]* j1=0 Jx=0
when py, ..., pr — oo, where the constant Cj depends only on k (mul-

tiplicity of multiple stochastic integral according to martingales) and

Rph Pk __ ][ } Z Z Cjk ]1<H gjlu

J1=0 Jk=0

—Lim. Z ¢j11 (Tll)AM (L) ¢]1 (le)AM ,”k)
N=oo () 1)€Gy

Theorem 18 is proven. O
3.3 Remark about full orthonormal systems of func-
tions with weight in the space Ly([t,T))
Let’s note, that in theorem 18 we may use the full orthonormal sys-
tems of functions not only with weight 1 but with some other weight in

the space Lo([t, T7).
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3.3 Remark about full orthonormal systems of functions with weight

Let’s analyze the following boundary-value problem
(p(2)®'(2)) + a(2)®(z) = —Ar(z)®(2),
a®(a) + ¥’ (a) = 0, v®(a) + §¥'(a) =0,

where functions p(z), ¢(z), r(z) satisfy the well-known conditions and
a, B, 7,6, A are real numbers.

It has been known (V.A. Steklov), that eigenfunctions ®¢(z), ®1(z),
... of this boundary-value problem create a full orthonormal system of
functions with weight r(z) in the space Ls([a, b]), as well as the Fourier

series of function \/r(z)f(z) € Ls([a,b]) according to the system of
functions \/r(z)®(z), \/r(z)P1(z),... converges in the mean to this

function at this interval, moreover the Fourier coefficients are defined
using the formula

b
Cj = [ 1(x)f(2)®;(x)dz. (3.13)

a
Note, that if we expand the function f(z) € Lo([a, b]) into the Fourier
series in accordance with the system of functions ®¢(z), ®1(z), ..., then

the expansion coefficients will also be defined using the formula (3.13)
and the convergence of Fourier series will take place in the mean with
weight r(z) to the function f(z) at'the interval [a, b].

It is known, that analyzing the task about fluctuations of circular
membrane (common case) the boundary-value problem appears for the
equation of Euler-Bessel with the parameter A and integer index n :

r’R'(r) + rR'(r) + (\*r* = n®) R(r) = 0. (3.14)

The eigenfunctions of this task considering specific boundary condi-
tions are the following functions

T(wig). (315)

where r € [0, L], pj; 5 =0, 1, 2,... — are ordered in ascending order
positive roots of the Bessel function J,,(u); n =0, 1, 2,....

In the task about radial fluctuations of the circular membrane the
boundary-value task appears for the equation (3.14) when n = 0, the
eigenfunctions of which are functions (3.15) when n = 0.

Let’s analyze the system of functions

V2 Jn<ﬂj

v, =—Jp{=7); 7=0,1, 2,... 3.16
J(T) TJn+1(/J/]) TT)7 J ) 3 ) 3 ( )
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Chapter 3. Expansions of multiple stochastic integrals of other types

where
o0 T n+2m 1
To@) = 3 (=)™ (5) (T(m + DT (m+n+ 1))
m=0
— is the Bessel function of first genus and
o0
I'(z)= /e_zmz_lda:
0

is a gamma-function; p;  are numbered in ascending order positive
roots of the function J,,(z), n  is a natural number or zero.

Due to the well-known features of the Bessel functions, the system
{\Ifj(T)};.iO is a full orthonormal system of continuous functions with
weight 7 in the space Lo([0,T]).

Let’s use the system of functions (3.16) in the theorem 18.

Let’s analyze the multiple stochastic integral

T s
dM(])dM(Z),
0/0/ T S

where .
MO = [ \/rdf;
0

fT(i) (i = 1,2) — are independent ‘standart Wiener processes, 0 < s < T}
M) — is a martingale (see sect. 9.5), where p(7) = 7. In addition, M)
has a Gaussian distribution. It is obvious, that the conditions of theorem
18 when k = 2 are executed.

Repeating the proof of the theorem 18 when k = 2 for the system of
functions (3.16), we get

T s oc
/ / dMMdMP = Y Cji (¢,
00 1,320

where the multiple series converges in the mean-square sense and
T
& = [oy(ryan
0

— are standard Gaussian random variables; 7 = 0,1,2,...; i = 1,2;

M{G ¢ =0;
T s
Ciojy = [ 59,(s) [ 795, (7)drds.
0 0
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3.3 Remark about full orthonormal systems of functions with weight

It is obvious, that we may get this result using another method: we
can use theorem 1 for multiple Ito stochastic integral

T s
[vs ] vraace,
o0
and as a system of functions {¢;(s)}32, in the theorem 1 we may take

V2s i
= J.(2s); 7=0,1,2,....

As a result, we would obtain

;(s)

J1:J2=

T s 00
0 0 0
where the multiple series converges in the mean-square sense and
& = fotans
0

— are standard Gaussian random variables; 7 = 0,1,2,...; ¢ = 1,2;

MG} =0

o = V3850 0/ Ve ()drds.

Easy calculation demonstrates, that

7 2(s —t) 1 i
3 = T h 7 (T_t(s—t)), =012, ..

— is a full orthonormal system of functions in the space La([t, T).
Then, using theorem 1 we get

T s 0 N B B
[Vs—t [Vr—tdfVat® = Y CpiPCP,
t t

J1,42=0

where the multiple series converges in the mean-square sense and
¢ = [ &i(r)dt?
t
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Chapter 3. Expansions of multiple stochastic integrals of other types

are standard Gaussian random variables; 7 = 0,1,2,...; 1 = 1,2;

M{ZPEY = o;

T s
éj2j1 = / VS — t(];_jQ(S) / VT — tq;jl (T)deS.
t t
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Chapter 4

Exact and approximate explessions
for errors of approximations of
multiple stochastic integrals

This chapter is based on results of chapter 1 (theorems 1 and 2)
and adapt this results to practical needs (numerical integration of Ito
stochastic differential equations). We derive the approximate and exact
expressions for the mean-square errors of approximations of multiple Tto
stochastic integrals. The convergence in‘the mean of degree 2n, n € N
of expansions from theorem 1 is proven.

4.1 The case of any fixed k£ and pairwise different
numbers i1,...,. =1,...,m

At first, let’s build mean-square approximations of multiple Ito
stochastic integrals J[)]z; of type (1.1) for pairwise different numbers
i1,--.,0 = 1,...,m (in this case they coinside with the correspondent
multiple Stratonovich stochastic integrals) in the form of truncated mul-
tiple series, into which they expand in accordance with the approach,
based on multiple Fourier series, converging in the mean (theorem 1).

Assume, that Jp® P is approximation of multiple Ito
stochastic integral J[’ll)(k)]T:t for pairwise different numbers 4y, ..., i =
1,..., m, which looks (according to theorem 1) as follows

J[?/’(k }ph = ZO ZO Ciy.i H C] (4~1)
n Jk

where numbers p; < oo and satisfy the following condition on the mean-
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Chapter 4. Exact and approximate expressions for errors of approximations

square accuracy of approximation:

M{ (1@ — T ®r) ) <, (4.2)

€ — is a fixed small positive number.
Theorem 1 provides a possibility to calculate accurately the mean-
square error of approximation of multiple Ito stochastic integral of any

fixed multiplicity & for the case of pairwise different numbers iy, ..., 4, =
1,...,m.

Lemma 10. Assume, that i1, ...,1, = 1,...,m and pairwise differ-
ent.

Then, the mean-square error of approzimation (4.1) of the multiple
Ito stochastic integral J[y®]r; is defining by the formula

M{wa%?M_Jthy}:

P1
:./K%M“ﬂﬁhmﬁkfz z T CE)
[t,T] =0 =0

convergence in (4.3) takes place in the sense of limit when py, ..., pr —
0.
Proof. Let’s consider the expression (1.24) for the difference J[yp®)]p ,—
J[?,b(k)]gwl”t’pk (il, ety =1, m):
T Wrs — TpW1g " €

T 2

L L

)t

S ORD SICAPS | EO0) LRI CHN

J1=0 Jk=0
where derangements (t1,...,tg) for summing are performed only in the
values dft . dft“) at the same time the indexes near upper limits of

integration in the multiple stochastic integrals are changed correspon-
dently and if ¢, changed places with ¢, in the derangement (¢1,...,%),

then ¢, changes places with ¢, in the derangement (i1, ..., ).

Note, that integrals in the right part of (4.4) will be pairwise stochas-
tically independent in the case of pairwise different numbers 7y, ..., =
1,...,m. Then

() -
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4.1 The case of any k and pairwise different 41,...,5,=1,...,m

:M{( ¥ /../(K(tl,...,tk)—
(tl,...,tk) t t
k 0 o)
- Z Z C]k g1 H ¢]l(tl))dft "dftkk ) } =
71=0 Jx=0 =1

T
= {(/ (K by, k) —
(tl, tk) t t

I k (ir) i)’
SN Sre Hqﬁ]l(tl))dftl‘ ...dft,j) }:

71=0 Jk=0 =1
T ty
/ /( (t, ..\t
(tl,, t 3
- Z Z C]k Jr H ¢Jz(tl)) dty...dty =
J1=0 k=0

_ /(K(tl,..., NI SO SYe ]]H@,(tl))?dtl...dtk. (4.5)

[t,T) 71=0 Jk=0

In (4.5) we used the equality (1:19).
Let’s consider the integral (4.5):

/ (K(tl’ T ) Z Z C]k i H ¢Jl(tl)>2dt1 L.dty =

[t, Tk n=0  5=0

— / K2(ty, ... tp)dty .. .dt—
[t.71*

~2 [ K(t,....t )2 zc]k ]1H¢Jl(tl)dt1 dty+

[£,T]k 7=0  jx=0

2
/ (Z Z C]k 1 H ¢]l(tl)> dtl . dtk =
[t, Tk =0 k=0
= / KQ(tl,---,tk)dtl...dtk—
[t 7%

k
-2 z S Ciogi [ Kt ta) l]:[1¢j,(tl)dt1...dtk+

s1=0  5ix=0 [t,T]*
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Chapter 4. Exact and approximate expressions for errors of approximations

P D kT
T 50 I 3 sy ,lc];c,n/ (1) (t)dty =
I=1%

h= 0]]—0 Jk= OJk_

- / K2(ty,... tp)dt; .. dtk—QZ Z 2 Tt

[t.T] 7=0  jx=0
+ Z Z ]k Jr T
=0 5i=0
— / K2(ty, ..., ty)dt; ... dt), — 2 z TP CX)
[t,T] =0 jx=0

The lemma, is proven. O
In particular case p; = ... = pr = p we get:

p k 2
/(K(tl,...,tk)— > Cjk___jll[[lqul(tl)) dty ...dty, =

[£,T]k Jiren k=0

= [ KXti,...,t5)dty ... dtx~ Z C? (4.7)

Jke-Ju
[t,T]* J1sesJk=0

Note, that Parseval equality in our case looks as follows

/K2(t1,...,tk)dt1 dtk— llm Z Z ]k Jgu

(1T nE0 - h=0

Then from (4.6) we obtain:

! {(3%,;---vpk>2} -

p k 2
= / (K(tl, P ,tk) - Z Cjk---jl ll:Il d)]l(tl)) dt] e dtk =

[t,T7* Jiyen k=0

p
= [ KXti,....t)dty ..ty — > C (4.8)

i - Jk---J1
[t,T)k J1yeesdk=0
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4.2 The case of any k£ and numbers i1,...,ix =1,...,m

or )

W { (R 7)) =

b 2 b 2

:phm Z Ci.. g1 Z Cleir
.713"'3.716 0 Js-n k= 0
4.2 The case of any fixed £ and numbers i1,...,i;, =
1,...,m
In the case of any fixed k& and numbers 41,...,4x = 1,...,m the

integrals in the right part of (4.4) will be depend in the stochastic sence.
Let’s estimate the right part of (4.4).
From (1.19), (4.4), (4.6) and inequality

(a1+a2+...+am)2Sm(a%—i—ag—i-...—i—agz)

we obtain the following estimate for the case iy,...,ix =1,...,m:
M{ (R <
T ('t
Sk'< Z / /(K(tl,---,tk—
(t1,ti) t
2
= S Sy H 03(1) dt....dty) =
71=0  jr=0
P 2
= k! / (K(t1,...,tk) - > ... Z Cji..in H gb],(tl)) dty...dt, =
[t,T]k s1=0  5ix=0

—k!(/ K2(ty, ... ty)dty ... dty, — z z 2 ]]) (4.9)
+ Tk

J1=0 Jr=0

In particular case p; = ... = p = p from (4.7) we get:
2
M {(R%,t ?) } <

p
gk!(/ K(t,... . ty)dtr...dt, — Y C%. ]])
t

]k J1ssJk=0
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Chapter 4. Exact and approximate expressions for errors of approximations

4.3 The case of any fixed k£ and numbers iy, ..., i =
0,1,...,m

For the case of any fixed k and numbers 41,...,7 = 0,1,...,m we
have (see theorem 1):

M {(Rg{t,pk)?} <Gy Y /T ../(K(tl,...,tk)—

(tl,...,tk)

2
- Z Z C]k g H ¢Jz(tl)) dty...dty =

71=0 7k=0
2
:q/(mmm,)ij z%hn@wﬂm“mp
[t,T]* 51=0 =0
2 D1
=Gy /K(tl,...,tk)dt1...dtk—z Baye. 2 h)j
tT]k Nn= 0 ]kf

where C} — is a constant.
From lemma 2 and the following properties of stochastic integrals:

Mit 2}g@ijﬂ@ﬂm,

/STdT
M{to }—ZM{M}F}dT

(& € Ma([to, t]), see sect. 9.1) we obtain, that constant Cj, depend on k

(k  is a multiplicity of multiple Ito stochastic integral) and T'—¢ (T'—¢

— is an interval of integration of multiple Ito stochastic integral).
Moreover C}, has the following form

Cr=k!' max{(T —t)™, (T —-t)*, ..., (T —t)*},

where a1, @9, ...,ap =0, 1,..., k—1.

However, as we noted before, it is obvious, that the interval T — ¢
of integration of multiple Ito stochastic integrals is a step of numerical
procedures for Tto stochastic differential equations which is a small value.
For example T'— ¢t < 1. Then Cy < k!

It means, that for the case any fixed k£ and numbers 41,... 4 =
0,1,...,m we can write down:

M{(Rp™)’} <
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4.4 The other proof of lemma 10

D1
gk!ﬂ/ Kty t)dty .t — S .. 3 C2 h),
+T] j

j1=0 Jk=0

where T —t < 1.

4.4 The other proof of lemma 10

Let’s consider the other proof of the formula:

M { (T = T W)’} =

= / K2(ty, ... ty)dt; .. dtkfz Z 2 i

[t,T]k =0 5x=0
for pairwise different numbers 41, ...,7; = 1,...,m, where convergence
takes place in the sense of limit when py,...,pr — oo and

TP =5 S G HCJ

j1=0 Jk=0

J[v / Ui (tr) / Gi(t)dfl) . dEw.

Proof. At first, let’s formulate the obvious proposition.
If Lim. & = ¢ and M{£%} < oo, then

,}1_{%}0 M{(&n — &) &t = M{(€ — &) &} -
We have
M{ (1B — T @)} = M{(T16®)r)7} -
—9M {J[d)(k)}T’tj[w(k)}lj’{at---vpk} +M {(J[,w(k)]g]’vt'"vpk)Z} .

Moreover
to

T
M {(J[@z;(k)}T,t)?} = [wit)... [V3(tr)dty .. dty =

- / K2(ty, ... ty)dty . . . dty, (4.10)
[t.T]*
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Chapter 4. Exact and approximate expressions for errors of approximations

M { (T ) =

= pzl sz Cj..,Cit.. Jf[ {J'l Jz)}:

Judi=0  Jjk.jp=0

Z Z Jk g1t

51=0 Jk=0
Then

)

= / KQ(tl,...,tk)dtl dtk+z Z ]k g1

[t,T]k 71=0 Jk=0

—2M{J[ O J [Py} =

= / K2(ty,. .., tp)dty ... dty + Z Z ]k g
[t 7]k J1=0 Jk=0

—2M {(J[d)(k)h‘,t - J['l/)(k)y%l;'"pk) J[,l/)(k)}%%...,pk} -

)

oM { (T} =

M {(J[¢(k)]T,t _ J[d}(k)]?z__,pk)Z} _

= [ Kty,... tx)dt .. dtk—Z Z s
(4T J1=0 Jk=0

—2M {(‘]wj(k)]T,t — J[?/J(k)]g{’t""pk) J[w(k)]g{,t...,pk} .

Let’s consider M {(J[py®]7, — J[p®p-P) Jp®R P41 We have:

ny a3 P ny n2 a3
zmzzbw-z)zmzz
71=0 Jk=0 J1=0  ji=pi+1/ j2=0 Jjk=0

P1 N2

S 3 SO SR S SN S

J1=0j2=0 Jk=0  j1=p1+1j2=0 Jk=0

-y [T+ % )zz+ S OS Y=

J1=0 \j2=0  ja=pa+1/ jz=0 Jk=0  j1i=p1+1 j>=0 Jr=0
y41 P2 ns
Z > > - Z + Z Z Z Z +
=0 j2=0j3=0 Jx=0 =0 jo=pa+1 j3=0 Jk=0
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4.4 The other proof of lemma 10

T D SRS =

J1=p1+1j2=0 Jk=0

D1 Pk
=> ... >+
51=0 Jr=0

35(2 3N %)
J

1=0 \51=0 J=0 jit1=pip1+1 ji12=0 Jrk=0

(T = T ) T =
= lim M {(Jw,(k)]%t,...,nk _ J[qﬁ(k)]%,t...,pk) J[d)(k)]gl,...,pk} _

N1 ,e..y U —>0C it

=, l,nk {(Z Z Clis.o H C] Z Z Cv...in H C] )

J1=0 Jk=0 J1=0 Jr=0
<3 zqmng}
Jj1=0 k=0
T+1 Di+1 My2 P2

- I3 DD S SED SHES SHL SH SIS 3 3

n nk—>oo ; ;
oo 1=0 j;,j1=0 ]1,],—0 Jrrr=prr1+1ji, 1 =0 Jip2=0 j;, ,=0 Je=0j;=0

XCjk_.]I Jhoe- JIHM{ 1” ]l)}'

Since
M{ ](l’f)CJ(;J’fll)} =0 (Ji+1 > Pi+1, G141 < Di41),
then
M{(TW 1, — TW ) T @R} = 0
and

M {1 — T ®)r) '} =

P1
= [ Kt t)dh b — Y S Ay
[t,T]* =0 =0
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Chapter 4. Exact and approximate expressions for errors of approximations

4.5 Exact calculation of mean-square error of ap-
proximation. The case k =1, 2; i1,io=1,...,m

4.5.1 The case k=1

In this case according to lemma 10 we get

M{(T VB — T} = [ KA(t)dt — ,z

[T
where -
Ty = [n(s)dts, TV, zoc,lc],
‘ i
Cj, = [ d1(s)i, (s)ds, K(s) = n(s);
ih=1,...,m. t

4.5.2 The case k=2 and any 4y,45=1,...,m

When 41 # is we get the required formula from lemma 10. Let 4, =
iQ = 1, B 11

At first, let’s formulate the obvious proposition.

If lnl_glo &, = & and M{&€?} < oo, then

nh_)r{,lo M{&&} = M {6}

Let’s consider double Ito stochastic integral

2

T . .
T®rs = [ alts) [ n(e2)at Pt
t t

According to theorem 1 we have:

p

. p
J[Q/J(Z)}g’,t = Z JaJ1 ](;l) - 'ZO lejl'
n=
Then
M{ (I8P Ire = TP} = M{(I0)r)" ] +

234



4.5 Exact calculation of mean-square error of approximation.

M {8 - M IOl TP (@)

Moreover

= M{ (@)} +
+M{(J@1)} - 2 Jim M T TP} =

/ t1, ty)dt dts + M {(‘]W(?)]gjt)?} B

[t.T)?
—241_)@0 M{ Z OCJz]1C] Ja Z CJm) I 2)}11)&} =
j1,J2= j1=0
@1e, \?
/ t1,t2 dt]dtQ + M {(J['(/) ]T,t) } o
t.T)?
—27}1_>I£10M {(J[ }Tt+ Z Z C]2J1<] j2
=0 jo=p+1
+ Z Z C]2]1C] J2
Ji=p+1lji=
+ Z Z CthCJ Cz i Z lejl) J[q/)@)]%t} =
J1=p+1ja=p+1 Ji=p+1
2
= / KQ(tl,tQ)dtldtQ - M {(J[@b@)}g't) } -
[t.T]
—QHII_)I’&M{ Z Z th ) ( )+ Z Z .72.71 (21)+
j1=0 jo=p+1 Ji=p+1 1=

n

+ Z Z C]2]1CJ 2)_ Z 01111)

J1=p+1 ja=p+1 Ji=p+1

(L outterE o)

J1,J2=0 Jj1=0

= / KQ(tl,tg)dtldtQ -M {(J[d)(?)}g‘,t)z} -

AR
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Chapter 4. Exact and approximate expressions for errors of approximations

_2nh_>m ( Z C]1]1 Z C]l]l - Z C]l]l Z C]1J1

J1=p+1 J1=0 J1=p+1 71=0

- Z C]1]1 Z C]1]1 + Z CJm Z ij) =

J1=p+1 J1=0 Ji=p+1 71=0
= [ Kt tr)dtadt, ~M{ (T[T} (4.12)
[t.T]?

Using (2.277) we get

W{ )" =M{( % (e - ¢} -

J1,J2= Jj1=0

q
i1 (@
:M{ > Chuji thCJ le Z)C]z)}

J1.J1:32,35=0

2( Xi: ]1]1) (]lz_: C]l]l) Z 11]1

j1=0

p Ja—1 2
2
+ Z Z ( Jadi + Cjuz + 20]’]]’] Cjﬂjz + 20]’?]’] leh) (Z CJl]l) )
72=0j1=0 j1=0
2
Z Jm + Z Z ( jojr T sz) = Z va
J1=0 J2=0j1= Jisj2=
Ja—1 P P 2
Z ]1]1 +2 Z Z C]1J1C]2]2 Z Cj1j1Cj2j2 = (Z Cj1j1) 3
J1= =0j1= J1,J2=0 J1=0
p Ja—1
Z ]1]1 +2 Z Z Cj1j20j2j1 = Z C]l]ZC]Z]l'
J1=0 J2=0751=0 J1,J2=0
Then
M{ (Jp®)°) = 4.13
( W ]T,t) - Z ]2]1 + Z J1je ]2]1 ( - )

J1,J2=0 J1:J2=0
From (4.11) - (4.13) we obtain



4.5 Exact calculation of mean-square error of approximation.

= /K2(t1’t2)dt1dt2 Z ]2]1_ Z C]Z]lo]l]z'
[t,T]2 J1,J2= J1,J2=0

Let’s consider double Stratonovich stochastic integral

*tQ

TP, = /¢2 (t2) /¢1 (t1) dft“ dft“ ;

where the function ¢,(7) is continuously differentiated at the interval
[t,T] and the function 1)(7) is two times continuously differentiated at
the interval [¢, T'.

According to theorem 3 we have:

TP, = Li. S Ol
J1,Jj2=0
and

J*[wm]]:)r,t: Z C]ZJICJ C2 -

J1,J2=0
Then

=M{(J[¢ s+ o /wl Jals)ds — > Ciui (i“)}z

J1,J2=0

j1=0

M {(J[q/,(?)}m - J[¢(2)]I£t + %/%(s)%(s)ds — zp: lejl) } —

[\JM—\

T 2
=M {(J[d)@)}T,t — J[y®@] } ( /1/)1 s)ds — Z Cym) =

=0

- / KQ(tl’tQ)dtldhi Z 12]1 Z 012]1011]2+
[t.T)? J1,52=0 J1,j2=0

17 P ’
+ (§/¢1(5)¢2(8)d=’5 - ij) :
t J1=0
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4.6 Exact calculation of mean-square error of ap-
proximation. The case kK = 2, 3, 4; i1,...,i4 =
1,...,m (another approach)

4.6.1 Thecase k=2;41 =19, 51=1,...,m

Let’s consider another approach. We have:

T to
ﬂw%mz/wmg/wmundm,
t

JW}@)H“ = Z JZJICJ Jo zj C]l]l’
M{(T9 P — T} = M{(T0®1r) "} +
+M{UW®%J}—2M{H¢WMJW®EA, (4.14)
M{(J[6®1r)"} = [ K2, to)dtdts, (4.15)

[t.T]?
Using (2.277) we get

M { (TR} = {( S O - % CM)Q}:

J1:J2=0 j1=0

q .
(@
= M{ Z CJle JaJi CJ le J2 )Cjé) }_

J1:1542:35=0

p 2 P 2
(Z ]1]1) + <ZO lej]) =3 Z ]1]1
=0 J1=

Jo—1 2
+ ZO Z ( J2j1 + 0121]2 + 2011]1 Cj2j2 + 2Cj2j1 lej2) (Z C]l]l) .
= Jj1=0
Moreover
Ja—1 9
Z Jl]l + Z Z ( J2J1 +C]1]2) = Z ]2]1’
=0j1= JisJja=
2
Z J1]1 + 2 Z Z C]1J1 07212 = Z CJ] 710J2]2 = (Z CJ1 71) )
71=0 J2=071=0 J1,J2=0 J1=0
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4.6 Exact calculation of mean-square error of approximation (another approach)

p J2—1

Z 11]1 +23 3 CpChj = Z Cj1js g -
j1=0 32=0j1=0 J1,J2=0
Then
2
M {(JW(Q)]?“J) } = Z 0 .72]1 Z 0011]201211 (4-16)
J1,J2= J1.J2=
From the Ito formula we obtain:
f ) /¢]1 5(11)/¢j2(s)dfs(ll) = /¢j1(5)/¢j2(51)df§f1)dfs(“)+
t t t

T
+/¢J‘2(5) /‘ﬁ.il(sl)dfs(fl)dfs(“) + 14—} [ 65, (5)i,(s)ds w.p.1.
t t t

Then
J th[w(Q)]g”,t} 3

M {Jly

T . .

[ alta) / b () dE x
t

N

P T
x(_z " (/ /4)]2 (s1)df dfl 4

J1,J2=0 t

T s
+ /¢jz(5)/¢11(51)df( Daf) + L= n}) Z le)}
t t

J1=0

= Z 0]2]1 (/¢2 (]5]2 /¢1 31 (}5]1 51)d51d5+

J1,J2=0

+ [ 0a)6a(0) | «p](sl)quz(sl)dslds) _

D
= Z Cjzjl (szjl + lejz) = Z ]2]1 + Z 012]10]112

J1:J2=0 J1:J2=0 J1:J2=0
From (4.14) (4.17) we get

M {(J[Mm - J[wm}’%t)?} =

= /KQ(tlat2)dt1dt2_ Z J2]1_ Z Cjzhcmz-

[t,T]2 J1.52=0 J1,42=0
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4.6.2 The case k =3 and any iy,49,i3=1,...,m

The case of pairwise different 1, i9, 73 is analyzed in lemma 10, that is
why we have to analyze 4 cases (it is assumed, that iq,49,i3 = 1,...,m):
1. 212227523, 221#22223, 3112137512, 421222223

Let’s start from the first case (i1 = is # 43):

M{(T@1)"} = [ K2 (1, o, ts)dtadtadts, (4.19)
(71

JW}(S) /¢3 /,¢2 51 / Sg)df i1) df i1) df i3)
t

p i1) ~(i1) ~(3 i
J["[)(g)]g’,t = Z Ostj2j1 ( J(j]) ](;1) J(';3) - l{jlsz}C](Z3)) ’

J1,J2,J3=
M{ (@ — TW9T8,)"} =
=/ KQ(tl,tQ,tg)dtldtht3+M{(J[w(s)]g:tf}—

[T
—2M (I[P, T[], - (4.20)
Further using of (2.277) we get
2
M{ (T} =

p .
(ir) -(ir)
= M{ Z _ Clhiain Gt ( i G L ]z})

(i1) (in) (i) ~(is) | _
X (CJ{Z C o 1{.71 .72}) .7'33 C]éa } -

14 . . . .
= M{ Z Z Cj3j2jl Cjajéji ](11)41(11) J(zl)cj(ﬁl)}_
J3=0 jz,j5,51,51 =0
p p 2
-2 Z (Z C]S]l]l) + Z (Z Cj&jljl) =
J3= = = =0
Ja—1

=3 Z Z( ]3]1]1) + Z Z Z( Jajadn +CJQ3J1]2+

=0j1= J3=032=0j1=0
2
+20j3jljloj3j2j2 + 20j3j2j1 Cj3jlj2) ZO< Z C]shh) :
J3 J1=
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4.6 Exact calculation of mean-square error of approximation (another approach)

Not difficult to see, that:

14 Ja—
2 _ 2
Z ]2]1]1 Z Z ( Jajad + C]';.h]z) o Z C]e]z]ﬂ

J3:J1= 3,52=0 j1=0 Ja:j2, 1=
P el p
Z ]3]1]1 +2 ) Z Z Clsjrir Clgada = ] Z Cisjijr Clsago =
J3:j1= J3,J2=0 j1=0 J3,J2,J1=0
P P 2
= 3 (% Chu)
J3=0 \j1=0
J2—1 P
Z ]3]1]1 +2 Z Z C]3]1JZC]3.72J1 = Z Oj3j1j2Cj3j2j1‘
J3:51=0 J3:J2=0j1=0 J3:J2,51=0
Then

M {(J[d}(g)}g’,t)Z} = Z 0]23]1]2 Z Cj3j1j20j3j2j1‘ (421)

J3,J2,01= Ja:J2,1=

Not difficult to see, that:

T T
G = et [ (i o, =

- £ [t [onte [ o uarar st

(t1ta,t3) T

+/¢j-‘(5)/¢j1(51)¢j2(51)d51df§i3)+

+/¢]1 s)dj, (s /¢J3 s1)dfds w.p.1,

where derangements (1, t2, t3) for summing are performed only in the
values dft(f 3)dft(zl ‘)dft(; ") at the same time the indexes near upper limits of
integration in the multiple stochastic integrals are changed correspon-
dently and if ¢, changed places with ¢, in the derangement (t1,t9,%3),
then ¢, changes places with ¢, in the derangement (is, i1, 1).
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Then
M { T[N, T[N, ) =
T s
=M {/¢3(8)/¢2(81 /11}1 (s2) df i) df i) df ia)

t

p
X ( Z stj2j1 ( Z /(»ZS]] t3 /(25]2 t2 /¢]3 tl dftzg dft(“)df(“)
J1.:J2,j3=0 (t1,ta,t3)

+/¢j3(5)/¢j1(81)¢j2(51)d31d££i3)+

T
+/¢]I ¢J2 /¢]3 81 df 13 ds — 1{1'1=j2}/¢j3 (s)dfs(’3)} =
t

= Z Cj3.72j1 (stjzjl + Cj3j1j2) =

J1.J2,3=0
_ 2 O
- Z 0]3]2]1 Z CJS]le C]s]l]z . (4 22)
J1:J2,J3=0 J1:923J3=0

From (4.19) (4.22) we obtain:
M{(T[ @, — T ]r) ) =

p
= [ Kty ts)dtidtydts — Y. C2 -
[t,T]3 J3:J2,51=0

D
- 2 Cj3j1j2 CijZjl (i1 =10 # Z'3)'
J3:J2,51=0
In the 2nd and 3rd case similarly to the previous reasoning we corre-
spondently get

M{(T0 T, — T r) '} =

p
= / Kg(t1,t2,t3)dt1dt2dt3—_ > 01231211
e J3.J2,1=0

p
o Z Cj2.73j1 Cj3j2j1 (Zl 7é 19 = 13)

J3:J2,51=0
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4.6 Exact calculation of mean-square error of approximation (another approach)

M{(T T, — T¥1r) ) =

3

p
- / K(ty, ty, t3)dtidtadts — Y. C%.

L Jajaji
[t,T]2 J3:J2,1=0
P
= X Citjni Chiga (11 = i3 # ia).
J3:J2,J1=0

In the 4th particular case when ;(s), ¥2(s), ¥3(s) = 1 with proba-
bility 1 we have (see sect. 8.1):

R (CRIRE ]

In more general case, when v;(s), ¥a(s),¥3(s) = (t — s)l; 1 — is a
fixed natural number or zero, with probability 1 we may right down (see

sect. 8.1):
(drd1d1) _ 1 (i1)
I, " = 5 <([l; ) - 311 Am) ;
1 i\ 3
111111) _ 3 (11)
Ly, = é(T —1)? (Ilm) ,

Lo i)
= Z C]C] ' 3
=0
T T
where Ay, = [(t —s)%ds, Cj = [(t— s)'¢;(s)ds; {¢;(s)}2, isafull
A t
orthonormal system of Legendre polynomials in the space La([t, T7).
If the functions ¢1(s),...,1¥s(s) are different in the 4th particular
case, then calculation of the value M {(J (W&, —J [1/)(3)}T,t)2} becomes

more difficult then in all cases analyzed previously. This case may be
analized using (2.275) when k = 6 and k = 4.

We will make one remark concerning calculation of the mean-square
error of approximation for the multiple Stratonovich stochastic integral
of 3rd multiplicity of the following form:

T *tg xty ) ) ) o
/ / / dft(fl)dft(ah)dft(?) dZQf Ia‘(%l;il&‘)’ i17 iQ} i3 = 17 cee, M
Pt ’

Since

Toos) = i) 4 11{“ —ia) / / dsdf ™) + 1{12 Zs}/T /T dfdr =
t t
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v 1 s [ 0 1
= é%]OZT,Zf) + Zl{h:iz}(T - t)g (C(glg) + \/g(l(%)) +
1 2 (i L
+3 Hio=i) (T — 1) (C(gz ) %d )) ; (4.23)

NT .
where C](”) = [ ¢;(s)df?; {¢;(z) }320 — is a full orthonormal system of
t
Legendre polynomials in the space La([t,T]), then

#(61igis i 1 3 (.6 1
IoéolTi = I(golo;,:)p + Zl{ilziQ}(T E (Co ’ \/gd 3)) +

1 3 i 1 i
+Zl{i2=i3}(T )2 (CO Y- %C£ 1)> s (424)
where Iéf;o”;ij)p — is the approximation of multiple Ito stochastic integral

106101;1: , which has the following form:

I(g%]l(]z;zf) = Z Cj3j2j1< ](1“) ](;2) ](;3) i 1{11:1‘2}1{]‘1:]'2}@(;3)—
J1,J2:93=0
(i1) (i2)
~Limip L (=i G = =i} L=} o™ )
From (4.23) and (4.24) we finally get:

* (139971 131911 2 30911 i3i211)p 2
M {(Ioéogm ) I ) }Z M{(I(gos()T,t) Lo, ) } (4.25)

It is obvious, that formula (4.25) will also be correct for trigonometric
system of functions.

4.6.3 The case k =4 and any iy,19,43,794=1,...,m

The case of pairwise different 41, ..., 44 is examined in lemma 10, so
we just need to analyze the following particular cases: 1. 41 = i9 # i3, i4;
i3 # 14 2. 01 =193 F G2,04; G F 143 3. 61 = G4 F 19,13; lo # i3; 4.
9 = i3 7# 11,045 G F @43 5. g = G4 F 11,143; 11 F# 13; 6. 93 = 14 F i1, 19;
'L'175’L'2; 7.i1=i2=i37éi4; 8.i2=i3=’i47éi1; 9.
il = ’ig = ’i4 # ig; 10. il = i3 = i4 ;é 22 11. ’il = ’ng = i3 = i4; 12.
ilzig%i3:i4; 13. ’L'1:’L'375’L'2:’L‘4; 14. i1:i47éi22i3.

Let’s consider only 1 6 particular cases.
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4.6 Exact calculation of mean-square error of approximation (another approach)

For the 1st particular case we have:

T ty . .
T = [dalta) .. [ (e dEY (= ia # i, ),

t t

@7, )2 = 2

M (T W]re) " = / K*(t1, 12, 13, ta) dtrdizdtsdls, (4.26)
[t.T]*
» .
J[¢(4)]I:Jr,t = Z OCj4j3j2j1 < ](11) ](2 ) ](33) 1(4 - 1{11—12}@ is ) )
NARVRRVERVZ

M{ (T — T 9T5,)"} =

=/ Kz(tl,tg,tg,t4)dt1dt2dt3dt4—|—M{(J[1/)(4)}%t)2}—

[t.T]*
—2M { I[N ST ) - (4.27)
Using (2.277) we have:
2
(G0 -
p q PN
= Z M{ Z Cj4j3j2j10j4j3j§j{ ]('1])Cj(i]) J(zl)CJ(él)}_
J3,ja=0 J1,915J2,55=0

q q
= X CipppChigsiist — 2 CiijajninChagsitin+

J2,43,34,91=0 J2,J3:J4,35=0
q
+ o Z Cju'sjzjzcjdsjéjé =
J2543544:35=0
14 q . . . .
_ (i1) +(i1) »(in) »(i1)
= Z <M{ Z CJ4J3.72]I Cj4j3jéj{ J1 Cj{ Ja Cjé -
Ja,ja=0 J1.01542,35=0
p 2
_<Z Cj4jsj212) ) =
J2=0
P Ja—1 5
= Z ( Z J4J31111 + Z Z ( Jajsjan + 01413]1]2
J3:a=0\ 51 =0 =0j1=0
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p 2
+2C,4531j1 Cisjsgngs + 201'4]'3]'2]'101'4]'3]'1]'2) - (Z Cj4j3j2j2) ) =
J2=0

P P
- Z Cj4j3j2j1 + o Z CJ413]1]201413]2J1' (4'28)
J1:92:3,54=0 J1:92,73:4=0
Analogously to the case of k = 3 we obtain

M {JW(ZL)]T,tJWM)]If,t} =
p p
= Z C;u'sjljz + Z Cj4j3jljz Cj4jajzj1 - (4- 29)

J4,J3,52,91=0 Jajs,j2,1=0
Therefore from (4.26) — (4.29) we get

M {(J["l)(@}?r,t - J[Q/)M)]T,t)Q} = / K2(t1, ey t4)dt1 o dty—

[t,774
p
2
o Z CJ'4J'3J'2j17
Ja,j3:42,51=0
p
— Y CisjiieCisguiniy (0= 12 # i3, 14; 13 # ia).

Ja,J3,J2:51=0

For particular cases 2-6 we get in the complete analogy:

M {(‘][¢(4)]II)‘,1§ - =][¢(4)}T,t)2} = / K*(ty, ... ta)dty . .. dts—

[t,T]*
P 2
L Z Cj4]’3jzj17
Ja,j3:42:51=0
p . . . . . .
- Z Oj4jsj2j1 Cj4j1j2j3 (Zl =13 7é 12, 14; 12 7& Z4);
J4:J3:J2,j1=0
2
M {(J[zp(“)]%t — J[pWr,) } = / K2(ty, ... ta)dty ... dts—
[t.T]*
P 2
= 2 Clijpn—
Ja,J3,92:51=0
p . . . . . .
= X CiiiepnisCiragog (11 = 14 # 2, 13 12 7 13);
Ja:J3:J2:51=0
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4.6 Exact calculation of mean-square error of approximation (another approach)

M {(J[T/’M)P},t - J[¢(4)]T,t)2} = / K2(t1, ..., ta)dty ... dts—

[t T]*
L 2
o Z Cj4j3j2j1 -
J4,J3:J2,51=0
p . . . . . .
= X CiyappisCiujpjoiy (2 =13 # 11,845 i1 # 44);
J4.J3.J2:51=0
2
M {(J[¢(4)}g"f - J[¢(4)]T,t) } = / Kg(tl, ceey t4)dt1 PN dt4—
[t,T]"
P 2
T Z Cj4j3j2j1_
Jarj3:2,51=0
p . . . . . .
- > 014131'211 Cj2j3j4jl (12 =4 # 11,13 01 # 23)5
Ja,J3,32:51=0

2

M {(J[¢(4)]g“t - J[¢(4)]T,t) } = / KQ(tl, caey t4)dt1 - dt4—

[&.T]

p
2
= X G
JasJ3:d2,51=0
p . . . . . .
= Y CiaioirChajaieir (s = g # 11,125 11 # da).
J4,33,J2:51=0
Within the frame of 11th particular case when ¢1(s), ..., ¢a(s) =

1, as we mentioned before, with probability 1 the following formula is
correct (see sect. 8.1):

biniiiy T —t)? i\ i)\ 2
Tl = g = 0 (@) =6 () +3).

In more general case, when 1 (s), ..., v¥4(s) = (t—s); I — is a fixed
natural number or zero, with probability 1 we may write down (see sect.
8.1):

o .\ 4 P\ 2
J[T/)(4)]T,t = 11(1332:1“) =5 ((Il(;",]t)) —6 ( l(;]t)) B, +3 (AlT’tY) ’
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Chapter 4. Exact and approximate expressions for errors of approximations

-\ 4
Trs = ) = (18

)
Ith Z C]“ Al’f‘,t = /(t - S)Qldsa
j=0 i
where in the next-to-last formula we propose, that the expansion of
stochastic integral is performed using Legendre polynomials.

The particular cases 7-14 may be considered using (2.275) when k =
8, k=6 and k = 4.

According the scheme proposed above we may, increasing metodically
the multiplicity k& of the multiple Ito stochastic integral and separating
various particular cases which correspond to various combinations of
indexes 1,...,% = 1,...,m, calculate accurately the mean-square er-
rors of approximations of the multiple stochastic integrals, obtained in
accordance with theorem 1.

4.7 Convergence in the mean of degree 2n of ex-
pansion of multiple Ito stochastic integrals from
theorem 1

Creating expansions of Ito stochastic integrals from theorem 1 we
stored all information about these integrals, that is why it is natural to
expect, that the mentioned expansions will be converged not only in the
mean-square sense but in the stronger probability meanings.

We will obtain the common evaluation which proves convergence in
the mean of degree 2n, n € N of approximations from theorem 1.

According to notations of theorem 1:

T . .
Riym = /  Bo gty t)dESY Y, (4.30)
)t

(F1yeenst t

Ryl t0) & K0, t) = 3 z Ciei H bi(t).
51=0 Jx=0
For definiteness we will consider, that 41,...,4 = 1,...,m (it is
obviously quite enough for unified Taylor-Ito expansion (see sect. 9.9)
and we can see decoding of other notations used in this section at the
text of proving of theorem 1.
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4.7 Convergence in the mean of degree 2n

Note, that proving of theorem 1 we obtained, that

M{(Rh; ™)} < G, / / TR A Y
)t

(G
=Cy [ R, (b, t)dty . diy,
[t, T

Cy < oo and Cy

= k! for the case i, ..
Assume, that

.,ik:].,...,m.

t .
e[ / et t)dE) e 1 =2,3, k41,
t

~

k) def (k
t(kil,t = n%i

T o | |
77 = / /Rm ot -, tk)dft(lh) o dft(,:"“)
t t

Using Ito formula (see sect. 9.3) it is easy to demonstrate, that

M{(/ &, 2"} — n(2n—1) / m{ ( / gudfu)Qngsf}ds.

Using the Holder inequality<in the right part under the sign of inte-
gration if p =n/(n — 1), ¢ =n and using the increase of value

m{ Q/f ear) |

with the growth ¢, we get:

M{g r,) "} < nian - 1>(M{Q @dff)?“})"* Zw{ﬁn});ds

Raising to power n the obtained inequality and dividing it on

(o))

we get the following estimation

M{qudfT)Qn} n(2n — 1)) (t/t M{£2"})n ds) . (4.31)
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Chapter 4. Exact and approximate expressions for errors of approximations

Using estimation (4.31) we have

M{0)"} < (n(2n — D] [l ] <

t

1

/T ((n2n=1)" {/ (M=) vt )] =

t

< (n(2n—1))"

t

£

= (n(2n = 1))*"| [ [(M{(ni{"2)? }ﬁdtkfldtk}" <.
< (n(2n— 1)) //k /3 2n} ndts. . dtk—ldtkr =

t
= (n(?n — 1)) n(k— )(271 - 1 1 / / DL Dk tl,...,tk’)dtl...dtk} §

[ Bt t)dt .dtk] :

Ay

< (n(2n —1))"*D(2n — 1)

The next to last step was obtained using the formula

M{(n >} = (2n <1 H{/ tl,...,tk)dtlr,

which follows from gaussianity of

ta

1 i1
nlgz;)t = /RPI---Pk (tla s tk)dft(l )
t

Similarly we estimate each summand in the right part of (4.30). Then,
from (4.30) using Minkowsky inequality we finally get

M{(Rp;™)*"} <
< (k!((n(?n — 1)) (2n — 1)l
n 217 2n
[ R pk(tl,...,tk)dtl...dtk” ) =

[t.T]

= (k1)*"(n(2n — 1))"*V(2n — 1)lIx

X
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4.8 Some peculiarities of calculation of mean square error of approximation

x| [ R (h, . te)dty .t (4.32)
[t.T]*
From (4.6) we obtain:
/ (st Lty =
[t,Tk
- / K2(ty, ... ty)dt; .. dtk—z Z 2 i (4.33)
[t,T] 7=0 5x=0

Let’s substitute (4.33) into (4.32):
M(RR 7)) <
< (K™ (n(2n — 1))”<k*1)(2n - 1)H><

[ Kt te)dt -5 .. S 2l asa)
[t,T]k n=0  5x=0

X

The inequality (4.32) (or (4.34)) means, that approximations of mul-
tiple Ito stochastic integrals, obtained using theorem 1, converge in the
mean of degree 2n, n € N, as according to Parseval equality

/ tl,...,tk)dtl...dtk — 0
[t.T]*

when p1, ..., pr — 00.

4.8 Some peculiarities of calculation of mean square
error of approximation for the systems of poly-
nomial and trigonometric functions

Using the example we will demonstrate, that for the case of
trigonometric system of functions the approximation on the basis
of formula (4.1) may be developed in such manner, that the error

M {(J[qp(Q)]g,’t — J[q’b(?)]T’t)Q} (17 # i2) will turn out to be significantly
less, than the right part of (4.3).
Assume, that the following trigonometric system of functions is taken
as the system of functions {¢;(s) }32,
1 1 when j =0
di(s) = T V2sin 27 when j =29 — 1 (4.35)
- \[cosr"” - ) when j = 2r
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Chapter 4. Exact and approximate expressions for errors of approximations

where r =1, 2,...
Using the theorem 1 for the system of functions (4.35) to the multiple
Ito stochastic integral of type

S
1211 U s . -
Too,., //df2 51,21,22:1,...,m, 11 # i,
Bt
we get

‘2‘1 1 2 1
[(%Tl,i)zi(T_t)[C(l 1 +7TZ {27" o 1 C2

+\/—<C2r 160 *C(gil) 2(;221>} )

where C] def § gb]( Ydf@); £0) (i = 1,...,m) — are independent stan-

(4.36)

dard Wiener processes. At that, the series (4.36) converges in the mean-
square sense.
According to (4.1) it is necessary to write down

201 1 1 2 1 2
](%Tlt) —2( ){Col z + - Z {2r o 1 fg« 121r

+\[<C2r 160 — C(gil) 2(27*2—)1)}} (4.37)
From (4.36) and (4.37) when i; # iy we have:
(i9i1) (i2i1)g 2 3(T - t)2 7T2 1
M {(IOUT,t [OOTt ) } = 272 E o = 7‘_2 . (438)

It is easy to see, that the right part of (4.38) may be decreased three-
fold, if instead of the approximation of type (4.37) we take the following
approximation [23]:

iod 1 i1 41 i1
10027"1 7§(T_t)|:c( + Z;{ 2r 2r 1 C?

r=1

3|

+v2 (C2r 16” Co“ C2r2 1)}+

where

2SS

VARl R cé“fg“))} (4.30)

. 1 o0 2 7 1
(0 =~ ~N(O,1); ag=—— 3 =
gq \/()Tqr%-l r C27‘ 1 ( )1 6 E 92"
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4.8 Some peculiarities of calculation of mean square error of approximation

At that, the Gaussian random variables ¢{”, ¢, ¢ g r =
1,...,¢q;1=1,...,m are independent in total.
From (4.36) and (4.39) when i1 # iy we get

(i21) (i2i1)q 2 (T_t)2 71-2 1
M{(Iof];,t = Iooy, ) }Z o g T X2 (4.40)

r=1 ,,,2

i.e the right part of equation (4.40) is tree-times less then the right part
of equation (4.38).

The given method of advancing approximations of multiple stochastic
integrals [23] is generalized for the case of integrals of third multiplic-
ity [24]. Apparently, analyzing stochastic integrals of higher multiplicity,
than the third one, we cannot propose the universal method for intro-
ducing additional random variables as it was made in (4.39). As a result,
in each case we have to act individually.

You may omit it selecting the full orthonormal system of Legendre
polynomials at the space Ly([t, T]) as a system of functions {¢;(s)}52.

Let’s remind, that in chapter 2 using the system of Legendre polyno-
mials for 41 # is we got the expantion:

(i1i2)

T—1[ i
IOOT,t :T{C(g“ (i) Z\/42—{Cz“1<zl2 _sz 11—21)}}’

which doesn’t require perfection, as in the case of trigonometric system
of functions.
It is easy to see, that

(nia) _ i\ _ (T —1)° d
w{(f - )} = S5 G- L) @
From (4.40) and (4.41) we get:

(i) inn\2) _ (T =17 & 1
w ()~ 1)} = S X e

7 =
q.’E

(T —t)* Tdz (T —t)? (T —t)?
< =2 <C—= 4.42
- 27[.2 / 27r2q — Cl q ( )

and

O, OTt

O R e

253



Chapter 4. Exact and approximate expressions for errors of approximations

1 (7 -1y
— - In 1
q/4a:2—1d$ g

correspondently, where Cy, Cy — are constant.

Since the value T'—t plays the role of integration step in the numerical
procedures for Ito stochastic differential equations, then this value is
sufficiently small.

Keeping in mind this circumstance, it is easy to note, that there is
such constant Cs, that

M{(Iz(filiﬁi’ii*fz(f.l.ﬁi;filq) }<03 {( Iig™) — I } (4.44)

(T —t)?

q
(4.43)

2
- <C
2q+1‘_ 2

where Il(li_l_jf;)tq — is the approximation of multiple stochastic integral
Il(li_l_:'lz;)t from the class (5.1), which has the form of truncated expansions

from the section 1.3 (k > 2).
From (4.42), (4.43) and (4.44) we finally get:

.. i (T —t)?
M {(Il(ll:;)t - Iz(lz...lkzi?tq) } <C— P (4.45)
where C' — is a constant.
Note, that the estimation (4.45) is general enough, and at the same

time it is rather rough.
Also the following estimates:

M {(R%i...,pk)Q} <

Sklﬂ / K2(t1,...,tk)dt1.--dtk_ Z Z Jkes Jl)’
t, Tk

=0 =0
M { (R0} <

p
<k!§/ K(ty,... ty)dty .. .dty— Y Ch h),
t,T)*

JseJe=0
which valid for the case 4y,...,4, = 1,...,m or the case i1,...,9; =
0,1,...,m (T —t < 1) are very usefull for practice.
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Chapter 5

Approximation of specific multiple
Stratonovich and Ito stochastic
integrals

In this chapter we give huge practical material about expansions and
approximations of specific multiple Ito and Stratonovich stochastic inte-
grals using theorem 1 and systems of Legendre polynomials and system
of trigonometric functions. Considered multiple Ito and Stratonovich
integrals are included into stochastic Taylor expansions (Taylor-Ito and
Taylor-Stratonovich expansions). Therefore, results of this chapter may
be very useful for numerical solution-of Ito stochastic differential equa-
tions. Expansions of multiple Ito-and Stratonovich stochastic integrals
of multiplicity 1 — 5 using of Legendre polynomials and expansions of
multiple Ito and Stratonovich stochastic integrals of multiplicity 1 — 3
using of trigonometric functions are derived.

5.1 Approximation of specific multiple stochastic
integrals of multiplicities 1-5 using Legendre
polynomials

In this chapter we provide considerable practical material (based
on theorems 1  8) about expansions of multiple Ito and Stratonovich
stochastic integrals of the following form:

T t2 . .
L = =) [ —t)af L dfg, (5.1)
t t
. . «T' *t2 . .
LU = [ =) [ (¢ —t)hdE e,
t t
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Chapter 5. Approximation of specific multiple stochastic integrals

where i1, ...,0,=1,...,m; li,..., [ =0, 1,....
The full orthonormal system of Legendre polynomials in the space
Ly([t, T]) looks as follows

BN 6@ =\ 2 (-2 75), 62

where Pj(z) — is a Legendre polynomial. It is well-known [28], that the
polynomials Pj(z) may be represented for example in the form
1 &, J

This representation, as we know, is called an equality of Rodrigues.
Note some well-known features of polynomials P;j(z):

APy()  dPya(a)

i da =2j+1)P(z); =1, 2,...,

1
[ #*Pi(a)de =0; k=0;1, 2,...,5-1,
41

1 . )
_/1 Py(z)Pj(z)dz = { 2]%1 ig z i ;,
cre) )20
Po(z)Pa(a) = 3. Ko Pra-24(a),
where )
Ap—kQkQn—k 2n+2m —4k+1 2k — 1!
Ko = a:+:_k : 2ni2m— Zki 1; @ = %; m s .

Considering these features and using the system of functions (5.2) we
get the following expansions of multiple Ito and Stratonovich stochastic

integrals: ‘ .
1§ = VT — ¢, (5.3)

(in) (7 —t)?’/z( (@), 1 (z‘l))
LY =—-——-— " + , 5.4
17y 2 CO \/§C1 ( )
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

i —1)°% (i, 3 (i (ix
N it (céwfcl“ ; \[CQ ) (5.5)

o=t
zogmﬂ:T;t[ ) +z ml_{d“)c(“)—cé“)cf?f}}, (5.6)
ri = Lt - L g
§:<(i+2()2%(:1—)%()%)2i—1—(5)(21)i3)€/2 (2z'fi111)%22;+3))} (51
rig — _T2 ) (T ; t)® {ﬁ%n ci
A ey S 6

112 102 1 i112 *(i142 1
02 = L + L= (T =15 I = I L= (T = 1),

(5.9
Lo = ——T (I8 4+ 150 +
+7](g'i3) (I(](g““) _ ]()]k(g?jl)) _
—(T ) [ Co“ C“ (Col2 + /3¢ _74212>
1 (ivisis
+, Dr) )} (5.10)

or in general form:
[o¢]
*(iyinis) o i) m(i2) ~(da),
IOOOT,t = Z Clajoin J1 Sj2 Sjs
J1,J2,43=0

T s S1
Ciaioir = [ $(5) [ 8 (1) [ ¢ (s2)dsadsids,
t t t
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Chapter 5. Approximation of specific multiple stochastic integrals

brini w(iyind 1 3 3
IéBUZT,?) = IU(%;,:B) + 1{71_22}2]i g 1{i2:j3}§ ((T - t)[ész + Iﬁ"i) ’

(iri (T —t)?
I 12:_7
02r 1

(i1d2) i1da) T — 3 2 i0) (i1
IOO - ( )IOI %[ﬁ@ CO
(i +2)(i +3)¢f¢™ = (i + 1)+ 2)¢™ ¢

\/(21 +1)(2i + 7)(2i + 3)(2i + 5)

+3 Co“ Y ‘1‘2(

(22+Z )Cz+1 i (22+3Z )gziz z+11
V(28 + 1) (20 + 3)(2i — 1)(2i + 5) ) (511
i1io T - i1do Q1io T— 3 i i1
rf = g - - g+ T 2o
L (i) () (i + D)+ 2™ = +2) (i +3)¢™ ¢
T3l % +§]( V(20 + 1)(2i+ 7) (26 + 3)(2i + 5)
(@ +3i = DA ~ (2 + - 3)¢ ¢y
(20 +1)(26+3)(2i — 1)(2i + 5) ) (5:12)

(lez) _ (T )
111 = - 1
(T —t)° [1((1‘1)40:) s <(i +1)6+3) (656" - 67')
g 3t ! V(20 +1)(2i + 7) (20 + 3)(2i + 5)
(i+1) (€™ - g™
(26 +1)(20+ 3)(2i — 1)(2i + 5) }

i1io T i1y i1ia
Ioé )—( 9 )([1(5 )+Io1( ))‘F

+

(5.13)

112 12 1 119 *(i172 1
5 = i = g L= (T = )% L) = 1) — g =i (T = )%,
(5.14)
. 1
I&Tzi) = In(m?) El{ilziQ}(T - 1)°, (5.15)
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

=" (g

(i1) i1) 3\/_ 1 (11) (i1
Iy, = — + G+ = , (5.16
374 CO Cl \/5(2 5\/’63 ) ) ( )

*(igigizia) _ 7 .  p4) pia) #(i3) ~(ia)
Toooor, = lpl_}o% o Z Ciagsinin G i s G
J1:J2,J3,7a=0
(ilai2ai3ai4:0; 1a,ma

s
]4]2]2]1 - /¢J4 /
t

72 (51) /¢j2(52)/¢j1(53)d53d52d81d57
t t

p
*(i1dai3) 1 001 (is)
1001'” _1131—310%' . Z CJst]1CJ jo Sjz
J1,J2,3=0
Ipliieis) zp: CY10. C C (is)
0107, ™ e 4 Jajedi>i1 Sj2 Sjz 0
J1:J2,53=0
*(irinis) _ 100 (i) ~(ia) ~(is)
IIOOT’t _lp1—>roI<1> . Z CJS]z]l Jo Sj3
J1:J2,53=0
(61,4283 = 1,...,m);
T
001
CJ372]1 / t—s (]5]3 /¢]2 51 /¢]1 82 dSQdSldS
t
T s
010
C]a]z]l / / t* S1 ¢]2 S1 /¢]1 52 dSQdSldS
t
T
100
]3]2]1 / /¢Jz S1 /t_52)¢]1(32)d82d81ds
t
(i1dai3) __
Dr,™" =
= - o (41) ~(i2) -(i3)
- i:ljg(]k:i NijeKiq g iz GG G

2i>k+i—j>—2; k+i—j even

i-1
>

>
i=1,j=0 k=1
2k>k+i—j>—2; k+i—j — even

o0

+ Niijk+1,i+1,W+1Ci(il)CJ(-iz)Clgig)—
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Chapter 5. Approximation of specific multiple stochastic integrals

o

— > Ni7kK+1k 1, k+z JCZ <Z2)<]E:i3)_

i=1,j=0,k=i+2
2i+2>k+i—j>0; k+i—j — even

00 i+1 i1 i i
- XX Niijk—uH.MCi(l )CJ(Z )CIEZS)_
i=1j=0 k=1 A1

2k—2>k+i—35>0; k+i—j even

- > Nigh K oy i (0P ()
i=1,j=0,k=i—2,k>1 K LE+1, g k
2i—2>k+i—j>0; k+i—j — even

o -3 i) (i) (i
- POINEDY Niji K11 MQ‘(“)CJ(‘MC/’SZS)‘F
i=1,7=0 k=1 o2

2k+2>k+i—j>0; k+i—j even

~ 4
i1) #(32) +(i3)
+ i—ljgok—i Nzng 1,k— 1%1 1Cz C Ck +
%i>kti—j>2; k4i—j — even

+ . 1%.5 . ;Zl Niijk_u—l,%_lCi(mC](m(/gzs): (5.17)
i=1,j= —
2k2k+i—j2]2; k+i—j even
where
Ny — 1
RN (2K + 1)(2 + 1) (2 + 1)
_ g2 2 4 1 2k — 1!
Kmnk:amkakank n+ 2m — 4k + k_(k );mgn.
o Amsn—k 2n + 2m — 2k + 1 k!
Let’s analyze approximation Io(g““ of multiple stochastic integral
Ioé;lzz , obtained from (5.6) replacing oc on q.
It is easy to prove, that
(7172) o (7172)11 2 — (T_t)z lf ! 1
M{(Ioo Toop, ) }— 55 242,2_ o) (318)

Then, using lemma 10 we get:
* (1112 *(i1ia)q) 2 * (1112 1in)q 2
M {(zug;; D ng) } —M {(Im(;j V- i) } -

(T—t)* (5 ¢ 1 a 1
R Tl ) Ve B WY oy
16 9 i=2 4Z 1 i=1 (2Z 1) (27/ + 3)




5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

_zq: .(i+2)2.+(i+'1)2 ) (5.19)

=0 (20+1)(2 +5)(2i + 3)?

We proposed i1 # i3 in formulas (5.18), (5.19). Let’s examine (5.7),
(5.8) for i3 =iy :

T—27/ 602 1 ).
101@1“):_( : ) [(Cé“)) +%Cém<1(m+

! (i2) ¢ (ir) 1 (i) 2}1
+ { i Sit2 T o v ior oy \Gi ,
Z (20 +1 )(2i+5)(2i+3)< G2 (26 —1)(2i + 3) (C ) ]
(5.20)
(1) _ _(T - t)2 (i) 2 i (i1) (1)
Lo, = 4 (Co ) + \/§C0 G+
- ! (i) (1) 1 (ir) 2”
+ {_ i Gir2t oo oy \Gi ;
ZZ::O (20 +1)(20 + 5)(2i + 3)C' G2 (26 — 1)(2i + 3) (C
(5.21)
from which, considering (5.3) and (5.4); we get
G101 161 T—t ’ iy 2 1 i1
1 = <O (G0 1 L) - 8w
(5.22)

Obtaining (5.22) we supposed, that equations (5.7), (5.8) are executed
with probability 1. Complete proof of this fact will be given in this
chapter.

Note, that it is easy to get equality (5.22) using Ito formula and
formulas of connection between multiple Ito and Stratonovich stochastic
integrals.

Direct calculation using (5.20), (5.21) gives:

(0 - )= - ')
2

(T = 1 e
16 ZEH (264 1)(2i + 5)(2i + 3)2 + izal (26 — 1)2(2i + 3)2+

+<1§+1 m>2 , (5.23)

where 1'01““) Im““ ? detected from (5.20), (5.21) replacing oo by q.
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Chapter 5. Approximation of specific multiple stochastic integrals

Let’s consider the variant of (5.23):

(
i1%1) (i141)q (i1i1) 141 2
M{(h(g —110 } M{ 101 —101( i ) }:

(Tt (4 g 1
16 (%_;(2z’+1)(2z’+5)(2i+3)2_

i 1 N 1 ?
(20— 1)2(20+3)2 3 S(2-1)(2+3)) )
On the other side, formula (4.18) provides a possibility to get more

comfortable expressions from the practical point of view, but for multiple
Ito stochastic integrals:

.. . 2 - 2
m{ (1 — )} = { (1 - 1)) =

_ (Tl—Gt)“ (1 d 1

9 & (2+1)(20+5)(2i+3)2

« 1
22 (2i — 1)2(2¢+3)2>' (5:24)

In tables 5.1 — 5.3 we have calculations according to formulas (5.18),

(5.19), (5.24) for various values of ¢. In the given tables ¢ means right
parts of these formulas. It follows from (8.13), that

(1)
L = % w. p. 1. (5.25)
In addition, using the Ito formula we have:
. . . . T —¢)3
!

from which, considering formula (5.14) we get:

L + It = I 1Y w. p. 1. (5.26)

T,t

Let’s check whether formulas (5.25), (5.26) follow from (5.11) — (5.13),
if we suppose i; = i in the last ones.
From (5.11) — (5.13) when 4; = iy we get:
11 i141 T i161 141 i141
1232)4‘[02( )2*7( 9 )Ioé )*(T )(Iug )+Iof ))
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

(T _ t)3 1 (i) (i1) +(i1
T ((6Y) + gaa). (5.27)
191 (T - t)z * (4191 T - i1 i1d1
111( )= T Ioém ) 9 (Ilé o+ Iof )>
(T =) [ qin)\2
g (@) (5.25)

It is easy to see, that from (5.27) and (5.28), considering (5.22) and
(5.3) — (5.6), we actually obtain equalities (5.25) and (5.26), and it
indirectly confirm rightness of formulas (5.11) - (5.13).

On the basis of presented expansions of multiple stochastic integrals
we can see, that increasing of multiplicities of these integrals or degree
indexes of their weight functions leads to noticeable complication of
formulas intended for mentioned expansions.

However, increasing of mentioned parameters lead to increasing of
orders of smallness according to T'—t in the mean-square sense for mul-
tiple stochastic integrals, that lead to sharp decrease of member quanti-
ties in the expansions of multiple stochasticiintegrals, which are required
for achieving acceptable accuracies of approximation. In the context of
it let’s examine the approach to approximation of multiple stochastic
integrals, which provides a possibility to obtain mean-square approxi-
mations of the required accuracy without using common expansions of
type (5.10).

Let’s analyze the following approximation:

irisia)qr d (i1) (i) (i)
IoooTt = Y CuilG GG =
i,5,k=0
L N PoRe O N P e ORI R PR 5.99
(=i} L(i=7}C {ia=is} L{j=k}Ci (=i} L=y | (5:29)
where i1,149,93 = 1,...,m and

z

Chji = / ¢k(2)/¢j(y) / ¢i(z)dzdydz =

t

_ @i 1)(2j8+ 1)k +1) (T — t)*2Cyi;

Chji = /Pk(z)/Pj(y)/yR;(x)da:dydz;

-1 -1
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Chapter 5. Approximation of specific multiple stochastic integrals

P(z); i=0, 1, 2,... are Legendre polynomials.
In particular, from (5.29) when 4y # 49, iy # 13, 11 7 i3 We get:

[((]6101;13 q1 %OC]‘?‘NCZ“ (12 C %). (530)
1.7,

Note, that due to the results obtained in chapter 2, the right part
of the formula (5.30) determines apprommaﬂon Ioé““”)ql of multiple

211223

or, » but for any possible 4y, iy, 13 =

stochastic Stratonovich integral Ioo
1,....,m:

1'00(61;;13)‘11 = Z Ck]lCzll C » C,Z3) (Zla 12,13 = 17 s ’m)‘
i,j,k=0

From chapter 4 we obtained the following relations for the mean-
square errors of approximations:

114213 i14283)q1 2 T —t)°
M{([(gOOT,t)_ éOOTr) ) }: ( ) -

6
qQ
> Cryi (iy # iy # i3, 10 # 1), (5.31)
i1, k=0
1991 149 2 T —1¢ 3 q
w (st — aggn ) = T2 S g
i,j,k=0
ql . . .
> CikiCji (11 # 1a = i3),
i, k=0
L 9 T_ ¢ 3 @
M { (1) - 1)’} = e =
i, k=0
q1
> CyiCijk (11 = i3 # 12),
i,j. k=0
172 112 2 (T — t)3 q
M {(I(()E]OZTZ3 IOE]CIZTZt3 ) } = T — Z CI?JZ_
i,j,k=0
q1
— > CijChji (i1 = 12 # 13),
42, k=0

1498 1608 2 (T B t)3 C
M {([(goon) I(goon) ) } <6 (76 - Ekj Oclgji) ; (5.32)
1,],k=
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

il,iQ,ig = 1,...,m.
For the case i; = i9 = i3 = ¢ it is comfortable to use the following
formulas:

Bisoe, = s =08 () 150, = g =01 ((6)" - 367) wep
(5.33)

In more general case, when v1(s),¥a(s), ¥3(s) = (t — s)l; 1 — is a
fixed natural number or zero, with probability 1 we may write down

i1 i 3 i
]mT, =% <<11(T,)t) - 311(TlAlT,t> )
(iii) _ 1 3 ( () r
iy, = PGk (Iz;) Iy, = Z Ci¢)", Ay, = /(t — 5)"ds.
t

T

where Cj = [(t—s)'¢;(s)ds; {¢;(s)}32y — is a full orthonormal system
t

of Legendre polynomials in the space Lqo([t,T).

Now, it is clear, that for approximation of stochastic integral I(gf]‘oiff)

we may use formulas (5.29) - (5.33) instead of complex expansion (5.10).

We may act similarly with more complicated multiple stochastic inte-
grals. For example, for the approximation of stochastic integral Iég‘éé;f:“)

according to theorem 1, we may write down:

q2 . . . .
I(goloéff) =3 Cuji (Ci( Dl
0,5,k 1=0

1{“—12}1{1—]}@ C = g =igp Lji= k}CJ C
1= 1= l}C] C = Lip=igy 1qj= k}Cz Cl24
—1g—ig 1= l}<1 C — Lig=ig L= I}Q CJZ2
1 =iy L=y Lia=i) L=ty + Lgin=ia} Li=ty Li=ia) L=+
+1{i1=i4}1{i=l}1{j2=]'3}1{j=’9}> )

where

T
Cixji = / di(u) / /qﬁ] / z)dzdydzdu =
t
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.1: Check of formula (5.18)
2¢/(T —t)?2  0.1667 0.0238 0.0025 2.4988-107* 2.4999-1075
q 1 10 100 1000 10000

_ V(2i+1)(25 + 1)6(% +1@+1) (T — t)*Cirji;

Cirji = /Pl(u)/qu(z) /Z Pj(y)/yPi(x)da:dydzdu.

On the other side, according to the theorem 8, for the approximation
of multiple Stratonovich stochastic integral Ig(gf]lgff“) we may write down:

w(iriniia)go & (i1) plin) -(ia) ~(ia) (; -
IOOOOTt = Z Clk:jiCi C] Ck Cl (7’13"'7744 = Oa 13"'am)'
05,k =0

In chapter 4 we obtained for example the following formulas for the
mean-square error of approximation:

M { (nfassr? <o)’} =

4
i,5,k,1=0
where i1,...,14 = 1,...,m and pairwise different;

i1i9igi 112030 2 (Tit)‘l &
M {(1’001067?14 - 1(501067;4)(12> } < 24 ( 24 - Z Cl2kji> ;
WGk =0

il;i27 Z‘3 - 1 , .
In the case i1 =

zéa’aallzé(T; (6~ 6 ()" +5).

1111 (T - t)Q i 4
IoéooT)t = o4 (C(g )>

. = i4 = 1 there are the following representations:

w.p.l.
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.2: Check of formula (5.19)
16e/(T —t)* 0.3797 0.0581 0.0062 6.2450 - 107 6.2495-1075

q 1 10 100 1000 10000

Table 5.3: Check of formula (5.24)
16e/(T—t)* 0.0070 4.3551-10 6.0076-10° 6.2251-10~1% 6.3178-10

q 1 10 100 1000 10000
In more general case, when t;(7),...,94(7) = (t — 7)1 1 — is a
fixed natural number or zero, with probability 1 we may right down the
following;:
)\ 2 9
Il(lzlllz"rz,)i = 24 ((Il(’r)t) —6 (Il(’f‘,)t) AlT,t +3 (AlT,t) ) )
w(iiii) _ L (10) /
11911
Imzﬂ = 24 (IZTt) Ith Z Cj CJ ) Ath = /(t - S)QZdS’
i

where in the next-to-last formula we, propose, that the expansion of
stochastic integral is performed using Legendre polynomials.

Assume, that ¢; = 6. In tables 5.4-5.10 are given the exact values of
coefficients ij,- when 4,7,k =0,1,...,6.

Calculating the value of ‘expression (5.31) when ¢; = 6, iy # 1o,
11 # 13, 13 7 12 we get the following approximate equality:

L 2
M{(Ié%;?f) Iige®) }m0.01956(T—t)3.

Let’s choose, for example, ga = 2. In tables 5.11-5.19 we have the
exact values of coefficients Cyji; ¢,7,k,1 = 0,1,2. In case of pairwise
different 1, 19, i3, 74 we have the following equality:

i irisini 9 (T—t)4 2
M{(Hasse? - Hasse™) = S0 = S Gl (6:39)
i,5,k,1=0

Note, that it is easy to check correctness of the following equalities
(see (5.7), (5.8), (5.11) (5.13)):

S a0 & (Tt

j=0 j
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.4: Coefficients Cojk

k=0 k=1 k=2 k=3 k=4 k=5 k=6
ji=0 1 2 2 0 0 0 0
j=1 0 2 2 = 0 0 0
i=2 3 % 1% * 1% 0 0
j=3 0 % S 75 @ 593 0
j=4 0 0 75 & w3 % o7
j=3 0 0 0 ggls? % 12287 %
j=6 0 0 0 0 - o S
Table 5.5: Coefficients Cljk

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 2 3 0 Z 0 0 0
i=1 £ 0 = 0 = 0 0
i=2 % 10 0 i 0 s 0
j=3 ;_52 0 % 0 % 0 9389
j=4 0 s 0 aes O oo 0
j=5 0 0 = 0 o 0 =2
i=6 0 0 0 - 0 = 0

Table 5.6: Coefficients Cajx

k=0 k=1 k=2 k=3 k=4 k=5 k=6
ji=0 Z 0 = 0 = 0 0
i=1 & o 0 5 0 5 0
j= = 0 0 0 = 0 T
j=3 ;712 % 0 31625 0 ﬁ 0
i=4 5 0 255 0 s 0 509
j=5 0 @ 0 sos O w0
j=6 0 0 = 0 e 0 i
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.7: Coefficients ngk
k=0 k=1 k=2 k=3 k=4 k=5 k=6
0 0

j=0 0 = = 0 =

i=1 0 s 0 s 0 5005
i=2 % % 0 e w5 0
i=3 5 0 sis 0 w5 0 500
i=4 g 55 0 w5 0 om0
i=5 ggls? 0 % 0 ﬁ 0 761527265
j=6 0 ﬁ 0 % 0 725272(?5 0

Table 5.8: Coefficients C’4jk
k=0 k=1 k=2 k=3 k=4 k=5 k=6

ji=0 0 0 Z 0 - 0 2
j=1 0 = 0 v 0 s 0
i=2 5 0 5 0 gm0 5045
i=3 % A o5 0 om0
i=4 & 0 = 0 0 0 T
i=5 & wos P w0 e O

Table 5.9: Coefficients Cs;x

k=0 k=1 k=2 k=3 k=4 k=5 k=6
ji=0 0 0 0 = 0 T 0
j= 0 0 = 0 = 0 T
j= 0 = 0 P 0 - 0
J=4 929 % 0 902@ 0 ﬁ 0
i=5 mg 0 w0 w0 o
i=6 715 0 was65 0 im0
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.10: Coefficients Ce;y,

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 0 0 0 0 = 0 T
j=1 0 0 0 o0 0 o r 0
j= 0 0 o= 0 s 0 T
ji=3 0 2 0 i 0 e 0
i=4 & 0 ws 0 s 0 THH955
j=5 % (;325 0 761527265 0 zn:W
i=6 i 0 e 0 s 0 0

Table 5.11: Coefficients Coo
=0 I=1 =

N
N

0 3 = i

_ “2 2 -2
k 1 15 15 21
2 2 2

k - 2 15 35 105

Table 5.12: Coefficients Cjox
=0 1=1 =2

_ 2 =2 2
k=0 5 9 35
— =2 2 =2
k=1 45 35 45
— =2 2 2
k=2 21 45 315

Table 5.13: Coefficients Cyox
=0 I=1 =2

— =2 2 —4
k=0 15 21 105
k= 2 —4 2

35 105 105
= 4 =2
k=2 105 105 0

Table 5.14: Coefficients Cyix
1=0 I=1 1=2

2 —2 —2

k=0 g ¥ 105
_ 2 ) 2

k - 1 45 105 315
_ =2 2 =2
k - 2 35 63 315
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.15: Coefficients C11y

(=0 l= =2
k i % 0
— 2 —2
k= Wi 0 I
— 2

Table 5.16: Coefficients Coop
1=0 =1 =2

_ 2 -2

_ 2 -2
k=1 o5 0 315
_ —4 2

Table 5.17: Coefficients Coy
1=0 =1 =2

< 2 =2 2
k=0 21 45 315
— 2 2 _2
k=1 315 315 225
k= —2 2 2
— 105 225 1155

Table 5.18: Coefficients Ciop
=0 =1 =2

— =2 2 =2
k=0 35 45 105
- 2 -2 2
k=1 63 105 225
— 2 —2 =2
k=2 105 225 3465
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Chapter 5. Approximation of specific multiple stochastic integrals

Son_Sonoson T (5.36)
= JJ_]_:O ]J__O]J_ 6 ’ :
where
Cji = / iz / — y)dydz,

oY = /¢, )(t - x) /¢4(y)dydx,
Cli = /qﬁy (t—= /¢~(y)(t—y)dydrv,
C = / ¢;(z) / 6i(y) (t — y)*dyds,

O = [ ¢3()(t - z)° / 6;(y)dyd,

{#i(z)}52o — is a full orthonormal system of Legendre polynomials in
the space Lo([t, T7).
Note, that equalities (5.35) and (5.36) together with the theorem 1

when k = 2 and formulas (5.9), (5.14), (5.15) confirm formula (2.3) for
x(i1ip) [5(1'11'2) [;(1'11'2) Iik(zlzg)

multiple Stratonovich stochastic integrals Iyg, >, Io1,,”s ooy, D11y, s
(iria) .
IOQTt si,te=1,...,m.

Let’s analyze approximations for the following four multiple Ito
stochastic integrals:

(i1i2i3)q3 & oo (ir) p(i2) +(i5)
Ingin ™ = Y Ol ¢ C C

§,j. k=0
PN Ty CUNEE DR PRe CUNEE PRSR PRI C)
{in=i2} H{i=j}5k {ia=ia} +{j=k}5i {in=is}H{i=k}5;  )>

I(lllzls) _ & 010 (i1) 3)
0107 - Z kji Cz C C

i, k=0
1y —:1ys C(’S) 1y alys C(il)_
{ir=i2}H{i=j}5k {ia=i3} L{j=k}Ci

(i2)
=1y =iy Li=iy G >,
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

(i14213)q5 & 100 i1) ~(i2) ~(i3)
IIOOTt = Z kji C1 C C

i,5,k=0

(i3) (i1) (i2)
“Limiy L=y G — Y=y 1=0G " — Ya=in) Li=n G )

..... qe A i 5 iy i
Hassois™™ = 30 G (GGG
4.4k lr=0

L= L= GGG = Lo Loy G ¢ -
_1{11—14}1{1—1}C§i2) (ia) ¢lis) TTRS T}C] Cz )¢lia) _

— =i} 1j= k}Cz C C( — 1giyming1ym z}CZ C7(' 0
~Liami L= G VGG = Lz L G -
~Lpiamin L6 GG = Ly L GG G+

15 i L) Ligmin L G+ L mig L imiy Lsgmioy L G+
1= L =) Liamin) L=t e + LgaiZioy Limiy Lsomiay L= G700+
1 iymia Li=o L i L=nt 6 Lo e Lot Lp=n G+
L giia e L L6+ Lo Loy i L-n G+
14520y ety Lismiot Lpmr} &2 + Lgin—in) Limry Liminy Ljmiy G0+
1 =i} L= Liiomin L= 68 + Lanmio} L= L= L= G+
1=} Lg=m) Liiamin Lu=n &™) + Lipmia L= Lismio L=ny G+
F 14, =i} L=y Lis=is) 1{k:l}<i(il)> ,
where

e = [t - 0u(2) [ 6,) | 6u(a)dodyaz =
t t t

_ @i+ 1)(2]1; 1)(2k + 1)( Hicm,

Y

O = [ 64() [ (¢~ 1)65(0) [ du(w)dodydz =
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.19: Coefficients Coop
=0 =1 =2

_ —2 —2
k=0 5 s 0
— 2 —2
k=1 315 02 1155
k=2 0 . 0

V(20 +1)(25 + 1)(2k + e

2 Y
Ciff = / e / 6i(y) [(t — o) di(e)dzdydz =
t
2i+1)(2 + 12k +1

T
Criji = /¢r( / /(bk /(15] / z)dzdydzdudv =
§

V(26 +1)(25 + 1) (2k + 1) (20 +1)(2r + 1)

(T - t)gérlkjia

32
where ) . ,
Ol == [ Pu2) [ P;(v) [ P)(w + 1)dadydz;
S, T,
O = — [ Pu(2) [ Bi(w)(y+1) [ Pi(z)dzdydz;
AT
Cot = - /1 Pi(2)(2+1) /1 Py(y) /1 Py(x)dadyds;

z Y

Crigji = /Pr(v) /U Pl(u)/upk(z)/Pj(y)/Pi(:c)d:vdydzdudv.

2
Assume, that g3 = ¢4 = g5 = 2, g = 1. In tables 5.20-5.36 we have
the exact valueq of coefficients C,?;’Z], C,?]]-?, C’,l;’lo, i,5,k = 0,1,2; Crrji;

i, 7,k 1,mr=0,1.
In case of pairwise different 41, ..., 45 from tables 5.20 5.36 we have
ER2Y) 11498 2 (T 7 t)5 I
M { (oo - Tz} = - (O~
60 .4, k=0
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.20: Coefficients C2%

05k
k=0 k=1 k=2

. 14 -2

j=0 -2 5 i

1 =2 -2 ©

15 15 35

. 2 —22 —2

i=2 3 05 705

Table 5.21: Coefficients C%!

Ljk
k=0 k=1 k=2

— =6 ) )

0 5 IE; 105

1 2 2 26
= 9 105 315

P = 22 —38 =2
J= 105 315 315

Table 5.22: Coefficients (7;)]0,%
k=0 k=1 k=2

i — =2 2 4
7=0 5 21 105
_ “22 2 2
J= 105 105 105
| = =2

j=2 0 Tos 0

Table 5.23: Coefficients C}%

“0jk
k=0 k=1 k=
; — =2 2 2
=0 3 15 15
_ 2 =2 2
J= 15 e 35
2 ) 4

o
w
<
&l
3

Table 5.24: Coefficients C’ll]O,?
k=0 k=1 k=2

; — =2 2 2
j=0 5 e 21
=2 =2 4
= 15 105 105
i — 2 =2 =2
j =2 35 63 105
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.25: Coefficients C'zlj(-]}c)
k=0 k=1 k=2

= =2 =2 4
15 105 105
= =2 =2 2
- 21 315 105
2 -2
=2 105 315 0

Table 5.26: Coefficients C‘S}B
k=0 k=1 k=2

ji=0 3 = 0
_ —4 8
=1 3 0 105

4 ~16
=2 5 05
Table 5.27: Coefficients C‘?}B
k=0 k=1 k=2

T ) 1 1

j=0 5 i 105
_ —4 4 4
- 15 105 105
_ 4 -8

j=2 35 05 0

Table 5.28: Coefficients C3;}
k=0 k=1 k=2

— —4 4 4
15 105 105

_ -4 4 4

- 21 105 315
—4

- 105 0

Table 5.29: Coefficients Cogoir

r=20 r=1
— 4 -8
1=0 & 2
_ —4 8
=1 F 708

Table 5.30: Coefficients Coyozr

r=20 r=1
_ 4 —16
I=0 15 315
= —4 4
l=1 315 315
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5.1 Approximation of integrals of multiplicities 1-5 using Legendre polynomials

Table 5.31: Coefficients Cyiy

r=20 r=1
— 8 -2
I=0 55 r
_ —4 4
=1 5 315

Table 5.32: Coefficients Coy 1

Table 5.33: Coefficients Coouir

r=20 r=1
4
=0 0 315
8 -2
=1 ETE %=

Table 5.34: Coefficients Cigoir

r=0 r=1

8 —4
- —16 2
=1 33 i

Table 5.35: Coefficients Cigyy

r=20 r=1
_ 4
=0 ? 0
-8
=1 35 i

Table 5.36: Coefficients Ciyyr

r=20 r=1
=0 135 %
2
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Chapter 5. Approximation of specific multiple stochastic integrals

~ 0.00815429(T — t)°,

i1i2i3 inizis)an 2 T —t)° a
M {(I(glOT,Q) - O(IOT,;)q ) } = % - Z:_O (02;3)2 ~

~ 0.0173903(T — t)°,

i i 2 T — ¢)° s 9
w{ (i) — 1oy = T 85 (o
10 0.4, k=0

~ 0.0252801(T — t)°,

.......... _4)8 s
(i1429304%5) (i1i29304%5) 2 _ (T t) 2 ~
M {(IOOOOOBT,;1 R IOOOOOET; ? qﬁ) } - 120 - y k;r:(] O’rlkji ~

~ 0.00759105(T — t)°.

Note, that from (4.9) we can write down

ivinigigi ininisiiis)ge) 2 (T —t)° &
M {(1—6000;!4 ) I(goooTi S)qﬁ) } <120 (120 - Cflka) ,
i,5,k,0,r=0

i],...,i5=1,...,m.

5.2 About Fourier-Legendre coefficients

As we can see from the results of this chapter, the most labor-intensive
work while building approximations of multiple stochastic integrals is
connected with calculation of coefficients

k
Cioi= [ K(tl,...,tk)l]:llqﬁj,(tl)dtl...dtk; (5.37)

[t.T]¢

k k=1
t) 111 if & > 2
K(ty,... tg) = 151 () 151 (i<t} k>

di(th) ith=1
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5.2 About Fourier-Legendre coefficients

Here (t1,...,t) € [t,T]%; {¢;(x)}2; — is full orthonormal system
of functions in the space Lo([t,T1).

The aim of this section is to identify some features of calculation
of Fourier coefficients Cj,_; (k — is fixed) for expansions of mul-
tiple stochastic integrals from the stochastic Taylor-Ito and Taylor-
Stratonovich expansions (see sect. 9.8) when using the system of Legen-
dre polynomials.

For classical Taylor-Ito and Taylor-Stratonovich expansions [22], [24]
(see sect. 9.8) in (5.37) it is necessary to assume, that 11(s), ..., ¥r(s)
= 1, and for unified Taylor-Ito and Taylor Stratonovich expansions [43],
[46] (see sect. 9.9) — t,(s) = (t—s)l;q=1,...,k; 1, =0, 1, 2,....

So, we will calculate the integrals

G = / 65 (t) / B (tr1) / G, (t1)dty . .. dty_ydlty;

T ty
Chte = [t =" 5 (te) . [(t —10) gy (t1)dts - dts,
t t

where {¢;(z)}52, is a full orthonormal system of Legendre polyno-
mials in the space Lo([t, T7).
We have \
- T— t 7k -
Cjk-.-jl = ( ) H 25+1- AJk Jio
=1
where

1
Aj g = /P]k (tr) /Pyk (k1) /Pal (t1)dty ... dty1dty;  (5.38)
-1

{P.(z)}52, is a full orthonormal system of Legendre polynomials in
the space Lo([—1,1]) :

Fu(z) =

Gl (=120 —29)!
Ez: I(n q).(n—Zq).x ' (5.39)

Substituting (5.39) into (5.38) we get

1
2n

3 ok
A]k]l = 2]1+ +]k Z 1;[

1: =0

( 1)q’(2jl — 2ql)!
1 — a)' (G — 2q1)!
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Chapter 5. Approximation of specific multiple stochastic integrals

to
(b 2 [ () 2dty . dty.
1

X

L—

So, calculation of Cj, . ; reduces to calculation of integral
1 ta

Lyop = [ (t) / (t1)P'dty .. dtg: py, ..., pr=0,1,2,.... (5.40)
1 —

Now, examine C]l;l]"l We have

k
sty (T —=1)2 ko (=1)(T —t)\httbe )
Ciildh = Tlﬂl Vit 17
where
1 to
Lt = [Q+t) Pt . [Q+6) Py (t)dh .. dt =
-1 -1
e I 1 to
=Y X CE O [t P ) - [ (t)M P (t)dy i,
Sk=0 S1=0 -1 -1

where Cﬁ is a binomial coefficient.

Further
1 t
[ @)™ Pit) - [ (1) Py, (t1)dt . dty =
-1 —
(4] [%] ﬁ (—1)%(2j; — 2¢;)!
2"+ Fe o= a0 @l — @) — 2a)!
1 t
x [ ()2 [ ()RR iy
1 1

Consequently, calculation C]l‘ le again reduces to calculation of inte-
gral (5.40). Calculation of integral (5.40) is not a problem:
1

— _ (1t .
IPI p1+1(1 ( 1) )1

P21
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5.2 About Fourier-Legendre coefficients

1 1 ] (71)171-1-] ‘
= (1 _ (_1)P1+Pz+2) _ (1 _ (_1)Pz+1) :
p1+1\p1+p2+2 p2+1

I

DP3papr

_ (_1)P1+P2+P3+3) _

1 ( 1 ( 1 (1
p+1\pi+p+2\pr+p+p3+3
(_1)P1+P2+2

- i1 (1- (—1)Ps+1)> _

(71)]71-‘-1 1 Pp3+pa+2
_p2+1 (p3+p2+2(1_(_1) )_
S )

Actually, the integral of type I, may be calculated for various val-
ues k using computer packs of symbol transformations of type DERIVE
or MAPLE.

It will not be easy if we use trigonometric functions instead of Legen-
dre polynomials. It is connected with the fact, that integrals

T t
Ciyin / (tr) /¢]k (te21) /¢]1 t)dty . .. dtg_1dty;

t

T to
Cirtt = [t =t 85(te) .. [(t = 01)" @y, (1) dtr ... dta,
t t

where {#;(z)}72,  is a full orthonormal system of trigonometric func-
tions in the space Lo([t, T)) :

) 1 for j =0
bi(s) = \[sm%r 50 when j=2r—1,
VT =t \[cos%” ) when j = 2r
r = 1, 2,... "ramify intensively" for various combinations of indexes
15 -+, Jk 1. in cases of various combinations of indexes 71, ..., ji the

mentioned integrals are calculated using significantly different formulas,
moreover the number of these formulas grows abruptly with the growth
of multiplicity of stochastic integral. It is obvious, that even when k = 4,
calculations become very complicated.

Let’s explain the mentioned idea using an example.
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Chapter 5. Approximation of specific multiple stochastic integrals

Using trigonometric functions, for example, there could be a necessity
to integrate the product of the following form:
2nr(s —t) . 2mwq(s —t)

: : S
sin— 5 ——sin—_— (r,qg >0),

which equals to

1 2r(r+¢q)(s—1t) 2r(r — q)q(s — t)
2(—(:05 T—1 -+ cos T—1 )

It is clear, that integrating the last expression the following cases may
occur:
l.r+qg#0and r —q #0;
2.r4+q#0and r — q¢=0;
3.r+qgq=0andr —q=0.

In each of three cases, the primitive function will be calculated using
"its own formula".

If we use in previous reasonings the system of Legendre polynomials,
then there are no different cases and integration will be more simple.

Since the product of two polynomialsis a polynomial and integrating
polynomials we actually use only the formula of primitive function from
the power function with non-negative degree index.

5.3 Approximation of specific multiple stochastic
integrals of multiplicities 1-3 using the trigono-
metric system of functions

Let’s examine approximations of some multiple stochastic integrals
of the following types

T ta . i
10— [ =) [ t)hag) . ag,
t t

T xt2
O = [ =t [ (= t)hdf) e,
t

Ly .
t

obtained using theorems 1 4 and using the trigonometric system of
functions:

1) = VT = 1¢", (5.41)
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5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

=5 - 2 k). o

ini 1 i 7 121 iy
Ioézl) :E(T_t)|:<-(l 2 +7-(-2:1'r{ o QT 1 C2r 121”

+v2 (Cw 1§ = e 1)}4—? ay (géil)go(iﬁ) - Céil)géiz))}’

(5.43)
Ifiaie — (7 — 43 <6Cézl)gézﬂ)céz3)+
4 VO (i) i) i) _ i) i) )
"2 <5 @ — 6P )
2\/5 2 ﬂq( z _ZMgiz)Céil)Céi.%)+M{(]1',3)Céi1)<éig))+

7;[ { ailte gl e e le R
{ i

GGG — 248D + P +
2 3 [

=1
T#l

{ (i) pfin) i) _ (i) i) i) |

+ Czr 1 21 1(013 - Co“ CQT 1 21 1} <2T 1 01 G —)1} +
+ Z [T{ C2r 1 0 CQT‘ 1 2:" C 9 CQ(:Z—)I élr3)C(gll)+
r=1 r
+ GG
T2 i3 (i) ~(i3) (ia)
{3C2712710 +C2 o Co 6C2r12r10 +

+3C2 C2r 1 0 2C2 2;' C“ +C2 217' C(SZI)H +

1
+4\/§7r {rm 1[ [ C2r12m12m +C2r12r C2:Z 1+

8

+C2r 1 21n 2(2731 1 CQr 1 2m 1] +
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Chapter 5. Approximation of specific multiple stochastic integrals

1 (i) Ali) (i)
+m(7,+m) [_C;(m-{—r) 2:" 2172 _C 1C2r 1 2m

—Cz (m+r) 1(2 CQ +Cz (m+r) CQT 1 2m 1H+

q q

+X X
m=11=m+1
_C2(Z(;)_m)_1<2 CQ 1+ CQ C2 2m 1] +
1

(i) olin) plia) | A6 )
Tli—m) [—%—m) o Cot” Gty 1 G Gar” =

m(l—m) [Cg(}),m) 5;2) e +C2( 142 C2
G G - i), G

iaiy 1 i1) ~(i2) i 12
Il(g i —(T_t)2<_64(g )C(g \[ \/_f D¢+
1 L L
-/ (i2) (i) (iy) ~(i2)
+2\/§ 2 ﬂq <2,uq CO :u‘q €0 ) +

1 q
+ﬁ§|:_7{c27 1 0 \/_CZT 1 27" \/—CQ 2r 1}
1 i1 i2 i1 i2 3 i1 io
+7T2’I‘2 <_C§:" )Cél ) + ZC(SZ ) él 2\/* (r )1 ér )1 2\/5 2(17) é:‘ )>}+
U S
+2 QMZI 2 _ kZ[ CQk 1 21 1D (5.45)
[

i9t 1 i1) #(i2 1 1 ia) ~(i1 i) ~(i2
= (=P (7 + v (G600 - 66 +
+ 1 /B <1M(i2)géil) _ M(il)céi2)> +
\/771_2 q 2 q q

47 [ 57 - g M{@TW )

1 .l ‘2 .l
Lo — g+

\/’C?r 1 2:2 1‘1‘4\[ Q(Zr) 2(7‘))}"’_
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5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

o 2k;1l2 k2|: GG+ G D, (5.46)

k#L

Iéiﬁfz(T—t)ché“H fl 2(27«%@(?% ﬁqué")>+
o (0 + v (5.47)

. 2 g 1 . 00
() 1 - I S P ) B
gq \/a—q - %1 r C?T 1 aq 6 Z 7'2’ :uq Z

T
-5 k= [
r= i

$;(s) has the form (4.35); (Y, &, &\, €0, ) r = 1,
i =1,...,m — are independent standard Gaussian random variables;
il, ’i2, ’i3 = 1,...,m.

Note, that from (5.45), (5.46) it follows:

T —t)?
,-Z C}) = chjlz—( i ), (5.48)

where

Cj = / 6i(=) / $;(y) (t — y)dyd,

cyf = /¢, (t - 2) [ ¢y(w)dyda.
t

Let’s analyze the mean-square errors of approximations (5.43) (5.46).
From relations (5.43)—(5.46) when i1 # 4s, io # i3, %1 # i3 we get

ioiq *(iaiq 2 T —t)? (n? 1
M {(Ioo - 10((JT¢ )q) } = ( 27T2) <€ - ﬁ)’ (5.49)

r=1

. 2
M { (s — )| =

1 /72 41 55 (wt 41
=(T—t - -y =
( ){47r2(6 Tzlr>+327r <90 Elr4>+
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Chapter 5. Approximation of specific multiple stochastic integrals

514 + 4r* — 31292
(2 ,21) S ep ) o0
Tr#l rr#
_ . 2 41
si) a2\ _ 4 Lm &1
M {(Imm i) }_ (T - ( r:zjlr >+
e %+ k2
T _y 1L 5.51
+327T4<90 rz—:l'fA) kz 1 Icl 1 k2 2 — ( )
k£l k£l

2
sligin) _ pr(iaing\2 _ g paf L (T &1
M{(]wm Loy, ) }— (T —1) {8%2(6 ETZ +
5 (mt 7.1
+32W4<%_£ﬁ>

q l2 + k2
— . 5.52
e

It is easy to demonstrate, that relations (5.50), (5.51) and (5.52) may
be represented using lemma 10 in the following form:

(i3izi1) (izinin)q\ 2|~ 5 4 1 41
m{ (852 - 18 = - 05— e e

% 1 lqw} (5.53)
327T4T:17’4 44 ri=1 7'2l2(7'2_12)2 ’ .
r#l
i) _ petisin)?) _ (T-tfy1 1 &1
w{(ne? - ne) = S s - e X
5 41 1 4 kK242
I L s 5.54
8t El rd w4 riz 12 (12 — k2)2}7 ( )
kAL
(i) _ prliaing\2) _ (T =841 1 &1
w{(a - i) =S - e S e
5 41 1 4 [24k?
T (5.55)
k#l



5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

Comparing (5.53) (5.55) and (5.50) (5.52), note, that

00 12 k2 oc 12 k2 4
% — % — ﬂ_’ (5.56)
v k2 (12 — k?) v 12 (12 — k?) 48
) [
o 54 4+ 4rf — 37212 97t
3 —1—7‘—7'2 — l (5.57)
ri r22 (r2 —12) 80

We will mention approximations of stochastic integrals IIOZT‘? , 101““
and the conditions of selecting the number ¢ using the trigonometric
system of functions:

L =
1/ 2 o 1 o
_ Y O\ (i1) ~(i1) (i) (i1)
= (=175 (67) = SVt + o B G+
LT (@) ei) 3 (i) )2 (1)) 2
+2 2r—§ WQTQ(,QT o _2\/5(%—1) 2\[( ))_
1 .
- *cgzlzlcszﬂ} :
wr
1 & 1 [
+27r2 Z = kg[ 2 21 - _CQk 1 21 1D

10(2111) _

1 =

:(T—t)2( 3 (@) = S VG B
73 5 e (g (62) g ()" = ) -

- g+

1 4
om2 2 12

k#l

+ { C2k 1 21 1+C2 D

Then we will get

(s -y - s - ) -
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Chapter 5. Approximation of specific multiple stochastic integrals

Table 5.37: Check of formula (5.53)
e/(T —t)*  0.0459 0.0072 7.5722-107% 75973 -107° 7.5990 - 10~°

q 1 10 100 1000 10000

Table 5.38: Check of formulas (5.54), (5.55)
4e/(T —t)*  0.0540 0.0082 8.4261-107% 8.4429-1075 8.4435-1076

q 1 10 100 1000 10000

TR £2)- 1(”2—1:2)3

r=1

rt
12 k2
( ) + (5.58)
k=1 k=1

k£ k£l

Considering (5.56) we will rewrite relation (5.58) in the following form

M{ (B - B} =My (nG - ng -

T—t*117 1 21 2 41
4 240 37'('2 r=1 7'2 T p=1T
1 /9. 1\?2 1 49 P2+k?
(%) T k?(l?—lﬂ)?} (5:59)
k#L

In tables 5.37 — 5.39 we check numerically formulas (5.53) — (5.55),
(5.59) for various values ¢. In tables 5.37 — 5.39, ¢ — means the right
parts of mentioned formulas.

Formulas (5.56), (5.57) appear to be very interesting. Let’s confirm
numerically their rightness (tables 5.40, 5.41; &,  is an absolute de-
viation of multiple partial sums with the upper limit of summation p
for series (5.56), (5.57) from the right parts of formulas (5.56), (5.57);
convergence of multiple series is regarded here when p; = py = p — oc,
which is acceptable according to theorem 1).

Using the trigonometric system of functions, let’s analyze approxi-
mations of multiple stochastic integrals of the following form:

*Ty

T / / dw'® ... dw(®)

TE !
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5.3 Approximation of integrals of multiplicities 1-3 using the trigonometric system

Table 5.39: Check of formula (5.59)
4e/(T —t)*  0.0268 0.0034 3.3955-107% 3.3804 -10~® 3.3778-107°

q 1 10 100 1000 10000

Table 5.40: Check of formula (5.56)

Ep 2.0294 0.3241 0.0330 0.0033 3.2902-107*
q 1 10 100 1000 10000
wherew f ) i=1,. mif/\l—landw =7if \;=0.

It is easy to see, that approximations J, ;2;11 Tt J(t\(;y;f\ll))%t of stochas-

tic integrals J/\“/\ll1 T4 J(fij\?\%ﬂ are detected by the right parts of for-

NT
mulas (5.43), (5.44), where it is necessary to take g‘]@ = [ ¢i(s)dwl?
t

il, iQ, 13:0, 1,...,m.

Since ’
: O _ VT -t itj=0
t/‘/’f(s)dws _{ 0 ifj#0’

then it is easy to get from (5.43) and (5.44), considering, that in these
equalities {1(7 = f¢ (8)dw®: 4y, iy, i3 = 0, 1,...,m, the following
family of formulas

V281 i
V(% 1+ v,

r=1

i20 1 3
J((IO)%?t = (T —1) {C( D4

0ir 1 3 V21 4, i
J((Ol)i)Tl‘I,t = (T—1t) [C( 7(2_:1 ;CQ(T—)I + \/aqfé )ﬂ;

00i s[1 ) .
J((OOS%?J/ = (T - t)z |:6<0 ! 2\/* P (Z <2 + ﬂqut(] 1)>+

Table 5.41: Check of formula (5.57)
€p 10.9585 1.8836 0.1968 0.0197 0.0020

q 1 10 100 1000 10000
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\/— (Z Cz 1+\/_§qll):|

050 s[1 (4 .
J((ow))zg,t: (T—t)2{6Cé = \ﬁr (Z G+ \Bau ))}

(i500)g _ s (1 (ig) 1 L1 iy (i)
J(lEO)T,t— (T_t)z[éé})s + o /an? (T:ZI ﬁ(af + 1/ Bag™ | —

e (2 v
2\/§7T r=1T g T>q ’

*(0igdq 11 72 1 i1 2
Tie = @ =P (GG + ST e
oo 2\/5:( D) — gl ))+

2\1[;:1[ Czr 1 012 +L{ 5:)412 _QCZQC " H—i—

1 4 1 (i1) A
+—27r2 > TS o Y+ CQT 1 21 1}4‘
=1
r#l

L g i) oo i) Ain
+ Z |:— {CQ(’I') 2(7‘7)1 - 2(r21C2(r )} +

+ {3C2r WG+ }D,

8y
#(igis0) 1 (i) o(i ;
Tl = =02 (e — STV G+
1 i3) i ip) (i)
+mﬁq(us;3><w -2 )+
1

+ﬁg[ NG s {2 + )+

2 5.9 Z lQ [ CQ +C2(;2) 2(;3):|+
T#l
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5.4 Convergence with probability 1 of expansions of stochastic integrals

+Té[ { Czrlzr +C2r12r2}+
o (A + dPY]),

*(13011 1 11 13 11 23 i3 i1
T = (T—t)2(éc( OGS+ e (6 - €06 +
Qﬁ 2\/@( CZS_HL( )C( ))+

2\/—2[ {rlO C2r10}+
b {6 + B ] - I Tel

Tl= l
r#l

—é:“m {3C2r 16 1+C2 2r })

5.4 Convergence with probability 1 of expansions of
some specific multiple stochastic integrals

Let’s address now to the‘convergence with probability 1. Let’s analyze
in detail the multiple stochastic Stratonovich integral of type:

I = T Z ﬂg— {cde™ — ¢ c-’f%}] (5.60)
When 4; = 4 from (5.60) we get the following equality:

11 1 .1 2
I = 5 =0 (@)

which is correct with probability 1 and may be obtained using the Tto

formula.
Let’s examine the case i1 # i5. In this case

RS = 15 wpa.

First, note the well-known fact.

291



Chapter 5. Approximation of specific multiple stochastic integrals

Lemma 11. If for the sequence of random wvalues &, and for some
a > 0 the number series

i M {[&[°}

converges, then the sequence &, converges to zero with probability 1.
In our specific case (i1 # i2):

(i) _ 1 =t (i (i2) (i1) plin) _ p(in) p(i2)
IOO,” = 72 |: +Z \/42—{( C Cz szl}} +£IJ7
(ip T —t[ {i2) (ir) #(i2)  4(ir) p(in)
[OOTf - 2 |: + Z /41 {C C Ci Ci—l }:| )
T*t s i1 zz (2 (72)
b=— _§+1¢4Z—{< 1 - ).

According to notations of the theorem 1 and section 1.8 we obtain:

Tt_// (t1, to)df " dftfz)+f7Rp (t1, to)df P df™)
t t

T to T t;

M{&I2} = [ [ (Ro(tr, 12)) diadts + [ [ (Ry(tr,12))? dbadty =

t t

~
~

= [ (Rylts, t2))* dtrdity, (5.61)
[t.T]?
T —t)? = 1

M{|&,?} = ( , , 5.62
{1617} 5 i:%;ﬂ 171 (5.62)

Ry(t,t2) = K(t1,12) — Z 1o @i (1) 055 (t2),

J1,J2=0
Ry = &f R4 Rpp,(t1,t2) © Ry(t1, 1), if p1=p2 = p,

* 1 2 C
/ —7ln‘1 - ‘ <=, (5.63)

_p+1 442 — » 4 2p+1 P
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5.4 Convergence with probability 1 of expansions of stochastic integrals

where constant C' doesn’t depend on p.
Therefore, taking a = 2 in lemma 11, we may not prove convergence
of &, to zero with probability 1, since the series

i M{&, 1%}

will be majorized by the divergent series of Dirichlet with index 1. Let’s
take o = 4 and estimate M{|£,|}.
According to (4.32) when k£ = 2, n = 2 and (5.61) — (5.63) we obtain:

2

K
/ R;(tl,tg)dtldtg) —
t.T]2 p

Mg, 1"} < Kg

and
Z M{|&|"} < K1 ;T < oo, (5.64)

where constants K, K1 doesn’t depend on p.
Since the series in (5.64) converges, then according to lemma 11 we

obtain, that & — 0 when p — oo with probability 1. Then IOBIT“t —
[é“ 2) hen p — oo with probability 1.

Let"s analyze stochastic integrals 181(22'2), ]lé“”) whose expansions
look as (5.7), (5.8).

Let’s examine the case'iy # i9. In this case

R = K, D~ 58, 5 1w
and 7 T 01
(iris) =1 (i1in) —1 i) A
Ioty, = — 9 Toor,” — 47[ECO G+
(U ¢ - i+ ey ¢ )]+
bt 2+ 1)2i+5)(20+3)  (2i-1)@2i+3))] " "
i T—t iy (T —1)° i2) (i
Ilol;zt I IOOIT,Qtp Ty [%Co UG+

(i + 1™ — @+ 2)¢ ¢y ¢t 10)
2( (264 1)(2i + 5)(2¢ + 3) JF(%—l)(Qz‘+i’>))]+5 ’

where
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T t2 zl 12 i1 12
= (S g e e

= 1+ 26" -+ nEnd”  dve®
+i=§+1 (204 1)(2i +5)(20 + 3) (20 —1)(2i + 3)D

5(10):_(Tt)2( & #{ (i

P 4 \Ghvar-1
L [ Deel - i+ 9ete® e D
i=pt1 (20 +1)(2i+ 5)(2i + 3) (2 —1)(2+ 3)
Then
2 T—t)4
M{EMP} = [ (BRI (11, 12))" dtrdty = ( : Vs
6
[t.T]
2 i +2)2 i +1)2 1
CE (gt
o1 I (20 +1)(26+5)(2043)% (20 —1)%(20 +3)
x 19K
<C Y 5<—, (5.65)
i=p+1 ? p
where C, K doesn’t depend on p.
Analogously we obtain:
2 K
MUY= [ (RO, 1)) dndts < (5.66)
[t.T]?

where K doesn’t depend on p.
According to (4.32) when k = 2, n = 2 and (5.65), (5.66) we obtain:
K

2
2
M{[EOV} < K g [ (B (1, 12)) dtldt2> a
tyT]z p
K

2
2
M{|E0 ) < K ( [ (RSO (t,2)) dt1dt2) =
+ T2

IN

(VAN

and

& 1 1
ZM{\€£°1)\4}SK121§<00 ZM{Ifml }<K12—2<00,
p=1 p=1 p=1

(5.67)
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5.4 Convergence with probability 1 of expansions of stochastic integrals

where constant K7 doesn’t depend on p.

According (5.67) and lemma 11 we obtain, that 5 (01) E 0 — 0 when
p — 0o with probability 1. Then I 2" 13’;;3), I{{;;j) — I3, when
p — oo with probability 1 (i1 # ia).

Let’s consider the case 7; = i9:

Q101 9101 T - t 2
s = o 4 L
(M=t (T=tT/anN2 1 )0
= 1 - 4 {(Co ) +%Co G+
L 1 (i1) ~(i1 1 (41) 2}
+ i Si+2 T 7o avior 1 oy (G +
E]{\/(2i+l)(2i+5)(2i+3)c G2 (20 — 1)(2i + 3) (C )
+u,
Q111 Q101 T -1 2
T = i 4 ( : )
T—t i -t 0 2 1 i1) (71
= T TP () s S
i 1 (i1) (i) 1 (1) QH
+ {— pa +
z’zz:o (2i+1)(2i+5)(2i—|—3)c Gt (20 — 1)(2i + 3) <C )
+uy?,
where (T )2
—t
01
plo) %
= 1 (i1) »~(i1) 1 (i1) 2)
X ) A - - \
izzp;1<\/(2i+1)(2z'+5)(2¢+3)<’ I TRV CTE) ("))
T —¢)?
WO _ b ) o

1 (i) (1) 1 i\ 2
Xi—%—l{_ (2i+1)(2i+5)(2i+3)< C’+2+(2 1)(2i + 3) (C( )) )

Then )
M {0} = M { (197} =
_ (-t 1 o0 9
T L@ D@ @+ @ i e
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o 1 % K
+Q§4@p4x%+®)}§ﬁ
and
ZM{IM |}<KZ—<OO ZM{IM1°|}<KZ—<OO

(5.68)
where constants K doesn’t depend on p.
According (5.68) and lemma 11 we obtain, that ,ugn), ,uélo) — 0 when
p — oo with probability 1. Then I§? — 1§ 7{lP — 1) when
p — oo with probability 1.

167 — 1) 1 — 1) 1) —

12(6‘;;), (1,42 = 1,...,m), when p — oo with probability 1. Here expan-

Analogously we obtain:

sions for the stochastic integrals I(gél;’i), 1 ﬁl;i), IQBIT“t

formulas (5.11)  (5.15) and

defined according to

142 1
I(gZQTZt) 761{i1=12}(T7 t)3,

U
8 3v/5
(i +2)(i +3)¢™ — i+ 1) +2)¢¢
(204 1)(20+ 7)(2i + 3)(2i + 5)
—|-( )Cz CZZI - (iz + 3i - l)Ci(iz)Ci(ill))
Wm+)@+$mfnm+m

T 2122 2172
ST iy

(i2) ~(i1)
1 G+

+Q]’2+Z( 24

)

i1i9)p 1 :
Iz(om) = _él{ilziz}(T —t)’—

_ )3 _
(T . t) [ﬁcob CQ(“ +
(i + 1)+ 2™ = (i +2)( +3)¢™ ¢

(20 +1)(2¢+ 7)(2i + 3)(2i + 5)
(2 4 3i = 1)¢fA™ — (2 i~ 3)45“)453:10
(20 + 1)(2i + 3)(2i — 1)(2i + 5)

(T —t)?

. L8P (T )L 4

1 )
+§C(2“)C((Jz2) + Z(
=0

)
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11%2)p 1
Iy = — 5 V=i (T = )=
(T
4
(T —t) FCGI)C(M L ((i+1)(i+3) (Cz e _Ci(IQ)Ci(:—]?z)_'_
g I3t ! (20 4 1)(2i + 7)(2i + 3)(2i + 5)

(i + )( e — ) |
(20 4+ 1)(20 +3)(2 — 1)(2i +5) /1

Expansions (5.3)—(5.5), (5.16) for integrals IOT” Ith, IQTt, I3
initially correct with probability 1 (they include 1, 2, 3 and 4 members
of sum, correspondently).

Apparently, using the proposed scheme we may prove convergence
with probability 1 of other multiple stochastic integrals.

Let’s consider some relations, describing the proposed method.

From (4.32) we obtain:

T —
1001122 _( . )(1—101112 +1011122 )+

+

M{(RR; )"} < Co

[ R (o t)dty .dtk] :

[&.T]*

or

M{CRE; )2} <

[ K2t te)dt -t — Z Sc 2 ]J,

[T =0 =0

S Cn,k

where constant Cj, ;, depend only on n and k.
For p1 = ... = p; = p we have:

> M{(RE; )™} < Gk X2
p=1 p=1

/ Rz___p(tl,...,tk)dtl...dtk} . (5.69)
77"

If for multiple stochastic Ito Integral

JpWg, = /¢k tr) - /¢1 t1)d -..dwﬁi“

and some n we have:

o]

Z / R;__p(tl, ey tk)dtl A dtk:| < o0,
=1
[t.T]*
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Chapter 5. Approximation of specific multiple stochastic integrals

then J[z/)(k)}’:’p,t — J[¢W]r, when p — oo with probability 1, where
J [w(k)}%t is approximation, based on theorem 1. For example

J[%Z’(Q)]g“,t: Z CJm( 11 J(z) 1{11 12760}1{1‘—32})’

J1,42=0

p . .
J[@[’(S)]If,t = Z stjz.h( ](1“) J(Z) ](3 = 1{11 72#0}1{]1 ]2}(]3
J1.J2,53=0

: (i2)
~Liymiaroy L o} = Liiiaroy L} o )

Jise

p 4 .
The= > Cu (-

> a1

(i)

—Li=ip20y 1 (5, Jz}CJe i~ L= 13#0}1{11—13}41 <J4
_1{i1=i4¢0}1{j1=14}cj2 st — 14, 13¢0}1{12—13}CJ ]4

(i) 4(i3)
_1{1'2:1'4750}1{]'2:]'4}@;1 CJ: 1{13 14#0}1{13 J4}CJ Jz +
F 140 =ia20} L =g} Lt =ia 20} L {js=ja}
F 10 =ia20} L=} Lia=ia 20} L{jo=ja}

140 =i 20y L=} Hio=is 0} 1{j2:j3}> :

5.5 About the structure of functions K(ty,...,t),
used in applications

The systems of multiple stochastic integrals (9.27) — (9.30), (9.17),
(9.21), are included in the stochastic Taylor expansions (unified and
classical), described in chapter 9.

In the context of theorems 1 8, the systems (9.27), (9.28), (9.17)
when k£ = 1, 2, 3,..., the systems (9.29), (9.30) when k = 1, 2, as
well as stochastic integrals of type (9.29) and (9.30) (L =...=1; =0)
when k = 3, 4 are to be of some interest.

The functions K (t1,. .., ), included in the formulation of theorem
1, for the family (5.1) look as follows:

=ttt < <ty
Kt = { 0, otherwise ’ (5.70)
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5.5 About the structure of functions K (¢, ..., t)

where 1, ...t € [¢,T).
(i1)

In particular, for stochastic integrals I, IQTf,

(i1) [(iliz) (iyigis) 1—02112

007, » OOTt ’ 17y
(ivis)  plinia) plinia) linee) p(inia), - .
oy Toooors s Ta0rs s ity s Tozey; 115,80 = 1,...,m the functions

K(t1,...,t) of type (5.70) correspondently look as follows:

Ki(t) =t —t1, Ko(t)) = (t—t1)%, (5.71)
o l,t1<t2 - 1,t1<t2<t3
Koo(ts, t2) = {0, otherwise’ Kooo(t1; b2, t3) = {O, otherwise ’
(5.72)
o t—1g, 11 <o o t—11, 11 <t
Koi(ti,12) = {0, otherwise °’ Kuo(t, t2) = {0, otherwise °’ (5.73)
Lt <ty<ty<t
Kooo(tr, 12) = {0, oltherv?/ise ’ ! ) (5.74)
_ [ (t—t)? i<ty
Kalti 1) = {0, otherwise ’ (5.75)
t—1)(t—ty), t1 <t
Kty t2) = {(() ot}i()ar(wise & g (5.76)
_ [t =t)% i<t
Koa(t1,12) = {O, otherwise ’ (5.77)

where t1,...,t4 € [t,T].

It is obvious, that the most simple (with a finite number of mem-
bers of sum) expansion into the Fourier series using the full orthonor-
mal system of functions in the space Ly([t,T]) for the polynomial of
finite degree will be its expansion according to the system of Legen-
dre polynomials. The polynomial functions are included in functions
(5.71) — (5.77) as their components, so, it is logical to expect, that the
most simple expansions into multiple Fourier series for functions (5.71)
— (5.77) will be their expansions into multiple Fourier-Legendre series
when I + ...+ 12 > 0. If [y = ... = l;, = 0 (see functions Kqo(t1,%2),
KOOO(tI; tQ, tg), Kgggg(tl, .. .,t4)), then we can expect, that in this case
expansions of the mentioned functions into multiple Fourier series using
trigonometric functions and Legendre polynomials will be of the same
complexity.

Note, that the given assumptions are confirmed completely (compare
formulas (5.4), (5.5), (5.7), (5.8) with formulas (5.42), (5.47), (5.46),
(5.45) correspondently). So usage of Legendre polynomials in the con-
sidered area is an unquestionable step forward.
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Chapter 6

Other methods of approximation of
multiple Stratonovich and Ito
stochastic Integrals

This chapter is devoted to other methods of approximations of mul-
tiple stochastic integrals. For example, we examine Milstein method in
comparison with method of multiple Fourier series (theorem 1), com-
bined method, which is hybrid of method of multiple integral sums
and method based on theorem 1, method of multiple integral sums.
Also we make a comparison (by computational experiments) between
the effectiveness of different methods of mean-square approximations of
multiple stochastic integrals. We demonstrate, that system of Legendre
polynomials gives decreasing of computational costs in comparison with
trigonometric system of functions.

6.1 Milstein method of strong approximation of
multiple stochastic integrals

6.1.1 Introduction

G.N. Milstein proposed in [23] the method of expansion of stochas-
tic integrals based on expansion of Brownian bridge process into the
trigonometric Fourier series with random coefficients.

Let’s analyze the Brownian bridge process

t
fi— (fa, t€[0,A], A>0, (6.1)

where f; € ™ — is a standard vector Wiener process with independent
pomponents £; i =1,...,m.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Let’s also analyze the componentwise expansion of process (6.1) into
the trigonometric Fourier series converging in the mean-square sense

1

@0 _ e _ 2 _ 2m>
f; AT 2(1104' E <a1 rCOS—— A +b, rsin A (6.2)
where N
2 . S (i 27rs
2 (e _ (z))
iy A0/<f5 AfA cos A ds,
92 2/ s 2mrs
— (@) _ (ORI .
bz,r - A 0/ (fs AfA ) Sin A ds,

r=0,1,...;¢=1,....m
It is easy to demonstrate [23], that random variables a; ., b; , are Gaus-
sian ones and they satisfy the following relations:

M{a; bi,} = M{ai,bix} =0, M{ai,a; 1} = M{b; b1} =0,

A
M {ailﬂ’aizﬂ"} =M {billbizl} =0, M {a?,r} =M {bzg,r} = W7
where i, i1, i9=1,...,m; r £ k; i1 #ia.
According to (6.2) we have
1 2mrt . 27rt
f fA A + a10—+— Z (a”cos A + b; psin—— A ) (6.3)

where the series converges in the mean-square sense.
6.1.2 Approximation of multiple stochastic integrals of 1st
and 2nd multiplicity

Using the relation (6.3), it is easy to get the following expansions
[23], converging in the mean-square sense:

1 27 . 2mrt
/dft =50 +2am+z(awcos b)), (64)
*t %T
[ ] dfdr =
00
t t A 21 2mrt 2mrt
2Afg)+ aho-}—%g;{a”sin% <cos WT —1)} (6.5)



6.1 Milstein method of approximation of stochastic integrals

st %T

/ / drdf® =
*t %T

ot
i i 27rt
:to/ dft()_o/o/ dfT(l)d 2AfA —|—tT§:1{awcos A +

27rt A =1 27rt 27rt
+birsin Z } —oo X {ai,rsilﬂﬁ —biy <cos£ - 1)} , (6.6)

2w r=1T A A

xt T xt T

[ ] alivagt = %f W / drydfi) 4 a“ 0 / af™
00 0

T~
+Z 2:: (a“’ biyr — bil,raiQ,T) +
i { i, Uiy — zl,rbizﬂ‘) (1 — cos47Zt>
+ (a“,rb”, + biy r iy ) Sm47Zt+
+ 2 fgz ( i, TslIl —|— bi, (COS2Zt - 1))}—1—

+§: io: k{a,ﬂam [COS k+r> (( ) k ]
k)

k=1r=1(r#k) 2(k + Ir) k2 —r?
. sin ( 2n(kin)t ) N sin (zﬁ(kA r)t) .
e TR 2(k — )
cos (27r(kA—r)t) cos <27r(lzl—r)t) ,
bi, rbi, - -
F i, 2(k —r) 2(k+r) k2 —r2 +

. A ) sin (27r(kA+r)t) sin (27r(kAfr)t)
2m TR o (k) 2(k —r)

} . (6.7)

It is necessary to pay attention to the circumstance, that the double
series in (6.7) should be appreciated as a repeated, and not as a multiple

(theorem 1), i.e. as a repeated limit of the sequence of double partial
sums.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

It is connected with the fact, that iterated substitution of expan-
sions of Wiener processes into the multiple stochastic integral results in
repeated taking of operation of passage to the limit.

Note, that the multiple series is more preferable, than the repeated
one when it is presented approximately by the repeated partial sum,
since the convergence of such approximations is provided with any
method of jointly convergence to infinity of upper summation limits
of repeated partial sum (for clearness we denote them as ps, .. ., pg; see
theorem 1). In particular, in the most simple case we may assume, that
P1 = ...=pr = p — 00. At the same time the last condition in the
strict sense doesn’t guarantee convergence of repeated series with the
same partial sum as for considered multiple series.

Hereafter, we will see, that usage of G.N. Milstein method for ap-
proximation of simple stochastic integrals of minimum 3rd multiplic-
ity is connected with the problem described before. Note, that in
[24] nevertheless the following condition is used not quite reasonable:
p1=p2 =p3 =p— o< [24] (p. 202, 204).

Assume, that in relations (6.4)—(6.7) ¢ = A (at that double partial
sums of repeated series in (6.7) will become zero).

As a result we will get the following expansions converging in the
mean-square sense:

A
[ar? = €9, (6.8)
0
* A xT 1
i) 7 — (1)
[ dtDdr = ,A (£ + aio) (6.9)
00
A 1 ,
/ / dTldfg) =-A (fX) — (11;,0) y (610)
00 2
58 47 1 iy g 1 ) )
/ dt{df) = Efgl)fXZ) —3 (aiz,Ofgl) - %,ofXQ)) +
00
[o¢]
+m Z r (aihrbi” — bihraiﬂ) . (611)
r=1
Deriving (6.8) (6.11) we used the relation
a;o = -2 Z ajr, (612)
r=1

which results from (6.2) when ¢ = A.
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6.1 Milstein method of approximation of stochastic integrals

The explanation, that the obtained expansions converge right to the
correspondent Stratonovich stochastic integrals is given in [24].

6.1.3 Comparison with method based on multiple Fourier se-
ries

Let’s compare expansions of some multiple Stratonovich stochastic
integrals of 1st and 2nd multiplicity (here we mean, that integration
according to Wiener processes in the multiple stochastic integrals is
performed two times, maximum), obtained by G.N. Milstein method
and method, based on multiple Fourier series according to trigonometric
function.

We will introduce the following standard Gaussian random variables
in our analysis:

£ 2 2
fi:ﬁa Pig =\ AT iy T = Zﬂrbi,ra (6.13)

wheret=1,...,m; r=1, 2,....
Due to (6.12) we get

x 1
a; 0 = —V 2A Z ;pi,r- (614)
r=1

Substituting the relations (6.13) and (6.14) into (6.8)—(6.11), we get
the following converging in the mean-square sense expansions:

A
[ df? = Vag, (6.15)
0
*A 5T
‘ 1 s 2 = 1
[ [ dtar = fm(@ V2 fpm), (6.16)
'0 0 2 ™ =17
*A xT
I 2 = 1
[ [ dndf® =-As (@ + v2 ) —pz-_r), (6.17)
00 2 T =17
*A 4T
A 11
[ [ aeae = Sk + 5ot = torpiat
00 2 =T ’ :

+V2 (piy iy — pil,rfiz)):|' (6.18)
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Considering notations taken by us previously for multiple stochastic
integrals we may write down

<A
[t =10 = gk, (6.19)
0
*A xT
1 *(1 *(1 *(10
[ [ dt@dr = aR® + 17 = T, (6.20)
0 0
*A *T . .
[ J ma - 50 - g, 021
0 0
* A xT o
/ / dEdE®) = i = TR (6.22)
0

Substituting the expansions of integrals Igf)o, Il*g, I{;(Sf;‘), obtained
before using the method based on multiple Fourier series according
to trigonometric system of functions into representations (6.19) (6.22),
with accuracy up to notations we get expansions (6.15) (6.18). It testi-
fies, that at least for analyzed multiple Stratonovich stochastic integrals
and trigonometric system of functions, the method of G.N. Milstein and
the method based on multiple Fourier series give the same result (it is
an interesting fact, although it is rather expectable).

In the next section we will discuss usage of G.N. Milstein method for
multiple stochastic integrals of 3rd multiplicity.

6.1.4 About problems of Milstein method in relation to mul-
tiple stochastic integrals of multiplicities above the sec-
ond

We mentioned before, that technical peculiarities of the G.N. Mil-
stein method may result in repeated series (in contradiction to multiple
series taken from theorem 1) taken from the product of standard Gaus-
sian random values. In case of the simplest stochastic integral of 2nd
multiplicity, this problem was avoided as we saw in the previous sec-
tion. However, the situation is not the same for the simplest stochastic
integrals of 3rd multiplicity.

Let’s mention the expansion of multiple Stratonovich stochastic inte-
gral of 3rd multiplicity obtained in [24] by the method of G.N. Milstein:

Jé(ﬁ?if% = %ng(flA), J(()({JBZAS)O + azl,OJﬁﬂAgo + 21 bi J((E)A,oj(i()lz),o*
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6.1 Milstein method of approximation of stochastic integrals

* (12 (i 1 3
_AJ(I(;A),OBili3 + AJ@()ZBA),O <§Am2 - Cim) + AgDiﬂ;m, (6.23)

where
1

*(0iqis) 1 *(ig *
Jomao = éJ(l()lA),OJ( R0 - WAJ( S obiat

1 (i ‘(i 1
+AB;,; — ZAaig,oJ(f;A{O + %AbigJ(l(;A),O + Ay + 5 A Ai,

m o0
N > (@i, biyr — biyraiy,)
r=1

0 0
Cizis == Z Z flg (Taimrais,l + lb727 bls, ) )

1
_bi,Ta
T

(18

—

8

<

3

8

&

i

_|_

S

¥

S

&

3y

N2
S
Il

(8

0 — 2A ) . ; . i 05 .
r= s
D

Il
—

iyigiz —

oo o0
Z Z l<ai2;l (ai37l+Tb7:lyr ~ a‘ilﬂ‘bi&lﬂ") +

Z l(aiz;l (ailaTbisyl*T + aisyl*TbilaT) -

—bi, 1 (@i, r@is1—r — biy s bmlfr)>+

< o0
Z Z l(aizyl (ai3ﬂ"*lbi1,T - ailﬂ"bisﬁfl) +
1

+bi, 1 (@i, iyt + bil,rbig,r—l))§

we met all other notations in the previous section.

From the form of expansion (6.23) and expansion of integral J, OﬁhA 0
we may conclude, that they include repeated series. Hereafter in the
course of approximation of examined stochastic integrals in [24] it is
proposed to put upper limits of summation by equal p, that is according
to arguments given before is incorrectly.

We may avoid this and other problems (see introduction of this book)
using the method, based on theorem 1 (theorem 4).

If we propose, that the members of expansion (6.23) coincide with
the members of its analogue, obtained using theorem 1 and formulas of
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Chapter 6. Other methods of strong approximation of stochastic Integrals

connection of Ito and Stratonovich stochastic integrals (this, as we saw
in the previous section, is actual for the simplest stochastic integrals of
first and second multiplicity), then we may replace the repeated series
in (6.23) by the multiple ones, as in theorem 1, as was made formally in
[24]. However, it requires separate and rather complex argumentation.

6.2 Usage of multiple integral sums for approxima-
tion of multiple Ito stochastic integrals

We noted in the introduction, that considering the modern state
of question about approximation of multiple stochastic integrals, the
method analyzed further is unlikely of any practical value. However, we
will analyze it in order to get the overall picture.

Note, that in several works (see, for example, [23]) it was proposed
to use various variants of integral sums for approximation of multiple
stochastic integrals. In this section we will analyze one of the simplest
modifications of the method of integral sums:

Let the functions v;(7); [ = 1,...,k satisfy to Lipschitz conditions
at the interval [¢,T] with constants Cj:

[Ui(m1) — ()| < Ci|m — 7| for all 7,7 € [t, T (6.24)

Then, according to lemma 1 with probability 1 the following equality
is reasonable
N-1 Jo—1 k

Tl ]Tt—llm > H t(m)Aw

N=ooo =0 ji=0i=1

Here the sense of formula (1.8) notations is kept.
We will represent the approximation of multiple Ito stochastic inte-
gral J[¢/®)]7; in the following form

N-1 Ja—1 k

TP, =3 . ZH#}:(T;;) : (6.25)

k=0 =01=1

Relation (6.25) may be rewritten in the following form:

N-1 jo—1 k
J[@b(k)]ql\!,t = . Z H(Asz) '/’Z(sz) 7 (6~26)
=0 ji=0i=1
where ug-i) o (Wi — WS.?)/(ATJ')%; i=1,...,m — are independent

when ¢ # 0 and various j standard Gaussian random values: u;-o) =
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6.2 Usage of multiple integral sums for approximation of stochastic integrals

Assume, that
Tj=t+3A; 5=0,1,...,N; v =T, A > 0. (6.27)
Then the formula (6.26) will be as follows:

[SIE

N-1 jo—1 k

> Y I+ ad)ul, (6.28)

=0 J1=01=1

TV, = A

i) def ,__ (i i )
where uE') = (Wi_z(j+1)A - wt(jjA)/\/Z; i=1,...,m.
Lemma 12. Assume, that functions y(7); | = 1,...k satisfy to
Lipschitz condition (6.24), and {Tj}JiV:_Ol — is a partition of interval

[t, T of type (6.27).
Then, for sufficiently small value T — t there exists such constant
Hy, < o0, that:

Hy(T — t)?

M {(J[w(k)}T,t - J[w(’“)]%)Q} < N

Proof. It is easy to see, that in case of sufficiently small value T — ¢,
there exists such constant C}, that

M {(J[q/j(k)]m — J[qp(k)]%”tf} <M {(J[@/,(?)}T’t — J[Q/)(Z)]%)Q} ,

where
N—1 T+

tQ . .
SV=% [ talts) [ en(tr)dwidwi;

j1:0 Tj

No1 T i1 Tt

SN =% [ (alta) —talr) dwi? S [ wbi(tr)dwh;

J1=0 7j, J2=0 75,

j1—1 Tizkt

N N i (ir)
S =3 da(n)AWS Y [ (i(ta) — va(r,)) dwiy”.

J1=0 J2=0 75,

Therefore, according to Minkowsky inequality we have:

1

({0~ T8 < 3 (M{(5)°))'
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Using moment features of stochastic integrals (see chapter 9) let’s
estimate values M {(SZN)Q} ;1 =1,2,3. To do it let’s examine four cases.
The case 1. 41, 19 #0:

M{(S1)'} < 3(T 1) sup {@(s)3 ()},

selt,T]
M{(88)°} < 3T - 12 (o) 21[:1;]{1&?(8)},
M{(s5)} < ¥ @ - 020" sup {4365}

—
=
@
o
&
o2}
o
no
-~.
=
N
()
-~
N
|
(an)

M{(SN)"} < $(T — )2 sup {e(s)ui(s)},

s€[t,T)

M{(s3)°} < §T -0 (C)° sup {#()},
M{(83)°} < 5= 0° @) sup {036))

M{(s8)°} < 47 - 1)? (c2> sup {0H6))
M{(S3)°} < & (T -1 () sup {¢2<s>}

{517} < =02 sup {wis)whe))
{7} < F@-0'@) s (w16},
{($Y)} < S5 = (Cn) 21[3]{1&%(8)}

According to obtained estimations and condition (6.24) we have

Hy(T —t)°

M { (T P)zs — IR} < HU(T - 1)A = ===,

where Hy < oo. The lemma is proven. O
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6.3 Comparison of effectiveness of Fourier series and integral sums

It is easy to check, that the following relation is correct:

(iai1) (i201)N 2 _ (T_t)2
y {(foa;,t -y = S (6.29)
where 4, z'2 =1,...,mand Iéffj?N — is the approximation of stochastic

integral IooTt from the family (5.1), obtained according to the formula
(6.28).

Note, that the method, based on multiple integral sums, converges in
the mean-square sense significantly slower, than the method based on
the multiple Fourier series (see. (6.29), (5.18), (5.49) and table 6.1, 6.4).

6.3 Comparison of effectiveness of Fourier-Legendre
series, trigonometric Fourier series and integral
sums for approximation of stochastic integrals

In this section we will compare effectiveness of usage of polynomial
and trigonometric functions in the course of approximation of multiple
stochastic integrals. In addition, we will compare effectiveness of usage
of methods, based on multiple Fourier series and multiple integral sums.

Let’s examine stochastic integrals Ié;)t, I(%?t, which may be met, for
example, while realizing the strong numerical procedure of order of ac-
curacy 1.0 for Ito stochastic differential equation [23], [24], [44]. We will
approximate them firstly using the trigonometric system of functions
(formulas (5.41), (5.43)), and then using Legendre polynomials (formu-
las (5.3), (5.6)).

The number g = gyig in the first case we will select from the condition

T—t)2/n? (i ]

(5 S <o (6:30)
and number ¢ = ¢,0 in the second case we will be selected from the
condition:

(G (1 Syl ) <e (6.31)
2 2 SZ42-1)="7 '
where giig and gpol are minimal natural numbers, satisfying to the

conditions (6.30) and (6.31) correspondently. .
In table 6.1 the values guig, gpot when ¢ = (T — t)3, T —t = 279;
J=15,6,...,10 are given. The values Tiy;,, T}, (’orreqpond to the com-

trig»
puter time, consumed on 200 independent numerlcal modelings of inte-
grals Ié;l, I(%?t according to formulas (5.41), (5.43) when ¢ = gy and
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Chapter 6. Other methods of strong approximation of stochastic Integrals

Table 6.1: Values guig, gpol; Tivigs Tpor-
Tt 275 276 27 2-8 279 2-10
Grig 3 4 7 14 27 53
Gpol 5 9 17 33 65 129
Tiig, sec 4 5 7 10 16 30
Ty sec 3 4 7 13 23 45

according to formulas (5.3), (5.6) when ¢ = gpo1. At the same time, each
fixed modeling according to formulas (5.41), (5.43) and (5.3), (5.6) cor-
respond to the same realization of the sequence of independent standard
Gaussian random variables.

Note, that formula (5.43) was used here without a sum member

1 2 N i) (i
§(T — 1) f@ <£(gzl)<-0(zz) _ C(()u)g(gw))
which requires the certain computer time for its numerical modeling.

From the results given in table 6.1, it is.clear, that when T — ¢ >
277 the polynomial system is a little bit better, than the trigonometric
one according to consumption of computer time. However, even when
T —t < 278 usage of the trigonometric system provides an insignificant
advantage.

This picture changes cardinally when analyzing combinations of more
complicated stochastic integrals.

Let’s analyze stochastic integrals

™

I(S’Z;B’ 1{227 [(362;;)7 1’(%301;”;)’ il: i?a i3 = 15 c.., M. (632)
which may be met, for example, while realizing the strong numerical
procedure of order of accuracy 1.5 for Ito stochastic differential equation
28], [24], [44]

Let’s present the numerical result, which provides a possibility to
see, that modeling the set of stochastic integrals (which is necessary for
realization of strong numerical method of order of accuracy 1.5 for Ito
stochastic differential equations [23], [24], [44]) with using of the poly-
nomial system of functions provides the advantage in computer time in
more than 2 times in comparison with the trigonometric system of func-
tions, at least, in case of not very small T'— ¢ (note, that in this section
we will also analyze more general situation in which the polynomial sys-
tem of functions provides the advantage in three times in comparison
with the trigonometric one within the limits of the considered question).
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6.3 Comparison of effectiveness of Fourier series and integral sums

At first, let’s examine the simplified set of stochastic integrals I(%?t,
76321) '
00074+

In case of polynomial system of functions we will be looking for num-
bers g, g1 in the approximations I(%Pt , 1533?‘11 defined according to for-

mulas (5.6), (5.29), on the basis of following conditions:

M(l oy ! ) < (T —t)", (6.33)

2 \2 Z42-1

ij,k=

where

V(28 + 1) (25 + 1)(2k + 1)

Chji = 3

(T — £)**Chyi;

1 z Y
Crji = [ Pu(2) [ Pi(y) [ Pi(a)dzdydsz;
-1 1 1
P;(z) — is a Legendre polynomial.
In case of trigonometric system of functions we will use formulas
(5.43), (5.44) when i3 = 3, iy = 2,47 = 1, and we will be looking for
numbers ¢, ¢; from the conditions:

[PY2 i9%1)q 2 T—t s 7 1
M {([(gom) — I } S Gk (E -y ﬁ> <e  (635)

2
21 r=1

iiniy iginin)gqn\ 2 4 1 21
v {(féo%T,) ) = - -

424 4Z

1 @ 544 49% — 37"212}
= -~ i<e 6.36
327T r=1T z 1 r2]? (’f‘ *12)2 ( )

In table 6.2 we can see minimal values of numbers g, ¢, satisfying
the conditions (6.33), (6.34) for various values 7' —¢. In table 6.3 we can
see the values of the same numbers for conditions (6.35), (6.36) when
e= (T -t

Let’s provide 100 independent numerical modelings for various values

T —t of set of stochastic integrals I(gOT)t, Iégg;t, defined using formulas

(5.6), (5.29), obtained using polynomial system of functions.
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Table 6.2: Values ¢, q1, Tiyy, Tiho (polynomial system)

Tt 0.08222  0.05020  0.02310  0.01956
q 19 51 235 328

q 1 2 5 6

TVoo, s€C 5 12 52 73
TVogs sec  13.5 36 181 225

Table 6.3: Values q, g1, Tiog: Trop (trigonometric system)
T—1t 0.08222 0.05020 0.02310 0.01956

q 8 21 96 133
@ 1 1 3 4

Vo, sec 12 24.5 105 148
Troos sec 44 88 411 660

In table 6.2 we can see the values of computer time 77;,, consumed
for solving of this task with various values T" = ¢.

Let’s repeat this numerical experiment for approximations (5.43),
(5.44) when i3 = 3, 42 = 2, 97 = 1 which were obtained using trigono-
metric system of functions. Its results are inserted in table 6.3.

Let’s note, that hereinafter in this section formulas (5.43) and (5.44)
were used without members

1 2 i 2 1) (i
Q(T—t)‘f\/a—q(ggmcé R

and
s 1 VL ia) A (i) i
(T - t)2 <m\/07q <€(§ZI)C(gZ )C(gls) _ 5{513)&%1 )Céz )) i
1 Ny
— (ir) £ (i2) i) _
+2\/§ﬂ.2\/187‘1 (:u(;1 CO : CO ¢
PG+ )
correspondently.

It support numerical results specified in tables 6.2 and 6.3.

Comparing obtained results we come to the conclusion, that within
the limits of numerical experiment when modeling correspondent col-
lection of stochastic integrals, the polynomial system of functions gives
the advantage in two times in computer time in comparison with the
trigonometric system of functions.
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6.3 Comparison of effectiveness of Fourier series and integral sums

Let’s extract approx1mat10ns IoooT defined by (5.30) in an explicit
form when ¢ = 1,2,5,6, taking into account their practical impor-

tance (in theorem 4 the formulas given below correspond to approx-
imations Ioollzzlz)q in case of any possible i1,49,43 = 1,...,m and
p1=p2 =p3 = q; ¢ =1,2,5,6 when replacing their upper index (123)
by index (¢122¢3) and upper indexes (1), (2), (3) by indexes (i1), (22), (i3)
correspondently):

s = (=0 (568" - o3™) 7 + 57 6P+

I o 1 (1)) @, 1. (2)) (3)}
+<(4\/§<0 10C1 Co +2040 G7 )G,

1 = - 0f [{ (58— 7 + ) 67

1. 1 (1)) @)
+<2041 4\/ﬁ€2 G+
1
0+ 6" )+

+ (-%C&” + 4\}3
H{ (o368 156 6+ (568" - 16" 6
+ (=gt + =) 67 ¢+
* {(121/5@9) B %C“gl)) @+ <4méél) - 14\/549)) o+
@l ),

123 (123
I(gooT)t = IoooT)t +

el _ o, 1 o)
HT -1 [{wmc?, ¢ +( 4fc3 +28fc4 )ef+

¢

\f Lo
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[E) I o 1 <1>> )
+< 21\/342 +12\ﬁ43 +308<4 12\/HC5 Gt

9 I o, 1 @) A3
+< 36\/743 +12fg4 +468C )C5 }CO +

1 B (1) m\ @
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oy VI3 o 1 @) ol o)
301/429 8415/7% ' 5814413 )0 [P

Let’s demonstrate, that in some situations the advantage of polyno-
mial system of functions in relation to the trigonometric one in terms of
computer time for modeling of collections of multiple stochastic integrals
turns to be more impressive.

The fact is, that when solving practical tasks we often have to model
several stochastic integrals of the same type taken for various combina-
tions of upper indexes at each step of integration. In this case it is useful
to reduce the total number of modeled integrals using the following re-
lations N N o

Iy + T6) = I 15 w. p. 1,

Tt i3

(i14243) (i1i3d9) (i241143) (i2i311) (i3d211) (izirda) _ 7(i1) 7(32) 7(i3)
Tooor, " +1o0or, +1ooor, +Lovor, +Looor, +1ooor, = lor,lor,Lor, W - 1,
where 11, 19, i3 — are different; iy, 19,43 € {1,...,m}.

In accordance with mentioned, let’s analyze the following collection
of stochastic integrals:

2) gl

i i 1 13 23 123 132 213 231 312
18 10 Tor,s Tons Ton: Tiiness Tooimss T6aoess Tioors: Toooe

0007,> £0007,,: 100075 £0007,: 10007,
(6.37)
where i =1, 2, 3.

Let’s make independently 100 models for various values 7' — ¢ of the
set of stochastic integrals (6.37) using formulas (5.3), (5.4), (5.6), (5.29).
In table 6.2 we can see values of T}y, consumed for solution of this task
with various values 7" — ¢. Let’s repeat this numerical experiment using
approximations (5.41) (5.44). Tts results are inserted in table 6.3.

Comparing the obtained numerical results we can note, that in this
case the polynomial system of functions gives advantage in 3 times
it terms of computer time when modeling the collection of multiple
stochastic integrals.

Note, that generally speaking the set (6.32) includes m® + m? + 2m
of various multiple stochastic integrals. When m > 3 the number
m3 + m? + 2m may turn out to be significantly bigger, than in case
(6.37) (in (6.37) m = 3 and the multiple stochastic integrals with two
coincidental upper indexes from three ones are not considered) and as
the author suppose, the advantage of polynomial system of functions
will be even more essential. We may expect the same effect when ana-
lyzing more complicate collections of multiple stochastic integrals than
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Table 6.4: Values g and T},

= m (method of integral sums).

T—1t 275 2-6 2-7
q 16 32 64
T , sec 26 93 391

sum?

in (6.32), which are necessary for building more accurate strong numer-
ical methods for Ito stochastic differential equations [23], [24], [44].

Apparently, the mentioned tendency is connected with the fact, that
the polynomial system of functions has a significant advantage over the
trigonometric system of functions for approximation of multiple stochas-
tic integrals where not all weight functions of type (1) = (¢t — 7)’;
=0, 1, 2,... identically equal to 1, that corresponds to I > 1 in the
given representation. In order to understand it is enough to compare
formulas (5.4), (5.5), (5.7), (5.8), obtained using Legendre polynomi-
als with their analogues (5.42), (5.47), (5.46), (5.45), obtained using
trigonometric system of functions.

Finally, we will demonstrate, that according to computational costs
on modeling of collection of multiple stochastic integrals, the method
based on multiple Fourier series is signficiantly better, than the method
based on multiple integral sums.

Let’s examine approximations of multiple Ito stochastic integrals, ob-
tained using the method based on multiple integral sums:

q—1
I = VA ZOE,(”, (6.38)
]:
-1 j-1
%f:A§§§¥P, (6.39)
j= i=

where §](i) = (ff/(j-)(j+1)A - ft(j_)jA)/\/Z; i = 1,2 — are independent, stan-
dard Gaussian random values; A = (T — t)/g; Iéﬁi?f, I((]th are ap-
proximations of integrals I(%Bt, ](g;?t.

Let’s choose number ¢, included in (6.38), (6.39) from the condition

2 T —t)?
w (13, - 1y} - 1 <

< (T —t)3.



6.4 Multiple stochastic integrals as solutions of systems of linear equations

Let’s make 200 independent numerical modelings of the collection of
stochastic integrals 153” 1Y using formulas (6.38), (6.39) when T' —

T,t0 “ 07t
t =277, 5 =5,6,7. In table 6.4 we can see the time T7, which was
necessary for performing of this task.

Comparing tables 6.1 and 6.4 we come to conclusion, that the method,
based on multiple integral sums even when 7' — ¢t = 277 is more than
50 times worse in terms of computer time for modeling the collection
of stochastic integrals I(%Bt, I(g?t, than the method based on multiple
Fourier series.

Not difficult to see, that this effect will be essentally bigger, if we
consider multiple stochastic integrals of multiplicity 3, 4, ... or choose
value T' — ¢ smaller.

Demonstrated numerical experiments provides a possibility to get
sketchy idea about "good" and "bad" numerical methods, but we can
see rather well-defined picture.

6.4 Multiple stochastic integrals as solutions of sys-
tems of linear stochastic differential equations

G.N. Milstein 23] proposed an_ approach to numerical modeling of
multiple stochastic integrals, based on their representation in the form
of systems of linear stochastic differential equations. Let’s analyze this
approach using the following collection of multiple Ito stochastic inte-
grals as an example:

S S

1) = [, 157 = [ [ deae) (6.40)
t t ot
where iy, i3 = 1,...,m; 0 <t < s < T;f9; 4 =1,...,m  are

independent standard Wiener processes.
Then we have the following representation:

I\ 0 o\ (I8 ey L (1 0, (£
dl D | = ( ) o | dF) 4 ( ) d( s ) 6.41
(Iéaz’;:)) to) (g |57 o o) Mg ) O4Y
It is well-known [23], [24], that solution of the system (6.41) may be
represented in the following integral form:

I(g“) s 0 0 (f(m 12)) 1 0 f(il)
(Iomz ) = t/e<1 0) (0 0) d(fZ@z)) ’ <6'42)
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A

where e is a matrix exponent:

A def

i
© T A

\|M8

where A is a square matrix; A° 7 isa unity matrix.

Numerical modeling of the right part of (6.42) is unlikely simpler
task than the jointly numerical modeling of the collection of stochastic
integrals (6.40).

We have to perform numerical modeling of the collection (6.40) within
the limits of this approach by numerical integration of the system of
linear stochastic differential equations (6.41). This procedure may be
realized using the Euler method [23], [24].

Note, that the expressions of more accurate numerical methods for
the system (6.41) (23], [24], [44] contain multiple stochastic integrals
(6.40) and therefore they useless in our situation.

Assume, that {;}Y, — is a partition of the interval [¢, s], for which
T =t+7jA;7=0,1,..., N; 7v = s. Let’s write down the Euler method
[23], [24] for the system of linear stochastic differential equations (6.41):

(ir) (i) Af() , .
Yp1 ) _ [ Yp S () _ o yliiz) — o (6.43
( (1112)) (y(1113)> + (yz(;“)qu(—;Q)> » Yo ;Yo P ( - )

Yp+1 P
where y() o yi; yla®) o y{iz) — are approximations of multiple

stochastic integrals Iéi;?t, [(%1712,3’ obtained using the numerical scheme

(6.43); AFD = £0 —£0 i =1,... ,m
Iterating the expression (6.43), we have

(i) N-1 ]
v = % Af), (6.44)
1=0
(iria) N-1¢-1
y](’,122 = > Af i1) Af i2) (6.45)
q=0 =0
where Z def ),

The formulas (6.44), (6.45) are the formulas for approximations of
multiple stochastic integrals (6.40), obtained using the method, based
on multiple integral sums.
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6.5 Combined method of approximation of multiple stochastic integrals

Consequently, the effectiveness of methods of approximation of mul-
tiple stochastic integrals based on multiple integral sums and numerical
integration of systems of linear stochastic differential equations using
the Euler method turns out to be similar.

6.5 Combined method of approximation of multiple
stochastic integrals

In this section we build the "hybrid" of methods of approximation
of multiple stochastic integrals, based on multiple Fourier series (theo-
rem 1) and multiple integral sums (hereinafter referred to as the com-
bined method). It appears, that when storing the required relation of
one method impact on the other, we may achieve some advantages over
the "clean" usage of the method, based on the multiple Fourier series.

Namely, it is explored, that the combined method of approximation
of multiple stochastic integrals provides a possibility to diminish signif-
icantly the whole number of coefficients of multiple Fourier series which
are necessary for approximation of the considered multiple stochastic
integral. However, in this connection the computational costs for ap-
proximation of the mentioned stochastic integral slightly increase.

6.5.1 Basic relations

Using the property of additivity of the Ito stochastic integral we may
write:

(i) _ /A = A)
Iy, = VA kZO G w.p. 1, (6.46)
(i) _ S () 3/24, (i)
=% (6 - APR¢)) wop. 1, (6.47)
Jliria) _ AN_““‘ (i) 76
Wre k=0 IZ%) Ok + Z 0074 1.7 Ww. b 1" (648)

) = 2T S i

k=0 1=0 ¢=0

N— —
WA S (I v %)+25Tm.ph
(6.49)
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i, ig=1,....m; T —t = NA; 7. =t + kA,
" 1 Th+1

(i) def *
Ck_\/gzdw

0,
k=0,1,...,N —1; N < oc; the sum according to empty set is equals
to zero.
In the formulas mentioned above we examined Ito stochastic integrals
from the family (5.1).
Substituting the relation

[(il) _ A3/2 <

@,

1 4
Co \/gdfk)> w. p. 1,

into (6.47), where Céf}c), l(z}c) — are independent standard Gaussian ran-
dom values, we get:

17k+1’7k

10— A3y (( +k> )+ “)) w. p. 1. 6.50
1Ti 121 9 Ok 9 \/— 1k p ( )

Let’s approximate, using the method of multiple Fourier series ac-
cording to the Legendre polynomials,-the following multiple stochas-

tic integrals I(Z‘“) (i2s) (irigis)

vt L0070 o IOOO"'k+1""k’ included in the right parts of
(6.48), (6.49).
As a result we get
(1112 ~1h] 1112
Ioo,, " =A Z > Co ot Z Oryryr (6.51)
k=0 1=0 1 7

v _ 2S5l )

k=0 1=0 ¢=0
N=lk= i zz q i zz)q
/ 3 1%2)q1 1) 7(iaiz)q
EZ: §<CO Tllfl+c "k lTk)+
11121342
+ Z 000,y 1 m (6.52)

1(5““)‘1 1'0(7”“3)‘1 are obtained using the method
+1:7) +1>Tk

of multiple Fourier series (theorem 1) according to Legendre polynomi-
als.

In particular, when N = 2, the formulas (6.46), (6.50)-(6.52) will
look as follows :

where approximations
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157 = VA (&g +&7) wop 1, (6.53)

i 1 .Gy, 3 .G 1 i i
Il(T,t) = A2 <§C(g,o) + 5(8,1) + ﬁ (Cl(,o) + Cl(,l))> w. p. 1, (6.54)

Iigee = A (G + 10 + 1) (6.55)

7'2 1

Tigog, ™% = VA (YIS + GO TG ) + o+

71 70
g0 (6.56)
where A = (T —t)/2; =t + kA; kK =0,1,2.

Note, that if N = 1, then (6.46), (6.50)-(6.52) transfer to the formu-
las for numerical modeling of mentioned stochastic integrals using the
method of multiple Fourier series. So, we may claim, that the method
of multiple Fourier series is a particular case of combined method when
N =1

Note, that later we will demonstrate, that modeling of multiple
stochastic integrals 1—((]2;3’ Isz, I(%le), Ié%;?f) using formulas (6.53)
(6.56) results in abrupt decrease of the total number of Fourier coef-
ficients, which are necessary for approximation of these integrals using
the method, based on theorem 1.

At the same time, each right part of formulas (6.55), (6.56) include
two approximations of multiple stochastic integrals of 2nd and 3rd mul-
tiplicity, and each one of them must be obtained using the method based
on theorem 1. Obviously it results in increasing of calculation costs for
approximation.

6.5.2 Calculation of mean-square error

Let’s calculate mean-square errors of approximations, defined using
the formulas (6.51), (6.52). We have

2 2
def i1i9 irio i1ia) i1i2
ENg = M{ (IéOT t) IéOTt ) } Z M{( Orvm IéOTk:?,Tk) } -
A2 /1 g 1 (T — t)2 1 g 1
R = - L (657
2 (2 l:z:l4l2—1) 2N (2 12221412—1)’ ( )
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def j1iad i) N ) 2
N =M {(I(%OZT?:) - éz)olﬁ) e ) } =
=M Nil VA z_: (“ '”2) _ glai)a +
a k=0 1=0 007417 007,17
2
(i) pliaia) (i2iz)qn (i1i2i3) (i19213)g2 —
+C0’l (IOOT’“"'”’“ - IOOTHI’Tk)) + oo 007 yrme 10007k+1,7k)> } B
N-1 k=1, . o
= M{ (ﬂ Z (Céllsc) (I(mz)
k=0 1=0

(ini2)qn
00ry 1m Iog +

TI+1:T
(i) ( yizia) (izia) i) _ i) 2
11 I 1213 _ I 1213)q1 I G123 I 911213 )Q2 _
+Co, ( 007, , 1y 007k+1,7k)) + Looo 0007,
N

= — i1d (i1i2)q 2
A CU(CEp (e fow)) f+
((I(gizia‘) o

Zzla qQ

(t1d213) ) _
Oy 1.7k 007,44, 7k> z CO ) } + 5k;f12 ’ ) -

Z (A Z M{( lllz) _ (iliz)(h
k=0

2
= 0r 411 1007'1+1sfl) }+
iai3) (i203)qn (t14283) | __
(i) )-
N-1 ..
— Z <2kAM{< 1112) _ 1(2122)‘11
k=0

6 211213 —
Ory 1.y 00"k+1»7k> }+ k.q2
N-1

2 q1
SE e

5 111213 ) —
= 2 ,=21412—1)jL k.
NN-1)/1 & 1 N-1
= A37(7 — ) 5 (414213) —
2 2 2‘1 w—1)* ,;] k2
1 1 1 1 o 1 N-1
:7(T_t)3<7_7>(7_24 >+ Z 5112213’ 658
2 N N2 9 i= 412 -1 far k.q ( )
where
srixia) _ {( Jliriaia) (ivizis)as
kg2 000 -

2
]' .
1T 0007k+1v"k )
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11 # i3 in (6.57) and not all indexes i1, 49,43 in (6.58) are the same

(otherwise there are exact relationships for modeling of integrals Iof)l;i ;
1(111213))_

07,
For definiteness, assume, that i1, 42,73 in (6.58) are different. Then

L 1 g2 C
6(112213) — AB (7 _ lﬂ) )
k.o 5 z',j,zl::o A3 (6.59)

where

VEI+ D)2+ D)2+1) g
8

Ciji = /Pl /P /B Ydzdydz;
-1

Ciji =

P;(z) — is a Legendre polynomial.
Substituting (6.59) into (6.58) we get

1 11y /1a 1
- F e Ew)
Naw =TG-~ F)e Zaw—i)*

(T—t)3<1 f: (2i+1)(2j+1)(21+1)c )
N2 \6 ;T 64 b

Note, that when N = 1 formulas (6.57), (6.60) pass into the corre-
sponding formulas intended for mean-square errors of approximations
of the integrals IOBITZ"; , Iof)lgi? , obtained using the method of multiple

Fourier series (theorem 1) according to Legendre polynomials.

+

(6.60)

6.5.3 Numerical experiments

Let’s analyze modeling the integrals IOTt’ IééITii). To do it we may use

relations (6.46), (6.51). At that, the mean-square error of approximation
of the integral I((]“’i) is defined by the formula (6 57) using Legendre

polynomials. Let’s calculate the value en,q for various N and ¢ :
39 ~ 0.0167(T — t)%, €23 =~ 0.0179(T — t)?, (6.61)
16~ 0.0192(T — 1)~ (6.62)
Note, that the combined method (formulas (6.61)) requires calcu-

lation of significantly smaller number of Fourier coefficients, than the
method of multiple Fourier series (formula (6.62)).
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Table 6.5: T —t = 0.1.

N q1 q2 M
1 13 - 1 21
2 6 0 0 7
3 4 0 0 5

Table 6.6: T — ¢t = 0.05.

N q G G2 M
1 50 - 2 77
2 25 2 0 26
3 17 1 0 18

Assume, that the mean-square error of approximation of the stochas-

tic integrals Iéf;jj), Iégloi;ff) is equals to (T — t)%.

In tables 6.5 6.7 we can see the values N, q, g1, g2, which satisfy the
system of inequalities:

Eng < (T - t)4
{ EN,q1.02 < (T - t)4 (663)

and the total number M of Fourier coefficients, which are nesessary for
approximation of the integrals 78, I{2*) when T—¢ = 0.1,0.05, 0.02
(numbers g, g1, g2 were taken in such a manner, that number M were
the smallest one).

From tables 6.5—6.7 it is clear, that the combined method with small
N (N = 2) provides a possibility to decrease significantly the total
number of Fourier coefficients, which are necessary for approximation of
the integrals Iéf)l;i), I(%l&;ff) in comparison with the method of multiple
Fourier series (N = 1). However, as we noted before, as a result the com-
putation costs of approximation are increased. The approximation ac-
curacy of stochastic integrals for the combined method and the method
of multiple Fourier series was taken similar and equaled to (T — ¢)*.

Table 6.7: T — t = 0.02.

N q G G2 M
1 312 6 655
2 156 4 2 183
3 104 6 0 105
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6.6 Weak approximation of multiple Ito stochastic
integrals

In the previous chapters of the book and previous sections of this
chapter we analyzed in details the methods of so called strong or mean-
square approximation of multiple stochastic integrals. For numerical in-
tegration of Ito stochastic differential equations the so called weak [23]
- [25] approximations of multiple Ito stochastic integrals included in the
Taylor-Ito expansions (see sect. 9.8, 9.9) are also of some interest.

The weak approximations of set of multiple Ito stochastic stochastic
integrals

s T
J((f\iz,\ll))st = / . ./dw(ik) ... dw%‘) ifk>1
i t

(]((f\‘;l/\ll))st © 9wl = £0 when i = 1,...,m and w® = ;4 = 0
ify=0and 4 =1,...,mif \; = (l = 1,...,k); Mgy ---s A1) €
M ={( D, M) N =1,0; 1 =1,..0,k} £ (i = 1,...,m)
— are independent standard Wiener processes) are formed or selected
from the specific moment conditions [23] - [25] and they are significantly
simpler than their mean-square analogues.

However, the weak approximations are focused on numerical solution
of other problems [23] - [25] connected with the Ito stochastic differential
equations, rather than the mean-square approximations.

We will state, that the set of weak approximations J((/\ )\))St of the

multiple Ito stochastic integrals J, /\" ,/1\1)” from the Taylor-Ito expansion

(9.18) have the order r, if [23], [24] for t € [tg, T] and r € N there is a
constant K € (O 00) such, that the condition

i) (.. i

. UNGIC i)
M {H T St = ILIGE " o [P} < Kl = t0)™ (609
g g= 9 ?

is satisfied for all ()‘55? ... /\g-‘”) € My,; z‘ﬁ-"), ey ig) =0,1,...,m; kg <
rg=1...,;1=1,2,...,2r+1. '

If we talk about the unified Taylor-Ito expansion (9.24), then we will
state, that the set of weak approximations fl(fll::z of the multiple Ito

stochastic integrals from the unified Taylor-Ito expansion (9.24)

to

/ (t—ty)hde™ . af

—‘s
=

=i
m;

ﬂ\cﬁ

-

|
(‘b
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(il,.. vig=1,...,m; (k, 4,0, ..., k) € Ag={(k, 5, L, .., 1) - k+j+
Z I, =q; k ],ll, .., lg = 0,1,...}) has the order r, if for ¢t € [to, T
and r € N there is a constant K € (0, 00) such, that the condition

l _ Jg -q)___ i@ _ Jg (9 -(.q
i S - ISR <

l(g) 19 l(g l

g=1 ]g! kg t.to g 1 gtto
< K(t —to)™™! (6.65)
is satisfied for all (k‘g,jg,lgg), e l,(g'j)) € Ay; 9 ..,z',(gi) =1,...,m

g <rg=1,...,1=12...2r+1

The theory of weak approximations of multiple Ito stochastic stochas-
tic integrals is not so rich as the theory of mean-square approximations.
On the one hand, it is connected with the sufficiency for practical needs
of already found approximations [23] - [25], and on the other hand, it is
connected with the complexity of their formation owing to the necessity
to satisfy the big number of moment conditions.

Let’s analyze the basic results in this area.

In [24] (see also [23]) the authors found the weak approximations of
set of multiple Ito stochastic integrals J((;\I;......Z,\ll))t,to with the orders r = 1,2
when m,n > 1 (we remind, that n~— is a dimension of the Ito process
X;, which is the solution of the Ito stochastic differential equation, and
m — is dimension of the Wiener process, included in this equation) as
well as the order r =3 when m =1, n > 1.

Further we will consider these approximations as well as weak ap-

proximations of set of the multiple Ito stochastic integrals Ih“ l:tkt) of
the order r =4 when m =1, n > 1.

In order to shorten the record let us assume, that
(y) . -gg)) def (y -59))
{ H J /\(9 /\Eg))t0+A,t0 ‘Fto} - { H J /\(9) /\gg))}a (666)

where A € [0, —tol; A ... M) € My kg <9 =1,...,1

Let’s consider the sequence of exact values of mathematical expecta-
tions of type (6.66), calculated in [23] [24] and necessary for formation
of the sets of weak approximations J(/\’” Z/{I))to +Ay, Of the orders r =1,2

when m,n > 1:

(i) 7(2)\ _
M {J(l) I } = Alg iy, (6.67)
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6.6 Weak approximationsof multiple Ito integrals

{28565} = {285 -

(1) “(10)
1
= §A21{i1:i2}a (6.68)
(i1d2) 7(izia) 1
M {J(ﬁl) J(ﬁl) } = §A21{11:i3}1{12:i4}; (6.69)
A2 whenilz...=i4

M J(h)J(Zz)J(MM) _ A when i3 7é 14, 1] =13, 19 = 14
{ RO } or i3 # 14, 41 = 14, lg = 13

0 otherwise
(6.70)
3A2 when 212214
M J(il)J(iQ)J(is)J(u) _ 9 if among i1, ..., 14 there are
{ (1) <) =) =) } A two pairs of identical numbers ’
0 otherwise
6.71)
(120) 7(0i2) 11 13
M {J(lg) T } = Ay, (6.72)
(110) 7(i20) (0ir) 7(0ix)) _ 1
M { TG Thay | = MAT Tar ) = 3O, (6.73)
(0ir) 7(ia) 7(is) 7(ia)] _ (110) 7(i2) 7(i3) 7(ia)| _
M {Jon T8 T I} = M T I TG =
%AS whenilz...:i4
_J 13 if among iy, ..., 44 there are 6.74
28 two pairs of identical numbers ’ (6.74)
0 otherwise
0‘1 ‘2 i l4 1
M {J((Oi))J((i))J((ﬁl) )} = éAsl{i1:i3}1{i2:i4}7 (675)
i10) 7(i2) 7(izi 1
M {J((lz]))J((li)J((lgl)d} = gAsl{’i1=ia}1{’i2=i4}’ (6'76)
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15A3 when il =...= iG
3A3 if among 41, . . ., 4 there is a pair
Mg gl and a quad of identical numbers
{ M m }_ if among 4 g th three ’
A3 g 11,...,1g there are three
pairs of identical numbers
0 otherwise
(6.77)
MG I T | =
1
= gN(l{iz:u} (Lgir=is} Ligmio} + Liinmiot Ligmiy) +
+1{iy=ig} (1{771:733}1{774:i5} + 1{i1:734}1{773:775}) +
+1{i4=i6} (1{i1=i3}1{12=i5} + 1{i2=13}1{i1=i5})>’ (678)
M { livia) gisia) 7(is) Jus)} YN PR PR P
an Jan Joy oy § = 58N i=igy =iy Lis=io}
1
—}—gAs (2 . 1{131:1‘3} (1{1'2:1'5}1{174:176} + 1{1'2:1'6}1{774:175}) +
+1{i2:z‘3} (1{i1:i5}1{i4:i6} + 1{i1:i6}1{i4:i5}) +
+1{1'1=i4} (1{i3=i5}1{i2=16} + 1{is=i6}1{i2=15}) +
+2 - Lipmigy (Linmin Lig=i) + 1{1'3:1'5}1“1:16})), (6.79)
MGG - TG} =
1 i i i i
-2 (M{IE T = At oM TG T (6.80)

where 14  is an indicator of set A.

The formulas (6.67)—(6.80) are obtained in (23], [24].

It is necessary to note, that in [24] in (6.79) there isn’t a summand
of type

1 3
§A 1{'51:'53} 1{i2=i4} 1{i5:i6}'
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6.6 Weak approximationsof multiple Ito integrals

We will demonstrate, that existence of this summand in the formula
(6.79) is obligatory.

Because of the following equality J((ﬁ)‘]((ﬁ) = J((ﬁi)ﬁ)—i-J Wr’)—I-Al{Zs_ZG}
is executed w.p.1, then

M G = M G )+
+M LTGRO TG+ AL M {8 T (6.81)

Applying to the right part of (6.81) of the formulas (6.69), (6.78), we
come to (6.79).
[t is necessary to note [23], [24], that

l (izg)___igg))
M{ II J(/\gy__/\gg))} =0,

if the number of units, included in all multiindexes ()"(93) .. ,\ﬁg)); ky <r;
g=1,...,1, is odd.
In addition [23], [24]

Zg (9)
Wl 1550) <

where v, = %51 + pi; 0 — is, number of units, and p; — number of
zeros, included in all multiindexes (/\g) . /\ﬁg)); kg <ryg=1,...,1[
K € (0,00) — is a constant.

In the case of m,m > 1 and r = 1 [23], [24]: jg% = AfO) (i =
1,...,m), where AF) ;e=1,...,m areindependent discrete random
values, for which P {Af(i) = :I:\/K} = %

It is not difficult to see, that approximation j((g = \/Zc(gi) (1 =

1,...,m), where Céi) — are independent standard Gaussian random
values, also satisfies the condition (6.64) when r = 1.

In case of n,m > 1 and r = 2 as the approximations f((ﬁ), j((ﬁlf),
j((ﬁ)?), j((gﬁ) are taken the following ones [23], [24]:
(i wi) 70m0) _ 50i) _ 1 F(in
J = af0) GO0 = o = A - AFO, (6.82)
Flinia) _ 1 £(i1) A £(ia i1i2
Ty = 5 (AFWAFE) 4y @), (6.83)
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Chapter 6. Other methods of strong approximation of stochastic Integrals

where Af() — are independent Gaussian random values, with zero
mathematical expectation and dispersion A or independent discrete ran-
dom values, for which the following conditions are executed:

P{AF) = £V3A} = %,

P{Af® =0} = ;;

V0ri2) — are independent discrete random values, satisfying the condi-
tions

P{vid) = £A} = % when dp < i1;

ylni) — —A; Vi) — _y i) when 4, < 19;

il,’ig = 1,...,m.

Let’s look at the case r = 3 and m = 1,n > 1. In this situation in
addition to formulas (6.67)—(6.81) we will need a range of formulas for
mathematical expectations of the kind (6.66) when m = 1.

According to [23], [24] we have

M{JnyJa1y} = M{Jo1)Jany } = M{Jao)Jainy} =0,
1
M{J(Oll)J(ll)} = M{J(lol)'](ll)} = M{J(llo)J(11)} = EAS’
1
M{Joon) (1)} = M{J010)J(1) } = M{J100)J ()} = EAS’
1
M{Ja00)Ta0) } = M{Joon) Jon) } = §A4’ M{Ja1yJay} =0,
14 2 1.5
M{J010)710)} = M{J(010)Jo1)} = EA .M {(J(m)) } — EA ’

1
M{J00) o)} = M{J0or)Jaaoy } = ﬂA4,
M{Ja10)J 0y} = M{J110)Jio1y} = M{Jao1yJa0)} = 0,
M{JaonJo1)} = M{J011)J10)} = M{J011yJ(01)} = 0,

1

M {Jom (T0) "} = M {Jaon ()7} = M {Jaw) (J0)) '} = 4%
1

M {J““) (‘](1))3} =A% M{JanJanJm} = 5A%
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6.6 Weak approximationsof multiple Ito integrals

where
to+A Tk—1

Towrn & [ [ df s
t() t()

FO & p) & p s standard scalar Wiener process; A, = 1 or
)\l=0;l=1,...,k.

In [23], [24] using the given moment relations the authors propose
the following weak approximations of multiple Ito stochastic integrals of
the order r =3 whenm=1,n>1:

Joy = Af, (6.84)

Jaoy=Af, Joy=A-Af - Af, (6.85)

~ 1 - 1 -
Ja = 3 ((Af)2 - A) » Jwory = Jo10) = J100) = BAQ “Af,

. . . 1 N
Jaro) = Jaoy = Jon) = éA ((Af)2 - A) )

Jaw = SAF ((aF) - 38).

where Af ~ N(0,A); Af ~ N(0,1A%); M{AFAf} = 1A%,

Finally, we will form the weak approximations of multiple Ito stochas-
tic integrals of the order r =4 when m =1, n > 1.

The truncated Taylor-Ito expansion (9.18) when r = 4 and m = 1
includes 26 various multiple Ito stochastic integrals. Formation of weak
approximations for these stochastic integrals, satisfying the condition
(6.65) when r = 4, is extremely difficult due to the necessity to analyze
a big number of moment conditions. However, this problem may be
simplified if we introduce the truncated unified Taylor-Ito expansion,
for example, of the kind (9.24) when » = 4 and m = 1, since it includes
only 15 various multiple Ito stochastic integrals:

Iy, I, Ino, Looo, L2, Tro, Lo1, I3, 111, I20, Lo2, L100, L010, L0o1, L0o00s

where
def to+A T2
Lo, [ (=) [(to—7)dfr, - dfr, k> 1
t(] t(]

fr — is standard scalar Wiener process.
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Chapter 6. Other methods of strong approximation of stochastic Integrals

It is not difficult to note, that the condition (6.65) will be satisfied
when r = 4 and 41 = ... = 1y, if the following more strong condition is
fulfilled:

) 1
‘M{ IILw -1l l(9)|Ft0} < K(t—ty)° (6.86)
o g e

for all l%g)... l,(gi) €Ak, <4,9g=1,...,;1=1,2,...,9; where K €
(0,0); A ={0,1,00,000,2,10,01, 3,11, 20,02, 100,010,001, 0000} —
is the set of multiindexes.

Let’ propose

= VA, o= 35 (@7~ 1), (6:87)
L= _a (Co %Cl) , Tooo = % ((€)? = 3G) (6.88)
Toooo = %12 ((¢o)* — 6(C0)* +3) 5 (6.89)

here and further

to+A to+A
dof 1 aer 23 A
& /dfs, «5F | (s=to-3) drs
fs  is scalar standard Wiener process.
It is not difficult to note, that (y,(; — are independent standard
Gaussian random values. In addition, the approximations (6.87) (6.89)
with probability 1 coincide with the multiple Ito stochastic integrals,
corresponding to these approximations. This implies, that all products

l 4
of the following kind: 1'[1 I @, included in (6.86) and containing
P L 3

I
only the approximations Io, Ioo, 11, Zo00, Joooo of the kind (6.87)—(6.89),
convert the left part of (6.86) to zero, i.e. the condition (6.86) is executed
automatically.

For forming the approximations f1007 fom, fgm, flO: f(]l, fn, j?Ua jgg,
fg, Iy it is necessary to calculate the range of conditional mathematical

1
expectations of the kind: M { H1 Il(g) l(g>|Fm} , where (l%g) o ll(cy)) €A,
Py )

l
which we denote to simplify recording as follows: M { H1 I 1) l(g)} .
g=1 "1 g
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6.6 Weak approximationsof multiple Ito integrals

We have

M{Is} = M{Z5(I0)2} = M{ZsIoo} = 0, M{I3y} — _%47

M{T2(10)*} = M{IsIp0} = M{I2Tp00} = M{I2I000} = 0,
M{Ty(I50)?} = M{I5(1p)*} = M{LIpp01o} = 0,
M{I2To0(10)?} = M{I1 110} = M{L2Ig1} = M{Is1; 1o} = M{L,} = 0,

M{I2IO} = A . M{Iy(1o)*} = A*, M{LIyIo} = 54

M{LL} = —, M{Iu} = M{I,Io} = M{LIopo} = M{I,(,)*} = 0,

A4 A4
M{1,IooIp} = M{I,I;} = 0,M{I(1p)*} = - M{ Iy} = —

A4 A4 A4
M{T11(Io)*} = —, M{I11 1o} = —, M{Ips(1y)*} = —,
4 8 2

M{ToTioh = 5 MUY = M{BJ} SMI() = MU} = 0,

M{I\I1} = M{I\Joooo} = M{I)(I00)*} = M{I,(o)*} = 0,
M{ L\ Iooolo} = M{TxIoo(1o)*} = M{I1 10} = 0,

M{])\]m} = M{I)\Ilfg} =0,
Al Al Al
M{T1poloo0} = o M{T100(1o)*} = R M{Tooloolo} = ——

8 b)

A4 A4 A4

M{Inolooo} = BETL M{T10(10)%} = —3 M{Inoloolo} = 0
A 3A4 3A4
M{Zoo1looo} = —— M{Zoo1 (10)*} = ———, M{Tpo Loolo } = — g

M{I,I;} = I\/I{IpIOOO} = M{I,(I,)* } = M{I,IpoIo} =0,
M{Z,11} = M{Z,Toon} = M{Z,(Lp)’} = M{L,(In0)*Io} = 0,
M{1,100(16)*} = M{I,Iop0(1)*} = M{I,Iop00l0} = O,
M{I,Ipo0l00} = M{I,I100} = M{I, 110} =0,

M{Z, I} = M{I 12} = M{(1,)*Io} = M{I,Ios]:} = 0,
M{T1olp1 1o} = M{I,} = M{I,I;(;)*} = 0,
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A3 A3 A4
4 4 A4
M{T10(lo)"} = =247, M{loloolo} = =~
5A4
M{T10Ioo(I0)*} = 5
A4 A4 5A4
M{(Ilo)z} = Eﬂ M{Ilolm} = ?, M{110[1Io} = ﬂ’
247 A3 2
M{Iol(lo)Q} =3 M{Iy1Ig} = -3 M{IOI(IO(])?} = -
A4
M{Io1(Io)*} = —4A*Y, M{Io1To00 1o} = T3
pA! A 3A4
M{To1To0(10)"} = T3 M{(T01)*} = Ve M{InL1} = R

where p % 02,11, 20; A % 100,010, 001; p 2 10,01 (these recordings

should be realized as sequences of digits, and not as numbers).

The mentioned relations are obtained using the standard properties of
multiple Ito stochastic integrals (see chapter 9) and following equalities
resulting from the Ito formula:

A?
(Io)* = 24In000 + 12AI0g + 3A%, (Igg)® = 61oge0 + 2AI0 + 2

2

A
Too(I0)? = 121000 + 5AIog + A%, I11g = Lig+ I — 5

IOO(IO)S = 60190000 + 27A g + 6A2IO,
(IO)5 = 1201gg000 + GOAIOOO + 15A2107

10A2
(Io0)*Io = 30Igg000 + 12AIggg +

IO:
Tooo(10)* = 20100000 + TAIpoo + ATy, Toooolo = 5Iooo00 + Alooo,
A2 A?
Toooloo = 101pp000 + 3AIg00 + 71'0, InoIy = Ioo1 + Lo1o + 100 — 7foa

(Io)® = 6100 + 3AIy, Ingly = 3100 + Al
Iioly = Toio+ Tigo+ AL+ Io, Tooolo = 41g000 + Algo, (I)* = 2Ig0+ A,

1
Toily = 21o01 + To1o — 3 (I + A°I)
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6.6 Weak approximationsof multiple Ito integrals

w.p.1l.
Using the given before moment relations, we can form the approxi-
mations I1o0, Zo1o, loot, Tr0, lo1, T11, Too, o2, Io, Iy:

5 5

foo = =50 (@) ~3G), fno=—7 (0"~ 3G),  (690)
Toor = —A; ((60)? = 3G), T = %3 ((¢)* = 1), (6.91)
Ing = A—; ((G)*=1), I = A—S ((G)*—1), (6.92)
ho-2g -2 (co + £cl) (6.93)

Lo =A? (*é ((C0)2 - 1) — 7(0(1 + W ((C1)2 - 1))7 (6.94)
Ipy = A2 <—§ ((C0)2 - ) \[Cofl F 12\[ (( G)? - 1)), (6.95)

where (g, (1 — are the same random values, as in (6.87)—(6.89).

It is easy to check, that the approximations (6.87)—(6.89), (6.90)-
(6.95) satisfy the condition (6.86) when r = 4 and m = 1, n > 1, i.e.
they are weak approximationsof the order r = 4 for the case m = 1,
n > 1.
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Chapter 7

Theorems about the integration
order replacement in the multiple
stochastic integrals

In this chapter we determined the class of multiple Ito stochastic inte-
grals, for which with the probability 1 the formulas of integration order
replacement corresponding to the rules of classical integral calculus are
reasonable. We proved the theorem about integration order replacement
for the class of multiple Tto stochastic integrals. We analyzed many ex-
amples of this theorem usage. These results are generalized for the case
of multiple stochastic integrals according to martingale.

7.1 The theorem of integration order replacement
in multiple Ito stochastic integrals

Below we performed rather laborious work connected with the the-
orems about integration order replacement in multiple Ito stochastic
integrals. However, there may appear a natural question about a practi-
cal usefulness of this theory, since the significant part of its conclusions
directly arise from the Ito formula.

It is not difficult to see, that for obtainment of various relations for
multiple stochastic integrals (see for example sect. 7.1.3) using the Ito
formula, first of all these relations should be guessed, then it is necessary
to introduce corresponding Ito processes and afterwards to perform ar-
gumentation using the Ito formula. It is clear, that this process requires
intellectual expenses and it is not always trivial.

On the other hand, the technology of integration order replacement,
introduced in the present chapter is formally comply with the similar
technology for Riemann integrals, although it is related to other objects
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Chapter 7. Theorems about the integration order replacement

- Tto integrals, and it provides a possibility to perform transformations
naturally (as with Riemann integrals) with multiple stochastic Ito inte-
grals and to obtain various relations for them.

So, in order to transform the specific class of Ito processes, which
is multiple Tto stochastic integrals, it more naturally and easier to use
theorems about the integration order replacement, than the Ito formula.

Many examples of these theorems usage are presented in the proofs of
various theorems from previous chapters of the book and they illustrate
the mentioned.

Assume, that (Q,F,P)  is a fixed probability space and f;; t €
[0,7] is standard Wiener process, defined at (Q,F, P). Let’s analyze
the collection of o-algebras {Fy, t € [0,T]}, defined at (2,F,P) and
connected with the process f; in such a way, that:

1. F, CF; CF for s < t;

2. Process f; is Fi-measurable for all ¢ € [0, T];

3. Process fizn — fa for all A > 0, t > 0 is independent with the
events of g-algebra Fa.

We will introduce the class S([0, 77) of functions € : [0, T]xQ — R,
which satisfy to the conditions:

1. &(7,w) € Ma([0,T7]) (see sect. 9.1);

2. &(T,w) ] & is mean-square continuous at the interval [0, 7.

In chapter 9 (see sect. 9.1)we gave a definition of the Ito stochas-
tic integral and presented sufficient conditions for its existence, in par-
ticular, in the mean-square meaning. According to section 9.1 the Ito
stochastic integral exists in the mean-square meaning, if the integrand
& € My([0, 7)), i.e. probably is not mean-square continuous at the inter-
val [0, T']. In this chapter we will analyze the theorems about integration
order replacement for a special class of multiple Ito stochastic integrals,
at the same time, the condition of mean-square continuity of the inte-
grand in the "internal" stochastic integral will be significant.

Let’s introduce the following class of multiple stochastic integrals:

T th—1 tr
T, 8Os = [a(t1) - [ de(ts) [ drdw Vi) . dwf),
t t t

where ¢, € So([t, T)); ¢i(7) (i =1,...,k) — are continous functions at
the interval [t, T]; here and further w) = f, or w) = 7 if 7 € [t,T];
I=1,.. k+1;4® % @ ), v® % 4 From now we will call
the stochastic integrals J[d, 7,/)(k)]T,f, as multiple Ito stochastic integrals.
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7.1 The theorem of integration order replacement in multiple Ito integrals

It is well known, that for multiple Riemann integral in case of specific
conditions the formula of integration order replacement is reasonable. In
particular, if the funcrtions f(z) and g(z) are continuous at the interval
[a, b], then

b T b
[ (@) [ g(y)dydz = /g ) [ f(z)dzdy. (7.1)

If the Ito stochastic integral J[¢, 917, corresponds to the formula of
integration order replacement, which is similar to (7.1), we would have

T, nlr, / - / (s @, (7.2)

If, in addition w(!, w® = f, (s € [t, T]) in (7.2), then the stochastic
process

T
Nr = d)‘r / 7101 (T)dw(l)

doesn’t relate to the class My([t, T]), and, consequently, for the Ito
stochastic integral

T
[ nedw®
t

in the right part of (7.2) the conditions of its existence are not met.
At the same time, the formula, known as the Ito lemma, is reasonable:

T
/dfs/ds—/s—tdfs—i—/ — f)ds w.p.1,
i
and we may obtain it, for example, using the Ito formula, but it may
be considered as a result of integration order replacement. Actually, we
may demonstrate, that

T T s T T

[(fo= fods = [ [ df.ds = [ [dsdf, wpa.

t t t t 7T
Then
T T T T T T T
/(s—t dfg+/ //dsdfT—}-//dsdfT - /dfs/ds w.p.l.
t t t t T t t

The aim of this section is to install the strict mathematical meaning
of the formula (7.2), as well as its analogue, corresponding to multiple Ito
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stochastic integral J[¢, 1/)(k)}T,t, k > 2. At that, we will use the definition
of Ito stochastic integral which is more general than (9.1).

In the work [50] Ruslan L. Stratonovich introduced definition of so
called combined stochastic integral for the specific class of integrated
processes. Taking this definition as a foundation, let’s analyze the fol-
lowing construction of stochastic integral:

T
def
Lim. g br, (frin = fr) O & ./ ¢rdf,6;, (7.3)
where ¢, 0, € Sy([t, T); here and further {r;}V j—o is the partition of
interval ¢, T], for whicht =7y < ... <7v =T, Ay = o8 | |Tjs1 —

7j| = 0 when N — oc.

Further we will prove existence of integrals of the type (7.3) for
é- € Sa([t, T)) and 6, from a little bit narrower class of processes, than
So([t, T]). In addition, the integral of a kind (7.3) will be used for for-
mulation and proving the theorem about integration order replacement
in multiple Ito stochastic integrals J[¢, ™z, k > 1.

Let’s analyze some properties of the stochastic integrals, defined by
the formula (7.3):

1. fngdfT (1) = f(ng( )df;, wp.1, where g(7) — is a continuous

functlon at the 1nterval [t,T);

2. (0 + Bib,) df,6, = ] 6,df,6, + 5[ b,df,6, w1

3. 6odf, (00 + BYr) = ] 6,df,6, + B drdfrirr, w1,

where a, € R
At that, we will suppose, that stochastic processes ¢,, 6, and v, are
such, that all integrals, included in the mentioned properties, exist.

7.1.1 Formulation and proof

Let’s define the stochastic integrals j[’l/}(k)]Tys, k > 1, of the kind
T T
MW, = [ et dwl? ... [ (tr)dw)
s ts

in accordance with the definition (7.3) by the following recurrence rela-
tion:

. N
¥l & 1im, lz;wmmw WD, (74)
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where k > 1; I[3)( Nr.s g, [s,T] C [t,T]; here and further Awg) =
wl) —wg>;¢:1,...,k+1,170, 1,...,N—1.

Then, we will define the multiple stochastic integral j[qﬁ, 1/)(’“)]”7 k>
1:

T
j[¢7 77[)(k)]T,t = /Qﬁsdwgk“)f[@[)(k)]ns
t

as well as in accordance with the definition (7.3):

T, ®)r, E Lim. lz ANl (UL
0

Let’s formulate the theorem about integration order replacement in
multiple Tto stochastic integrals.

Theorem 19. Assume, that ¢, € So([t,T]) and ¢y(7); 1 =1,...,k
— are continuous nonrandom functions at the interval [¢,T). Then,
the following stochastic integral J[¢, v ®p; exists and J[¢,p®)p, =
J1¢, @y wpl.

Proof. At first, let’s prove the theorem for k& = 1.

We have

U

J[p, ¥ilrs dffllm Z P1(m) Aw! /gb dw® =

t

1—1 T+l
—Lim S r(m)Aul) Y [ ¢rduwt®, (7.5)
N—o00 1=0 ] 0 7

j[¢7¢1]Tt—llm Z¢TAU) /11)1

Ti+1
N—1 Ti+1
Clim Y rAw® S [ n(s)dwl) =
N—oo j=p I=j+1 7
N—1 Tt I-1
=lim. z [ r(s)dwd ¥ ¢, Aw®. (7.6)
N—ooo =g 7 j=0 !

It is clear, that if the difference ey of prelimit expressions in the
right part of (7.5) and (7.6) is tending in the mean-square meaning to
zero when N — oo, then the stochastic integral J[¢, 1|7, exists and

Jb, dilrs = J[b, 1)rs with probability 1.
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Chapter 7. Theorems about the integration order replacement

The difference ey can be presented in the form ey = Ey + €y, where

1—1 T

N-1
fr= S simaud S [ (6 g,) o,
=0 Jj=0 7;

A N-1 T4t . -1 )
En = lz [ (r(n) —¢1(s))dw§)zo¢TjAw£j).
=0 7 j=

We will demonstrate, that L.i.m.éxy = 0 when N — oc. In order to
do it We Wlll analy7e four cases:

1. w = fr, Aw =Afr; 2. wg =, Au) =Afr;

3. w? = f,, Aw) AT, w? =7, AwU ATy

For case 1, using standard moment properties for the Ito stochastic
integral, the mean-square continuity (and as a consequence the uniform
mean-square continuity) of process ¢, on the closed segment [¢t, T, we
obtain

k—1 TiHl

M {lex ]} = kzo {IOLCDS | Milg, - o, [} dr <
= J=0 7;
< CQ ZIAT]C Z AT] < 02 uj
k=0 J=0 2

ie. I\/I{|§N|2} is infinitely small when N — oo. Here Ar; < 6; j =
0, 1,...,N —1 (6 > 0 is exists for all € > 0 and it doesn’t depend on
) (1) < C.

Let’s analyze case 2. Using the inequality of Minkovskiy, estimates
(9.4) for n = 1 and the uniform mean-square continuity of process ¢,
we have:

M {|én|*} = :g"f)%(Tk)ATkM{ <kil 71(4257 — ¢Tj)dr)2} <

< ]]§¢g(7k)ATk <§ (M{(?l(d» - qSTJ.)dT)?}) ;)2 <

N-1 k-1 2 T — )3
ey ATk(Z Aq) < Cgeg,
k=0 j=0 3

e. M{|5N|2} is infinitely small when N — oo. Here A7; < 6; j =
1,...,N —1 (8 > 0is exists for all £ > 0 and it doesn’t depend on
|
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7.1 The theorem of integration order replacement in multiple Ito integrals

In case 3, using the inequality of Minkovskiy, standard moment prop-
erties for the Ito stochastic integral and the uniform mean-square con-
tinuity of process ¢, we find:

1

i) < (5 mmian(w($ [ 6 o) )) =

Jj=0 7;

= (X wiwian(S [l o, ar) ) <

< C% (2_: Ark<§:j Arj);>2 < CZELL(TT_QS,

ie. M{|5N|2} is infinitely small when N — oc. Here A1 < 6; j =
0, 1,...,N —1 (6 > 0 is exists for all € > 0 and it doesn’t depend on
7); [t ()| < C.

Finally, for case 4, using the inequality of Minkovskiy, estimate (9.4)
for stochastic integral and the uniform mean-square continuity of process
¢, we obtain:

M {|§N|2} < (]:z__::jz::: 1 (Tk)|ATk<M{<71(¢T - ¢rj)dT>2})

Tj

12
) <

N-1 k-1 2 T — )4
< 025( Y ALY AT,-) < 025%,
4 §j=0

ie. M{|€N|2} is infinitely small when N — oo. Here Ar; < 6; j =
0, 1,...,N—1 (6 > 0is exists for all € > 0 and it doesn’t depend on
7); [t(7)| < C.

Thus, we have proven, that L.im.éxy = 0 when N — oo. Arguing
similarly, engaging the notion of uniform continuity of the function ¢ (7)
on the closed segment [¢, T, we can demonstrate, that Li.m.€y = 0 when
N — oo.

Consequently 1i.m.exy = 0 when N — oo. The theorem is proven for
the case k = 1.

Proving the theorem we used the fact, that if the stochastic process
¢ is mean-square continuous at the interval [¢, T, then it is uniformly
mean-square continuous at this interval, i.e. for all e > 0 3 §(¢) > 0
such, that for all ¢1,t9 € [t, T] and meeting the condition [t; — t9] < §
the inequality M{|¢s, — é1,|?} < € is fulfilled (here § doesn’t depend on
tl and tg).
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Chapter 7. Theorems about the integration order replacement

Actually, let’s the ¢; is mean-square continuous at the interval [¢, T,
but it is not uniformly mean-square continuous at this interval. Then
for the some € > 0 and for all 6 > 0 3 1,2 € [¢,T] and such, that
t1 — to| < 6, but M{|¢;, — é4,|?} > . Consequently for 5 = 0,

n=12...,3 tl ), é) [t,T] and such, that |t1 — 2 | < ﬁ, bu‘r
M{|¢t§n) — (ﬁtgn)‘z} > €.
(n)

The sequence t77; n = 1,2,... is restricted, consequently, according
to the Bolzano-Weierstrass theorem we can highlight from it the conver-

gent to a certain number # (it is simple to demonstrate, that £ € [t, T))
the subsequence tgk"); n =1,2,.... Similarly to it and in virtue of the
inequality |t§") — tén)| < % we have tgk") — ¢ when n — oo.

According to the mean-square continuity of process ¢; at the moment
t and the elementary inequality (a + b)? < 2(a? + b%) we obtain

¢£2}) =0

when n — co. So, lim M{|¢,wn — ¢,am|*} = 0 when n — oco. It is
1 2
impossible by virtue of the fact, that M{|@,an — ¢,un |’} > & > 0. The
1 2
obtained contradiction proves the required statement.

Let’s go to the proof of theorem 19 in case & > 1. In order to do it
we will introduce the following ‘notations

0 < M{[¢gim —¢t;kn>|2} <2 (M{|¢t§kn) — ¢’} + M{I¢,en —

I+, / Wy(h) - / Ygar (trn)dw @7 . dwf?

J[¢a ¢ér+1)]€75 déf

6 tr trp1
def r
S [t [ grr(ten) [ brdw@T DT duf?
s s s
(r+1) n—1 Jg—1 Jgrr—1—1r+q
G[’l[} ! ]n m Z Z R Z H I[wl]Tjﬁ,l,TJl)
Jq=m jgr1=m Jgtr=m l=q

where 00 (g ) g gy Y g
(W1, - -, Prs1)-

To prove theorem 19 when k > 1 it is enough to show, that
J16,9®lrs = Lim. S[6, 4Py = T, ¥ ®r, w1, (7.7)
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7.1 The theorem of integration order replacement in multiple Ito integrals

where
Jr—1

S[¢, v P]x = Glb®]xg Z b Aw*

At first, let’s prove the right equality in (7.7).
We have:

j[¢: 1p(k)]T,t déf 1 1.m. Z quzAw I[¢(k)]T,Tl+1' (78)

—)OOlO

On the basis of the inductive hypothesis we get, that

I[¢(k)]T,T1+1 = IA[/(r/)(k)}T,T1+1 Wpl? (79)
where I[¢y®)]z, is defined in accordance with (7.4) and

T tr_1
k 1
1B, = [a(tr) . [ delt)duwty . duf).
s 8
Let’s note, that when k& > 4 (for k = 2, 3 the arguments are similar)
due to additivity of the Ito stochastic integral the following equalities
are reasonable

N-1 T i k-2 2 1
Mg, = 5 [ tilt) [ dalt) 1w ), n, dwDdwl) =
j1=l+1 7:]‘] Ti+1
N—1 T+t <1 Tjg+1 ty
k—
= / ¢1(t1)< > / +/)¢2(t2)1[¢§ Mty ity duy) =
J=l+1 7 J2=l+1 75, iy
= ... =GpWna + HpWy 0 wp, (7.10)
where
N 1 T
H[’(/)(k)]N7l+1 / /"/)2 }TTlJrldw dw
1= l+1 T Ti;

Jr— 1 1 Tir+1

+ Z G[d) r=1) ]Nl+1 / /d)r-k—l djrﬁ-QT Y }T 741 X

]T_H—l Tjr Tjr
(r+1) (r)
xdw, "V dw+

Jrk—2—1

+G[¢(k72)]N,l+1 Z I[wk 1]% 14Ty (7-11)
Jr—1=l+1
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Chapter 7. Theorems about the integration order replacement

Let’s put (7.10) into (7.9), and (7.9) into (7.8). Then w.p.1

R N
J[¢, v ®ry = 1 i.m. Zl ¢ AW (G W]y 1y + H[Y W]y 01) -

=00 |=q
(7.12)
Since

N-1j1—-1 Jr—1—1

N-1 = N-1
Z Z Z Ajy.jx = Z Z Z Ajy . x> (7'13)

1=0 j2=0 k=0 k=0 jr_1=jr+1 J1=ja+1
where aj, _j, are scalars, so

N-1 k

G[w(k)]j\uﬂ = Z Z H ]Wl]rml,rj (7-14)

Jr=I+1 Ji=ja+11=1

N-1
Let’s put (7.14) into lZ ¢ AwFDGY®] 111 and again use the
=0
formula (7.13). Then

NZ kH)GW(k)}N,lH = S[p, M. (7.15)

Let’s suppose, that the limit 1Li.m. S[#,»®]y when N — oo exists
(its existence will be proven further).

Then from (7.15) and(7.12) it follows, that for proving the right
equality in (7.7) we have to demonstrate, that w.p.1

Lim. Z ¢ Aw D HY @y 14y = 0. (7.16)

N—oo |—

Analyzing the second moment of prelimit expression in the left
part of (7.16), considering (7.11), the independence ¢,,, Aw{*! and
H[)®)]x 111, of standard estimations of the second moments of q‘rochas—
tic integrals and the Minkovskiy inequality, we find, that (7.16) is reason-
able. Thus, in the assumption of existence of the limit Li.m. S[¢,9®*)]y
when N — oo we obtained, that the right equality in (7.7) is fulfilled.

Let’s demonstrate, that the left equality in (7.7) is also reasonable.

We have

T, ™y ¥ 1im. Nz b1 (m) AwD J[g, w1, (7.17)
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Let’s use the same arguments to the integral J[¢, d)ék_l)]m in (7.17),
as for the integral I[¢®]r,,,., which resulted to the relation (7.10), and
we will put the obtained for J[g, Tﬁék_])}ﬂ’t expression in (7.17).

Hereafter, using the Minkovskiy inequality and standard estimations
of the stochastic integral second moments it is easy to determine, that

(6,9 ™ry = Lim. Rlg, 9Py wp., (7.18)
—00
where
. N=1 ) (k1) r—1 T )
Rlp, 6Vl = X n(m) MGl Vo [ érdw+.
= =0 7
We will demonstrate, that

Lim. R[¢,v®]y = Lim. S[é,v® ]y w.p.1. (7.19)
N—oo N—oo

It is easy to see, that
R, v®y = Ulg, v® ]y + Vg, Py + S[é, v® ]y w.p.1, (7.20)

where

Ulg, ™y = Nz:::] 1 (le)Awgl)Gngil)]jho Jlkgl 1Ay mi
- ji]
V[¢’ w(k)]N - .ZZOI[A¢]}Tj1+l,7jlG[1/)£k71)]j1’0 l§] ¢TlAw_(rl1€+1)
and " - =
AY ], = / (i(r,) — 1/)1(T))dw7(_1);
leTl‘Fl

TGy = [ (6 = dn)du**.

Tl

Hereafter, using the Minkovskiy inequality and standard estimations
of the stochastic integral second moments, as well as continuity of the
function 11 (7) and belonging of the process ¢, to the class So([t, T']) we
obtain, that Lim. V[¢, ™)y = Lim. U[¢, »* ]y = 0 when N — oo
w.p.1. Then, considering (7.20), we get (7.19). From (7.19) and (7.18) it
follows, that the left equality in (7.7) is fulfilled.

At the same time, the limit Lim. S[¢,¢®]y when N — oo exists
because it is equal to the integral J[¢, v®]z; which exists in conditions
of the present theorem. So, the chain of equalities (7.7) is proven. The
theorem is proven 0.
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Chapter 7. Theorems about the integration order replacement

7.1.2 Corollaries and generalizations
Assume, that Dy = {(t1,...,tx) : t <t;1 < ..
following conditions are met

Al {t c SQ([t,T]);
Al @(tl, ..

t;_1) — is continuous non-random on the closed set
Dy._; function.

. < tr < T} and the

Let’s define the following stochastic integrals

Je, %)

T
¥ = [ &, dwi / dw
t

/(I) tl,tg, e ,tk,l)dwgl) def

Lim. Z anW““

lim 5 /dw/'“. /d

/CI) ti,t9, ... ,tkfl)dwgl)
TI41
when k& > 3 and

JlE, @)%, = /Edeth /q> (t)dwi) <

T
1 im Z {T,Aw i2) / (tl)dwt ,
Nooo 1=0 T
where w() = f) when i = 1,.,.,m; wl®) =
£, i=1,...,

=T il,...,ikZO, 1,...,m;
— are independent and F,-measurable for all 7 € [¢t, T
standard Wiener processes

Let’s denote

T th—1

JERE = [ ... [ ®(t,... )& dwy?

Cdwi™ | k>2, (7.21)
t t

where the right part of (7.21) is the multiple Ito stochastic integral
Let’s analyze one generalization of theorem 19.
Let’s introduce the following multiple stochastic integrals

/d i) /d /cI> (t, s, ..

5 tkfl)dwgl) def

Lim. 3 w1 /d G2 /d
N—oo
Ti41

/(I) t17 tg, ey tk,l)dwgl),
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7.1 The theorem of integration order replacement in multiple Ito integrals

T tp—2
T = [ [ . te)dw,V L dwi, k> 2.
t t

It is easy to demonstrate similarly to the proof of theorem 19, that
under the condition AII of this section the following stochastic integral
J[®)%, "V exists and J[®]F, " = J[®]%, " with probability 1.

In its turn, using this fact we may similarly to the proof of theorem
19 to prove the following theorem.

Theorem 20. Let the condztwns Al, AIl of this section are met
Then, the stochastic integral J[E <I>}Tt exists and J[€, <I>]Tt = [f <I>}Tt
with probability 1 (k > 2).

Let’s analyze the following stochastic integrals:

T T Tt _ _
I= t/ df™ / &y (1, p)de(™, J = t/ / ®y(t, o) de df

If we consider ,
[ @it 1)t
ta

as the integrand of I, and

ta

[ ®alt, to)df”

t

as the integrand of J, then; due to independence of these integrands we
may mistakenly think, that M{7/.J} = 0. But it is not the fact. Actually,
using the integration order replacement in I w.p.1 we have

T t ) . T ty . .
I=[ [ @1ty t)df ) = [ [ ®1(ta, )df S df)”
t t t ot

So, using the standard properties of the Ito stochastic integral, we

get
T ty

M{IJ} = Ljimiy [ [ ®ita, t1)@a(t, to) dtrdts.
tt

Let’s analyze the following statement.
Theorem 21. Let the conditions of theorem 19 are fulfilled and h(T)
— is the continuous nonrandom function at the interval [t, T]. Then

/ drdwDh(r) ] - / ¢ (1) dw D I[Py wp 1, (7.22)
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Chapter 7. Theorems about the integration order replacement

and the integrals in the left and right parts of (7.22) exist.
Proof. According to theorem 19 the multiple stochastic integral in
the right part of (7.22) exists. In addition

T
[ -h(r)duw D [tk _/¢ dw D h(r) I[Py, —
t

~Lim. ]_Vzl ¢r, A7) Aw D I[P wop 1,

where Ah(Tj) = h(Tj+1) — h(Tj).
Using the arguments which resulted to the right inequality in (7.7)
we obtain

N-1 R
1im. 2:3 SnAR(m) Aw Iy, =
=Lim Gl ™ z ¢ AR() AwF Y w.p 1. (7.23)

Hereafter, using the Minkovskiy inequality and standard estimations
of the stochastic integral second moments and continuity of the function
h(7) we find, that the second moment of prelimit expression in the right
part of (7.23) tends to zero when n — co. The theorem is proven O.

Let’s analyze one corollary of theorem 19.

Theorem 22. In the conditions of theorem 21

T t1
[ ht1) [ $rdwl*Dduw Vg, =
t t

T
wi*? [ h(ty)dwl Wz, wpa, (7.24)

|
~—
‘G~

at that, the left and right parts of (7.24) exist.
Proof. Using theorem 19 two times, we get

T
/ drdw? [ h(t)dw Iy, =

tr_1

T t
= / 1(t) - - / Ui (k) / pwag“H)dwt(f) . .dw;l) =
t t

t
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7.1 The theorem of integration order replacement in multiple Ito integrals

@b\ﬂ

T T
prdw*+Y /wk(tk)dwt(f) . ../le(tl)dwt(ll) w.p.1,
T to

where .
80 ol
t

The theorem is proven 0.

7.1.3 Integration order replacement for the concrete multiple
Ito stochastic integrals

As we mentioned before, the formulas, mentioned in this section,
may be obtained using the Ito formula. However, the method, based on
theorem 19 is more simple and familiar, since it coordinates with usual
rules of integration order replacement in the Riemann integrals.

Using the theorem 19 about the integration order replacement in mul-
tiple Ito stochastic integrals it is easy to demonstrate, that the following
equalities are reasonable with probability 1:

T ty T

//dftldtz = /(T — t1)df,,
Tt t

T ty T
/cos(tg —T) /dftldt2 = /sin(T — t1)dfy,,
t t t

T

T 12
[sin(ts = T) [ dfi,dts = [ (cos(T — 1) — 1) df,,
t

t

t
T 17
et gt L[, a0
/ t

T t

1
to—T)* [ dfyydty = —— [(t1 — T)*"'d -1,
[(t2 =T [ dfudty =~ [ = T)" o 1,

J(lO)T,t + J(Ol)T,t = (T — t)‘](l)T,t (the Ito lemma),

L T T
Jaooyrs = B /(T — t1)%dfy,, Jowyrs = /(tl —t)(T — t1)dfy,,
i

t

Jaioyre =

H\’ﬂ

to
(T —t5) [ dfudfi,,
t
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ta

T
Jaonyr // (ta — t1)dfy, df,,
bt
T ts t
Jaonr Z/// ty — t1)dfy, dfy,dft,,
bt
Tty
Jatonre = // (t3 —t2) /dftldfthft:ﬂ
bt
T t fz
Janor: = / —t3) //dftldftzdftga
i
1T
Jatooyrt = 5/ - t2)2/dft1dft2,
i
1 T fz
JaoonTt = 5/ ty —t1) 2dfy, df;,,
bt
T ts
Jaooyry = /(T —15) /(tz = t1)dfy, df,,
i i
T
Jouor, =/ < 1) /t1 — t)dfy, dfy,,
i i
Tt
Jo101)T, // ty — t1)(t1 — t)dfy, dfs,,
Pt

1
Joooyr,t = 3 (T — t1)(t; — t)dfs,,

H‘\H

1T
— (T - )%
J1000)7,t 3/ 1)°dft,,

1 f k-1
J(] 0.0Tt = (k _ 1)| /(T - tl) dftla
1 ’ k 2
J(HO...O)TJ - (k‘ _ 2)| t/(T o t2 /dftldftZ)
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T
Jq a0 = /(T —t)J 1.0t 1dft, s
= y
k—1 k—z
T to
J(] 0.0)Tt = | / t2 - tl 2dft1 dftw
et t
T ts to
J(101 DTt = / . //(t2 - tl)dftldftz s dftk—la
e t it

tr—1 to

T tp—2
Jogmre=[ [ ter=tis) [ [dfudfu dfo dfu
t t t

li: 2
generalizations of the Ito lemma:
Jawyre + Jaoyre + Joyre = (T — t) Janyre,
T —t)?

Jooyr,: + Jowyrs + Jaooyr = %J(l)m,

Jawoyr + Jaowyrt + Joovyrs + Joroyrst

T —t)?
+Jo100)7, + JoorTie = ( 5 ) Jant,

(T—t)°
Jaoooyrt + Jo100)7,¢ + Joor0yrt + Jooon)e = ETE

Jayrss
Janoyrs + Jawonrs + Jaoyrg + Jounre = (T — ) Jaiyre

1
Z J = (T — t)kilj(l)Tt

=~
=
=
=
|
3
=
S~
&
=

i+ .+l=m
1;€{0, 1}; i=1,...k

Ty do)T / / dwi? .. dw®;

lizlwhenwt(f):fti and [; = 0 when wgi):ti;izl,...,k; frent

is standard Wiener process.

where
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7.2 Integration order replacement in multiple sto-
chastic integrals according to martingale

In this section we will generalize the theorems about integration order
replacement in multiple Ito stochastic integrals for the case of multiple
stochastic integrals according to martingale.

Assume, that (Q,F,P) — is a fixed probability space and {F;,t €
[0, t]} — is a non-decreasing collection of o-algebras, defined at (22, F, P).
Assume, that My, t € [0,T] is Fi-measurable for all ¢ € [0, 7] martin-
gale, which satisfies the condition M{|M;|} < oo and for all ¢ € [0, 7]
there is a F;-measurable and non-negative with probability 1 stochastic
process p, t € [0,T] such, that

MO, — M)F = M{ [ prarFif w. p. 1,
t

where 0 <t < s<T.
Let’s analyze the class Hy(p, [0, T]) of stochastic processes ¢y, ¢ €
[0, T, which are Fy-measurable for all ¢ €[0, T'] and satisfies the condi-

. T 2
tion M {f wtptdt} < .
0
In chapter 9 we mentioned (see also [2]), that the stochastic integral

T
according to martingale [ &,dM., where the stochastic process &, T €
i

[t, T] belongs to the class Ha(p,[0,T]), obtained in accordance with
definition (9.11), exists:

Let Ha(p,[0,T]) — is a class of mean-square continuous for all 7 €
[0, T] and related to the class Ha(p, [0, T']) of stochastic processes &,, 7 €

[0, 77].
Let
T tp—1 tg
S, 6Py = [ats) ... [ dalts) [ rdM®Dadg .. ans?,
t : t (7.25)
T tp—1
SNy = [a(tr) ... [ wnt)amP . amf. (7.26)
t t

Here and further ¢, € Ha(p, [t, T)); ¢1(7), ..., ¥s(T) — are continuous
nonrandom functions at the interval [t, T); MY = M, or MY = 7 if
TeT);l=1,...,k+1; M. is martingale.
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Let’s define the following multiple stochastic integral S‘[zb('“)hs; t <
s <T, k>1,of the form

T T
S = [rte)dMy ... [ (t)dML]
s to

N-1

S1Wre € Lim. 3 () AMP S Vs, (7.27)
—00  [—(

where & > 1; S[y©)r, o, [s,T] C [t,T]; here and further
AMPD = MY —MD:i=1,.. k+1;1=0,1,...,N — L; {n}}¥,

is the partition of interval [¢,T] such, that t = 10 < ... < 7y =

T, [ Jnax |Tj+1 — 75 = 0 when N — o0; other notations included in
<j<

(7.27), the same as in (7.25) and (7.26).
Further, let’s define the multiple stochastic integral S[¢, ™z, k >
1, of the kind

T
S, ®rs = [ rdMFD SNy
t
by the equality

Sl, )7 t—hm ¥ S AMED S ®y

—)ocl(]

where the sense of notations, included in (7.25)—(7.27) is stored.

Let’s formulate the theorem about integration order replacement in
the multiple stochastic integrals according to martingale, which is the
generalization of theorem 19.

Theorem 23. Let ¢, € Ha(p,[t,T]); i(7) (I = 1,...,k) are
continuous at the interval [t,T] nonrandom functions and |p;| < K <
oo with probability 1 for all T € [t,T]. Then the stochastic integral
S’[q’),d)(k)h’t exists and S[p, v F)]p, = S’[d)ﬂrb(k)]ﬂt with probability 1.

The proof of theorem 23 is similar to the proof of theorem 19.

Let’s note, that we can propose another variant of the theorem 23
conditions. Thus, it is not necessary to require the limitation of process
pr, however in this case it is necessary to require, for example, execution
of the next additional conditions:

359



Chapter 7. Theorems about the integration order replacement

1. M{lp;|} < oo for all T € [t, T;

2. The process p, is independent with the processes ¢, and M, .

Let’s note, that it is well known the construction of stochastic integral
according to Wiener process from not F,-measurable stochastic process
— the so-called Stratonovich stochastic integral (see chapter 9).

The stochastic integral S[¢, ¥®)]7, is also the stochastic integral from
not F -measurable stochastic process, however in conditions of the the-
orem 23 S[@, ™, = S[¢, W]z, with probability 1, and S[¢, »*)]r,
— is a common multiple stochastic integral according to martingale.
If, for example, M, 7 € [t,T] — is a Wiener process, then the question
about connection of stochastic integral S (¢, 1/)(’“)]” and the Stratonovich
stochastic integral is solving as a standard question about connection of
Stratonovich and Ito stochastic integrals.

Let’s analyze several statements, which are the generalizations of the-
orems formulated in the previous section.

Let the nonrandom function ®(t1,...,t5—1) is continuous at the
closed set Dy_1 = {(t1,.. ., th—1) : t<t1 < ... <tp_1 < T}

Let’s define the following stochastic integrals:

T T
S[e, %) /&detk . ./dM§f>/<b(t1,t2,...,tk,l)dM}}) def
t3

ty

T T T
Lim. z EAMP [ adV [ dM? [@(ty,ta,. .. ) dMSD
= TI41 ts3 to

when k£ > 3 and

Sle, ®]%)

7

= / &, d M / ®(ty)dm) &

T
) i m. z & AMY [ ®(ty)dMy,

N=voo )= Ti+1

where the sense of notations, included in (7.25)-(7.27) is stored, and the

stochastic process &, 7 € [t, T] is related to the class Ha(p, [t, T]).
In addition, let

3

T tr—1
S, @]ngg:/... / B(ty, ..oty )& dMP . dMD | k> 2, (7.28)
t t
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7.2 Integration order replacement in integrals according to martingale

the right part of (7.28) is the multiple stochastic integral according to
martingale.
Let’s introduce the following multiple stochastic integrals

Slelf, /th“m_ /th /@tl,tg,...,tk_l)th(fad:ef
ta

t3

T T
Lim. Z AME) /th’“ .../th(f)/CD(tl,tg,...,tk_l)th(]“),

N—oo Ti4+1 t3 to

T tgp—2
S@lf V= [ [ Bty te)dMY A, k> 2.
t t

It is easy to demonstrate similarly to the proof of theorem 23, that
if the function ®(¢1,...,tx—1) is continuous at the closed set Dy_; =
{(t1, - yth—1) + t <t < ... < tg—1 < T}, then the stochastic in-
tegral S[® ] (k1) exists and with probability 1 the following equality is
reasonable S’[ } (k1) — S[@]%;l).

In its turn, usmg this fact we may. similarly to the proof of theorem
23 to prove the following theorem.

Theorem 24. Let the nonrandom function ®(ty,...,t_1) is con-
tinuous at the closed set Dy-y = {(try--ytkm1) =t <t < ... <
trn < T}, & € Ho(p, [t,T)) and |p;) < K < oo with probability
1 for all T € [t, T] Then, the stochastic integral S[E, @]2“3 exists and

S[¢, }Tf = S[¢, ]Tt with probability 1 (k > 2).

Theorem 24 is a generalization of theorem 20 for the case of multiple
stochastic integrals according to martingale.

Let’s analyze two other statements.

Theorem 25. Let the conditions of theorem 23 are fulfilled and h(T)

is the continuous nonrandom function at the interval [t,T]. Then

T
/(]5 dM*Dp(7) - /qu Y dMFD S ®] - wpd (7.29)

t

and stochastic integrals in the left and right parts of (7.29) ewxist.
Theorem 26. In conditions of theorem 25

T t1
[ hts) [ 6, dMEFDaMED G0, =
t t
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Chapter 7. Theorems about the integration order replacement

T T
= [ ¢:dM*? [ n(t)dM{ D [ Mgy, wp, (7.30)
t T

at that, the left and right parts of (7.30) exist.
The proofs of theorems 25 and 26 are similar to the proofs of theorems
21 and 22 correspondingly.
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Chapter 8

Some exact formulas for Ito and
Stratonovich stochastic integrals

8.1 Representation of multiple Ito stochastic inte-
grals using Hermite polynomials

In the previous chapters of this book we analyzed the general theory
of approximation of multiple Ito and Stratonovich stochastic integrals.
However, in some particular cases we may'get exact expressions for mul-
tiple Ito and Stratonovich stochastic integrals in the form of polynomials
of finite degrees from one standard Gaussian random variable. This and
next sections will be devoted to this question. The results described in
them may be met, for example, in [29].

Let’s analyze the family of constructing polynomials H,(z,y); n =
0, 1,... of type:

I
1

d az—ia?
H,(z,y) = ﬁe Y

It is well known, that polynomials H,(z,y) are connected with Her-

mite polynomials h,(z) by the formula H,(z,y) = (%)% hn (VLTu) , where

a=0

hy(z) is Hermite polynomial.
Using the recurrent formulas

dh,,
dz

hn(2) = 2zhp—1(2) — 2(n — 1)hy—a(2); n=2, 3,...,

it is easy to get the following recurrent relations for polynomials
H,(z,y) :

(2) =2nh,1(z); n=1, 2,...,

0H,
Ox

(z,y) =nHp1(z,y); n=1, 2,..., (8.1)
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Chapter 8. Some exact formulas for stochastic integrals

0H, n ne
Iin — " Ho(e,y) - ZH, ((2,y); n=1,2..., (82
oy ©¥) = 5 Hn(@,y) = o Hna(,9); n (82)
0H, n(n —1)
= —7Hn_ s ; = 2, g .
o) = =" ) =28 89)
It follows from (8.1) — (8.3), that
0H, 10%H,
—_— — =0;,n=2 e 4
By (@9)+ 552 @y =0n=23 (8.4)

Using the Ito formula with probability 1 we have

t

Hafit) = Fof0,0) = [ 5 f )it

0
t
0H, 10%°H,
o[ (Gt 0+ 35500 0) ds 5)
where f; € R! — is a standard Wiener process.

According to (8.4) and H,(0,0) = 0; m'= 2, 3,... from (8.5) with
probubilty 1 we get

t

Hn(ftat) = /anfl(fsa S)dfg, n= 25 35 R

0

Hereafter, in accordance with induction it is easy to get the following
relation with probability 1:

t ty
(n) def _ 1 =
PR 0/...0/dft, cdfy, = S HA(fit) =1, 2, (8.6)
Let’s examine one of extensions [29] from formula (8.6):
t
n) de 1
Vs dzo/ / Yndfy, - dfy, = —Ha(8, A); =1, 2,..., (8.7)
where

t t
def def
6 [wudf; A [lds;
0 0
1)y — is non-anticipating stochastic process, which satisfy the conditions
of existing of Ito stochastic integral in the mean-square sense (see sect.

9.1).
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8.2 One formula for multiple Stratonovich integrals of kth multiplicity

It is easy to check, that first eight formulas from the family (8.7) look
as follows

IO = 0, I = (8- A,
I = % (63— 36,;), I = % (61 — 6520 + 3A7),
I = % (67 — 10834 + 156,A2)
JO = é (65 — 158! A, + 456202 — 15A7)
I = % (67 — 2167 A + 1056} A2 — 1058,A3)
J® = é (67 — 2888 Ay + 2106; A7 — 42057 A% + 105A7)
with probability 1.
8.2 One formula for multiple Stratonovich stochas-

tic integrals of kth multiplicity

Let’s prove with probability 1<the following relation for multiple
Stratonovich integrals [24]

xl xt2

*(n 1 n *(n) de
It():mft, It”d:fo/ 0/ dfy,...df,, w.p. 1.  (88)

At first, we will examine the case n = 2. Using theorem 12 we obtain:

) 1/
@ =@ 5 /dt1 w.p. 1. (8.9)
0
From the relation (8.6) when n = 2 follows, that with probability 1
1 1}
1P = — - [d. 1
= gf -5 0/ i (8-10)

Substituting (8.10) into (8.9), with probability 1 we have ¥ =
f2/(21). So, formula (8.8) is correct when n = 2.
Assume, that the formula (8.8) is correct when n = k, ie. with

*t
probability 1: It*(k) = f¥/(k!), and examine [ I*®)df, def It*(k+1)_
0
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Chapter 8. Some exact formulas for stochastic integrals

From sect. 9.2 and inductive hypotheses with probability 1 we get
t k-1
*(k+1) L f7
1t / %'EJ (8.11)

Let’s introduce a stochastic process & of type & = fF1/((k + 1)!)
and will find its stochastic differential using the Ito formula:

k 1

m:l ﬁ+ﬂ% (8.12)

2(k—-1)!

Since & = 0, then from (8.11) and (8.12) it follows, that I;*™!) =
FEFL/((k+1)!) with probability 1. So, relation (8.8) is proven in accor-
dance with induction.

It is easy to see, that formula (8.8) admits the following extension:

. 1
I = =50 wopd, (8.13)
n:

where J;™ % gtw(tn)...of*”w(mdfh...dftn; 5 = jw(s)dfs, w(s) :

[0,%] — R! — is some continuously differentiated function.
8.3 One formula for double Stratonovich stochastic
integrals
In this section we will prove the following lemma.

Lemma 11. Assume, that h(7), g(7), G(7) : [t, s] = R! — are con-
tinuous functions at the interval [t, s),

/g G(7) + C; C = const,

¢W € Qs([t, s]) (see sect. 9.2) and
0 = [audu+ [bdfl); 1=1, 2,
t t

where £, £@) — are independent standard Wiener processes. Then
s *T «0 %8 +0
[a()[ n@) ] Ddtdedr = [ (G(s) — G(©))h(6) [ eVt dfy”
t t t i t
(8.14)
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8.3 One formula for double Stratonovich stochastic integrals

w.p.1, where i,5,1 = 1,2; fT(l), fT(Z) — F.-measurable for all 7 € [t, ]
independent standard Wiener processes.
Proof: In conditions of lemma we may use (9.7) when F(z,0) =

zh(0),
def / f df

because of ng € Qs([t, s]); zh(6) — is two times continuously differen-
tiated function according to variable x and mentioned derivatives are
restricted for all z € RY; nyh(f) € My([t, s]). According to (9.7) and
(9.8) we obtain:

7 x0 T «0 -

. o

[ n) [ ePadat? = [ 1) [ €DdeVdf + 1 [ hO)8" 6,
t t 3 p J

(8.15)

/51 /5 )+ 1{1 Z}/b du (8.16)

t
w.p.1, where 14 is an 1ndlcator of the set A.

Let’s substitute (8.15), (8.16) in the left part of (8.14) and use theo-
rem 19 two times:

s *T «0 s s s
[a(n)[ no) [ eNafDatydr = / eDatl) [ ho)aty” [ g(r
t t t u [’

S

+%1{l:i}/sbudu/sh(9)df] jq ydr + 1{Z ]}/h fg / (T)dr
t u 9 9

s)</ £ gfth) / h(6)dfy + 1{1_]} / h(6)e do+
t u

1 ()
+510-i) / budu / h(6)df} )—

—( [eDat? / G(0)h(6)dEY + 1{1_,} / G(0)h(0)eS do+

t

1 f 0 _
+§1{,:1;}./ budu/h(H)G(é))dfg ) =

s 0

(/ ) [ €Dataty + 11{1—1}/’1 (0)¢y do+

t
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Chapter 8. Some exact formulas for stochastic integrals

1 5 6 ,
+5 L= [ () [ bududfa(”>f
t t
S 6 R
~(fownr® [eradan? + 1.y [ COmo) b+

1 s [ )
1= [ HO)GO) | bududf;”) (8.17)
t t

w.p.1. Using (8.15), (8.16), formula, which differs from (8.15) by the
change h(6) on G(0)h(0), as well as (8.17), we get (8.14). The lemma is
proven. O

8.4 Analytical formulas for calculation of stochastic
integrals

This section is devoted to receiving of two families of analytical formu-
las on the basis of the Ito formula for calculation of stochastic integrals.

Assume, that (Q,F,P) — is a fixed probability space. Let’s analyze
the Ito process n, € R", defined for 7€ [0, 7], T < oo, as the solution
of the Ito stochastic differential equation:

dn, = G(Un T)dT + E(nra T)dfra Mo = n(oaw)a (818)

where a(n, 7) : " x [0, T} = R", Z(n,7) : R x [0,T] — ™™ — are
nonrandom functions; f, (€ R™ — F,-measurable for all 7 € [0, T] stan-
dard vector Wiener process with independent components; the random
value 1y doesn’t depend on difference f, — fy when 7 > 0.

In relation to functions a(n,7) and X(n,7) we propose, that they
satisfy the standard conditions of existence and uniqueness (in the sense
of stochastic equivalency) of solution of the Ito stochastic differential
equation (see sect. 9.4).

Otherwise, let’s use [24] exact solutions of specific Ito stochastic dif-
ferential equations of the kind (8.18) in order to demonstrate existence
of their solutions.

Let Y C R™ — a set, for which

P{n, €Y forall7€[0,T]} =1,

and the function R(n,7) : R" x [0,T] — R! is continuous and has

. . . . 2 P
continuous partial derivatives g—f(n,'r), %(n,r), %(n,ﬂ; i, =
1,...,nforall (n,7) €Y x [0,T].
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8.4 Analytical formulas for calculation of stochastic integrals

Let’s write the Ito formula for the process R(ns, s) :

8

*OR
/ a1 7) “di, = R(ns,8) — R(mi,t) — [ LR(ne, 7)dr wp.1, (8.19)
t

t

where s,t € [0,T]; s > t; U s the scalar product ; L is an operator
of the kind

Lon,r) = 2y + L35 S5 50 g, )= ) Ty
g 77’ 67’ T]’ 27.:1 iJ:l 177 77) an(z)an(]) Ir]’ bl
(8.20)

where g : Y x [0,T] — R! — is some function, for which the right part
of (8.20) exists.
Let the function R(n, ) satisfies the differential equation

LR(n,7) = ¢(7), (8.21)

where p(7)  is some scalar nonrandom integrated at the interval [0, 7]
function. Then (8.19) has the form

ZR(% 7) " dn, = R(n,, s) — R(mi, t) — /S(,D(T)dT wp.l.  (8.22)

The relation (8.22) may be-interpreted as the analytical formula for
calculation of integral in the left part of (8.22). Several formulas of the
type (8.22) are well known from the literature for specific functions
a(n, ), X(n,7), R(n, 7); ¢(7). Let’s demonstrate some of them:

U= B == (s =)+ L (fo— f* wpl, freR,  (823)
t

[, " df, = (s—t) (62 = |E) wp1, f,eR™,  (8.24)
t
ELdf,
/ i T iom —(EPTT I8P wpd, m >3, £ e 7 (8.25)
t
Tf L df, ,
/W = In|f,| — In|f,| w.p.1, £, € R2. (8.26)
t T

The formula (8.23) may be found in [29], and formulas (8.24) (8.26)
may be found in [48].
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Chapter 8. Some exact formulas for stochastic integrals

Let’s note that for the Stratonovich stochastic integrals from stochas-
tic processes of special kind the analytical formulas of their calculation,
corresponding to the rules of classical integral calculus are reasonable.

Thus, let’s propose, that the function F(z) : ! — R! satisfy the
conditions of validity of the formula (9.7).

Then according to (9.7) we obtain:

%8

[ E(Gd, = [ P+

t

:“H

S

[

where f, € R — is standard Wiener process.
Using the Ito formula

(fr)dT w.p.1, (8.27)

[\D\»—-

S

GUf) =GR = 3 [ S (F)dr+ [ FUdf wpd, (529
t t

where dG(z)/dz = F(z). Combining (8.27) and (8.28), we get

%8

[ F(f2)df: = G(f.) — G(f,) wp.1. (8-29)
t
The formula (8.29) may be found, for-example, in [24].
The approach proposed further is based on solution of differential
equation (8.21) in case of several suppositions in relation to the functions

R(n,7) and X(n, 7). Thus, let n € R, X(n, 7) = 6(n)o(7), where 6(n) :
R R o(1): [0,T] =R
Then the differential‘equation (8.21) has the form

S04 3RO G0 = o), (830

where 32(n) = g’jl (9(”(17))2.

Solution of the equation (8.30) may be found, for example, by the
method of additive (R(n, 7) = p(n) +1(7)) or multiplicative (R(n, 7) =
p(n)(7)) separation of variables.

8.4.1 Additive separation of variables

Let R(n,7) = p(n)+v(7), n € RL. Then the equation (8.30) assumes
the form
i &

(1) + 502 (n)B(m) n”( n) = p(7). (8:31)
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8.4 Analytical formulas for calculation of stochastic integrals

After separation of variables in the (8.31) when o(7) # 0 we find

;52(’7)37;;(”) = (cp(r) - %(7)) 0217) = X (constant).  (8.32)

If 8%(n) > 0, then from (8.32) we get two differential equations:

W) = plr) = 2(r),

d2
gy (1) = 2/ (5m).
the solutions of which have a form
W(r) =1+ [ ((u) ~ Ao*(w)) du, (8.33)
0
yl
p(n) = po + pin + 2A/9(U)du7 (8.34)
Yo

where g(u) Qef 7 dz/(B%(2)); po, p1;Y0,%0  are constants; %(u) > 0
Yo
when u € [yo,n)].

Substitution of (8.33) and (8.34) in the function R(n,7) = p(n) +
(1), n € R, and R(n,7)"  in (8.22) when X # 0 provides

8

[ stw)an, = =2 [ eyar+ [ainwpr.  (839)

s
For the specific selection of function 8(z) the integral | g(u)du may
Nt

be calculated exactly. Then the formula (8.35) for various 3(z) defines
the whole family of analytical expressions for calculation of the stochas-

tic integral fg(nT)dnT.
1

Let’s analyze the selection of functions §(z) and the corresponding
formulas from the family (8.35). At that, in some cases, if the selected
function B(z) is such, that the function X(n, 7) doesn’t satisfy the con-
ditions 1 and 2 (see sect. 9.4) or such, that some restrictions are imposed
on the scope of definition or scope of values of the process 7., so in this
case for demonstration of existence of the processes 7n,, satisfying the
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Chapter 8. Some exact formulas for stochastic integrals

formula (8.35), we use the examples of Ito stochastic differential equa-
tions and their exact solutions n, [24]. Further, everywhere f; is a
standard scalar Wiener process (fo = 0).

Lg% n) =1
2

/s - %t w.p.l.
t

s

/ Nrdn,: =
t

L\D\»—t

2. B2(n) = Jy(n), y(n) € an* +bn+c, A=4dac—b* >0, a>0:

A P 1
[ Arsh ™ gy, — ~va [ oX(n)dr+ F(n,) = F(n) w.p1, (8.30)

where F(z) dof (z 4 b/(2a))Arsh((2az + b) /vV/A) — \/7/[
3. 82(n) =y(n), A=4dac—b >0, a>0:

/Sarcth(mT + b \/—/a )dr + F(ns) — F(n:) w.p.1,
where F'(z) aef (z+b/(2a))arctg((2az+b)/vVA) - (VA/(4a))/(ny(z)).

4. 8%(n) = 1/\Jy(n), A=4ac—b >0, a>0:

[ Fyno)dn, = —% [ 2(x)dr + Fa(n,) — Falme) wp.1,

where Fi(z) dof ((2az + b)/(4a))\y(z) + (A/(8ar/a))Arsh((2az +
0)/VA); Falz) (A/(Sa\f)) () + y¥2(2)/(6a); function F(z) is

the same, as in the formula (8.36).

5. 2(n) = 1/P,_1(n), where P,_1(n) > 0 — is a polynomial of the
degree n — 1 with real coefficients:

Ll
—, [ (@)dr + Hupa(n) = Hua(me) wop.1,
t

L\D\»—t

7 @n(nr-)dn, =
t

where P,_;1(z) = dQ" (z); Hppr(z) = [ Qn(z)dz

Further, we will consider 7y and o as constants.
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8.4 Analytical formulas for calculation of stochastic integrals

6. B%(n) = e~

8 1 s 1
0/ Sy = 5 [ ()dr 5 (1) v,

where, for example 7; = In (f; + e™) (solution of the equation dmny =
—0.5e " 2ndt + e Mdfy), 0 < || < 00, o(7) =1, s <min{t > 0: f; +
e = 0}.

7.8%(n) =

sd )
e / (r)dr + Inn; — Inmg w.p.1, (8.37)
0

Nr

where, for example n; = 7706(“7%”2)"‘”]3 (solution of the equation dn; =

amdt + onydf;), 0 < mg < 00, o(T) =0, a is a constant.
8. 8% n)=n>0:

8 1 s
[ 1nndn, = 5 [ *(r)dr + il =, — nolnmg + o w.p.1,
0 0

where, for example n; = ( fi+ \/%)2 (solution of the equation dn; =
dt +2,/mdfy), 0 < my < 00, 0(T) =2, 5 < min{t >0: fi4+ o= 0}.

9. 8%(n) = n*(n* — 1), In| > 1:

8 1 1 "77’ 1 ; 92
0/( E_‘_i _1>dnT_20/U(T)dT+F(7]s)F("?O) w.p.1,

where F(z) ¥ zArcthz 4 0.5In(z2 — 1) — Inz and, for example 7; =
sec(o f; +arcsecr) (solution of the equation dn; = 0.502n,(2n? — 1)dt +
anp/n? — 1dfy) or py = cosec(o f; + arccosecny) (solution of the equation

dn; = 0.50%n,(2n? — 1)dt — on/n? — 1df;), 1 < my < oo; for considered
processes n; : s < max{t > 0:m > 1}. In the 1st case o(7) = o, and
in the 2nd case o(7) = —0.

10. 82(n) = cos’n :

S . s
sinn, 3%,
0/ <cos377T + thm) dn; = —5(!0 (T)dr + F(ns) — F(no) w.p.1,
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Chapter 8. Some exact formulas for stochastic integrals

where F(z) ® 271cos™2z — 2Incosz and, for example 1, = arctg(o f; +
tgno) (solution of the equation dn; = —o?sinncos®n,dt + ocos®n,df;)

t
or n; = arctg(e™(tgno + ﬁgesdfs)) (solution of the equation dmn; =

—(0.25sindn; + sin2n;)dt + v/2cos’nidf;), cosng > 0. In the 1st the case
o(7) = 0, and in the 2nd case o(7) = /2.

11. B%(n) = sin'y :

S
[(-Smr - 2ctgm) dn, =
0

I\D\C»J

S
7)dr + F F o,
~5 [ "+ ) = F (o) wp
where F(z) = 4 9-1gin=2y — 2Insinz and, for example = arcctg(o fi+
ctgno) (solutlon of the equation dn, = o’cosmsin®ndt — osin’n.df;),
sinny > 0, U(T) = —o.

12. 82(n) = (1 —n2)°:

/<2(177T) % (n )) dn, = —%/302(7—)(174- %u(ns) — %U(UO) w.p.1,

0 0

(8.38)
where u(z) = In|(14z)/(1—z)| and, for example, n; = th(o f;+Arthnp)
(solution of the equation dn; = —o?n;(1 —n?)dt + o (1 —n2)df:), [no| < 1
or 1; = cth(of; + Arcthrg) (solution of the equation dn; = o?n(1 —
n?)dt — o(1 — n?)dfi), 1 < |mo| < oo. In the 1st case o(7) = o, and, in
the 2nd case o(7) = —0.

13. f(n) = 1 —n? :

def

L]

/SU(nr)dnT = — [ o*(7)dr+n.u(n,) +u(n) = mow(m) — ua (o), (8.39)

where u(z) = o In|(14+2)/(1—2)|; ui(z) = dof In|1 — z?| and, for example
n: = ch(of; + Archng) (solution of the equation dn; = 0.502ndt +
o\n? — 1df;), m; = cos (o f; + arccosng) (solution of the equation dn; =
—0.50%dt — o+/1 — ndf;) or n; = sin (o f; + arcsinng) (solution of the
equation d; = —0.50%mpdt + oy/1 — nZdf;). For the 1st process n; :
no# 1and s < min{t > 0: 7 = 1}, and for the 2nd and 3rd processes
m:mo# *+1and s < min{t > 0:m = +1}. In the 1st and 3rd cases
o(7) = o, and in the 2nd case: o(7) = —o.
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8.4 Analytical formulas for calculation of stochastic integrals

8.4.2 Multiplicative separation of variables

Let R(n, ) = (7)p(n), where 9(7) : [0,T] — R p(n) : R — R
Then, substituting R(n, 7) = ¥(7)p(n) in (8.30) and believing ¢(7) = 0
in it, we get

diyp 1 9 2 d’p
W0t + AP () 5

Dividing the left and right parts of (8.40) on p(n)¥(7)o?(7) in the
assumption, that ¢¥(7), o(7), p(n) # 0, we found

#@(T) _ _152(77)@
Y()o*(r) dr 2 p(n) dn?

The equation (8.41) is equivalent to the differential equations
dip

() = 0. (8.40)

(n) = A (constant). (8.41)

(1) =2 (T)u(n), (8.42)
B2(n )325( )+ up(n) =0, p =2 (8.43)

The general solution of differential equation (8.42) has the form
P(T) = hoexp ()\JUQ(u)du), where 19 is an arbitrary constant. It
is easy to see, that the partial solution of differential equation (8.30)
is an integral f(p(u)du. That is why the general solution of differential
equation (8.300) has the following form

T

R(n,7) = (7)p(n) + [ p(u)du, (8.44)

where p(n) — is a solution of differential equation (8.43).
Substituting (8.44) when ¢y # 0 in (8.22), within the frames of made
suppositions we get the following formula:

/1/) nT )dn; = (s)p(ns) — (&) p(m) wp.1. (8.45)

Let’s analyze the examples of selection of 3(n), p and p(n) [49], which
may be used in the formula (8.45). Hereinafter Cy, Cy, 0 — are constants.

1. B*(n) =
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Chapter 8. Some exact formulas for stochastic integrals

1.1. u <0, p(n) = Cle*\/mﬂ + Cge\/m”,
1.2. >0, p(n) = Cicos(y/mn) + Casin(/mn).

2. %) = 4*+ D¥an* +a—3)"" a > 3, p =1, p(n) =
(n* + 1)1/4 (Cicosu(n) + Casinu(n)) , where u(n) = 0.5v/a — 1Arshn.

3.8%(n) = (@*n’+a)™", a > 0, p=—1, p(n) = e/2(Cy + CoF (n)),
where F(n) = }} o= g

4. B(n) = (" +1)°.

4.1 p+1=0a%>0, p(n) = vnZ+ 1(Cicosu(n) + Cosinu(n)) .

42. p+1=—-a?<0, p(n) = vn?+ 1(Cichu(n) + Coshu(n)).

Here we suppose u(n) = aarctgn.

4.3. p= -1, p(n) = vVn* + 1 (Cy + Charctgn) .

The process 7 in cases 4, has, for example, the form o, = tg (¢t + fi+
arctgno) (solution of the equation dn; = (1+n;)(1+n2)dt+ (1+n2)df;),
n: = tg (o fi + arctgng) (solution of the equation dn; = on;(1+n?)dt +
o(1+n?)df;) or n; = ctg (o f; + arctgng) (solution of the equation dn; =
a’m(1 + n})dt — o(1 + n})df;). Here we suppose, that the processes
ny in the 1st, 2nd and 3rd cases are analyzed for ¢ € [0,t*), where ¢*

is the first moment after zero,-when the mentioned processes have
discontinuity of the second kind: For example, for the 1st case we may
take g = 0, and t* = min{t > 0: t+ f; = *w/2+nk, k € Z}. We
also assume, that in this case the formula (8.45) is considered for ¢ = 0,
i.e. the integral in its left part is taken at the interval [0, s].

58 =n"-1>0, p=—6, p(n) =4(n*—1)n is a partial
solution.
At that, for example n; = ch (o f; + Archng) (see (8.39)).

6. 52(’7) =1-7>>0, u=6, p(n) = 4(772 — 1)n — is a partial
solution.

At that, for example n; = cos (o f; + arccosng) or n; = sin(of; +
arcsinrg) (see (8.39)).

7. 8%n) =n".
71w <0, pln) =n (CreVin 4 Cre Vi)
7.2. 4> 0, p(n) = n (Crcos(y/|ulnt) + Casin(y/|uln™)).

At that, for example n; = n9(1 — noo f;) ™! (solution of the equation
dne = o*npdt + onidfy); o # 0, s < min{t > 0: 1 —mnof, = 0}. Tt

376



8.4 Analytical formulas for calculation of stochastic integrals

is supposed, that in this case the formula (8.45) is considered for ¢ = 0,
i.e. the integral in its left part is taken at the interval [0, s].

8. B%(n) = n*.

8.1.¢*=0.25—p>0, p(n) = /N (Cin° + Con™©).
8.2.¢*=p—0.25>0, p(n) = /1 (Cicos(clnn) + Cosin(clnny)).

8.3. 1 =0.25, p(n) = \/n(C1+ Cslnn).

In examples 8, the process 1; may be, for example, the same as in the

formula (8.37).
9. () = —n’lnp > 0, 0 < n < 1, p = —1, p(n) = Cilnn+
Co (77 —Inp 7 dy/lny) . At that, for example, n; = ¢~ (frrv/~Tam) (so
o

lution of the equation dny = —n; (2lnn, + 1) dt — 2m/—Inn.df;), where
0<m< 1.

- 162(77) = n'/(2n? +1), p(n) = Ca(n* — m)ei+ Ca(n® + me 7,
p=—1.
1L B = (72— 1)°.

1M1 p—1 = 4a® > 0, p(n) < /[n* = 1] (Cicos(aG(n)) +
Cysin(aG(n))).

11.2. p—1=—4a2 < 0, p(n) = (n+1) (C’lu )o- %+02u(n)fafé).
11.3. u=1, p(n) = Vn? = (01+C2 (m)) -

In examples 11 we suppose u(n) = |(n+1)/(n—1)|, and in examples
11.1 and 11.3 — G(n) =1nu(n).

The process 7; in examples 11.1, 11.2 may be the same, as in the for-
mula (8.38), and in examples 11.3 1, = cth (o f; + Arcthng) (see (8.38)).
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Chapter 9

Stochastic integrals and stochastic
differential equations

9.1 Ito Stochastic integral

Assume, that (Q,F,P)  is a fixed probability space and f;; t €
[0,T] — is standard Wiener process, defined at (Q,F, P). Let’s analyze
the collection of o-algebras {Fy, t € [0,T]}, defined at (©,F,P) and
connected with the process f; in such a way, that:

1.F;,CF, CFfors<t
2. Process f; is Fy-measurable for all ¢ € [0, T;

3. Process fiin — fa for all A > 0, t > 0 is independent with the
events of o-algebra Fa.

Let’s analyze the class M([0,T]) of functions £ : [0,7] x Q@ — R,
which satisfy the to conditions:

1. The function &(¢, w) is a measurable in accordance with the collec-
tion of variables (¢, w);

2. The function £(t,w) is Fy-measurable for all ¢ € [0,7] and &(7, w)
independent with increments fi o — fa for A > 7, ¢t > 0;

3 be {(€(t,))?) dt < oo;

4. M {(E(t,w))g} < oo for all t € [0,T].

For any partition {Tj}j-vzo of the interval [0,T] such, that, 0 =
n <7 < ...<7y =T, we will define the sequense of step func-
tions EM(t,w) : EM(t,w) = E(T;N),w) with probability 1 for ¢ €
[rM 7)), where j=0, 1,...,N=1; N=1, 2,....

Let’s define Ito stochastic integral for & € My([0, T7) as the following
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Chapter 9. Stochastic integrals and stochastic differential equations

mean-square limit

B T
Lim. Nz MM, W) (Fr w) = f(rV W) @ [ endfe,  (91)
j= 0

where f(N)(t, w)  is any step function, which converges to the function
&(t,w) in the following sense

Jim. O/M {€M(t,w) - (t,w)[ } dt = 0. (9.2)

It is well known [2], that Ito stochastic integral exists, doesn’t depend
on the selecting sequence &) (t,w) and has the following properties:

1 m{J&dr ) =0
2. m{ (T &) )= ie)ar
T T T
3. [ (a& + uy) dfe = @] Edf, + B [ mgdlf, w.p. 1
. M{ed, [ndf,} = [M{gn, i
Also

T t
/ €Tl[t0,t1](7—)df’r o / defT,
0 to

where 1p,4,1(7) = 1 for 7 € [tg, t1] and 1p,41(7) = 0 otherwise.
Using feature 3 for £ 1y, 4(7) = & Ly 1) (T) + Er 1, (), T # b1, we
get

131
[ &dfs + /t Edf, = /t Edfy w.p. 1,
to t to

where 0 < tp <t; <t <T.
Let’s define the stochastic integral for £ € My([0, T7) as the following
mean-square limit

N-1 T
i, € (19.0) (L - ) # Fear
0
where €M) (¢,w)  is any step function from the class My([0, T7), which

converges in the sense of relation (9.2) to the function £(¢,w).
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9.2 Stratonovich stochastic Integral

Let’s analyze the well-known features of the stochastic integral
T
Of &dr

1M {;ngdT} - (fM (&) dr

T 2 T

2, M{(ngdT) }ngM{gz}dT;

0 0

T T T
3. g(o«& + Bn,) dr = aggTdT —I—ﬂofanT w. p. 1 Va, B € RL

The property of additivity may be analyzed also as for the Ito stochas-
tic integral.

Note, also, that [2]

wl[eas, | <@ty mom-1)" [M{e Y dr (03)
M{ [ &ar 2n} < (t - )" M{l& " dr, (9.4)

where (&,)" € My([to, ]).

9.2 Stratonovich stochastic integral

Let’s examine the class Qo ([t, T]) of Ito processes n, € RY; 7 € [t, T
such, that

=1+ / a,ds + / bydfs, (9.5)
t t

where f, € R' is F,-measurable for all s € [t, T] standard Wiener process
and

1. a”, b € My([t, T)).

2. For all s, 7 € [t,T] and some positive constants C, v < oo:
M{|bs — b,|*} < Cls — 7.

Assume, that Co(R!, [t, T]) — is a space of functions F(z,7) : R! x
[t,T] — R!, which continuously differentiated two times using variable
z, and these derivatives are bounded uniformly for z € R!, 7 € [¢, T'.

Let’s define the Stratonovich stochastic integral for the process
F(n.,7); 7 € [t,T] (F(z,7) € Co(R',[t,T])) as the following mean-
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Chapter 9. Stochastic integrals and stochastic differential equations

square limit
T

Lim 3 F (2 (nw+n) o) (Fgy — feo) @ [ Pl

N-ooxo =0 i+ 5
(9-6)

where the sense of formula (9.1) notations is kept.

It is easy to demonstrate, that if n, € Qs([t,T]), F(n,,7) €
My([t, T]), where F(z,7) € Co(RL, [t, T]), then the following relation
between Stratonovich and Ito stochastic integrals is reasonable

o

[ Fln,m)df, = /Fnﬁ af, + L [OF
t

9 —(ns, 7)brdT w.p. 1. (9.7)

If the Wiener processes in (9.5) and (9.7) are independent, then with

probability 1
T

T
[ F,m)dfr = [ F (e, 7)df.
t

t

Also, if n® € Q4([t,T]); i = 1, 2, then

1
/n dfy :/ Ddgd) + 1{”}/bd7wp1 (9.8)
where the process n() looks as follows
0 =n + [a,ds + [ b,df

Here fT(j) e R'; j =1, 2— are independent standard Wiener processes;
1,4 — is an indicator of the set A.

9.3 Ito formula

Assume, that (Q,F,P) is a fixed probability space, and f; € R™ is
F;-measurable for all ¢ € [0, T vector Wiener process with independent

components _ft(i); i = 1,...,m. Assume, that the stochastic processes
a_ﬁ’) and BE,”), i=1,...,n; 5 = 1,...,m are such, that ag’), B_g”) €
My([0, 7)) foralli=1,...,n;5=1,...,m
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9.4 Tto stochastic differential equation

Let’s analyze the vector Tto process x; € R",t € [0, T] of type

t t
xi =%, + [a,dr + [ Bydf, w.p. 1, (9.9)
S S

where 0 < s <t <T.
Assume, that the function R(x,t) : " x [0, T] — R! has continuous
partial derivatives
OR OR PR
ot ox’ 9xoxU)’
ij=1,....n
Within the limits of examined assumptions for all s, ¢ such, that 0 <
s <t < T, the following Ito formula takes place with probability 1 [2]:

R(x4,t) = R(xs, 5)+

t
OR n . OR
o (i)
+S/ ( ot X7+ LAy G T

O*R

= Oxox®) (xr, T))dT+

B % (x,, 7)dfY).
X 7

9.4 Tto stochastic differential equation

Assume, that (Q,F, P) — is a fixed probability space and f; € ™
is Fy-measurable for all ¢ € [0, T'] vector Wiener process with indepen-
dent components £; i = 1,...,m.

Let’s analyze the following Ito stochastic differential equation:

¢ ¢
Xt = X + /a(xT, T)dT + / B(x,,7)df;, x9 =x(0,w), (9.10)
0 0

where the stochastic process x; € 7 is a solution of equation (9.10);
a:R"x[0,7] = R", B: R" x [0,T] = R*™; xq — is a vector initial
condition; xg and f; — fy  are independent when ¢ > 0.

The stochastic process x; € R" is called as a strong solution (here-
inafter referred to as solution) of Ito stochastic differential equation
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(9.10), if any component of x; is Fy-measurable for all ¢ € [0,T7], in-
tegrals in right part of (9.10) exist and the equality (9.10) is executed
for all ¢ € [0, T'] with probability 1.

It is well known [2], that there is a unique (in the sense of stochas-
tic equivalence) continuous with probability 1 solution of Ito stochastic
differential equation, if following 3 conditions are met:

1. The functions a(x,t), Bg(x,t) : R* x [0,T] = R"; k=1,...,m
are measurable according to collection of variables (x,t) € R" x [0, T];
By(x;,7) is k-th colomn of matrix B(x,, T);

2. For all x, y € " there is such constant K < oo, that

|a(X, t) - a(Y:t)‘ + Z |Bk(X, t) - Bk(Yat)| < K‘X - y|7
k=1

m
la(e, 8)* + 3 1B, 8)|* < K2 (1+ x[*);
k=1

3. The random value X is Fg-measurable and M {|x|?} < oo.

9.5 Stochastic integral according to martingale

Assume, that (Q,F,P) — is a fixed probability space and {F;,t €
[0, %]} — is a non-decreasing collection of o-algebras, defined at (Q, F, P).
Assume, that M;, t € [0,T] is Fy-measurable for all ¢ € [0, T] martin-
gale, which satisfies the condition M{|M;|} < oo and for all ¢ € [0, T
there is a Fy-measurable and non-negative with probability 1 stochastic
process p, t € [0,T] such, that

M{(M, — M,)?|F;} = M{/pTdT|Ft} w. p. 1,
t

where 0 <t < s<T.
Let’s analyze the class Hs(p,[0,T]) of stochastic processes ¢, t €
[0, T, which are F;-measurable for all ¢ € [0, T] and satisfies the condi-

T
tion M {f gofptdt} < 0.
0
Let’s analyze the partition {7}, of the interval [0, T for which

(V) (N)

N
0:7'0 <T1 (

N
)zT, Ay = max ‘TijTj( )‘—>O
0<j<N-1

when N — oo.
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9.6 Stochastic integral according to Poisson random measure

Let’s define sequence of step functions goﬁN) such, that: cpﬁN) =@
7
w. p. 1 when t € [T}N),r}ff);jzo, ,...,N—-1;,N=1, 2,....
Let’s define the stochastic integral according to martingale from the
process ¢ € Ha(p, [0,T]) as the following mean-square limit

N-1 T
Lim. Y 0 (M~ M) & [ pdM, (9.11)
N—oo =0 T i+l Fi 0
where gogN) — is every sequence of step functions from the class

Hy(p, [0,T7), which converges to ¢; in the following sense

Lim. M{/T <<pt — @EN))thdt} =0.
0

N—oo

T
It is well known [2], that the stochastic integral [,dM; exists, it
0
doesn’t depend on the selection of sequence ngN) and satisfies to the
following conditions with probability 1:

T
2 T
Fo} = M{ [ bt Fo
T T
3. g(O“Pt + Bipy)dM; = o [ o d My + ,ngtht;

T T T
4 M{gwtht brwtht\Fo} — M{g sotz/)tptdt\Fo}-

T
0

)

o

9.6 Stochastic integral according to Poisson random
measure

Let’s examine the Poisson random measure in the space [0, 7] x Y

(" % ¥). We will denote the values of this measure at the set A x A
(A C[0,7], A CY) as v(A, A). Let’s assume, that M{v(A, A)} =
|A|TI(A), where |A|  is a Lebesgue measure of A, TI(A)  is a measure
on o-algebra B of Borel sets Y, and By — is a subalgebra of B, consisting
of sets A C B, which are satisfies to the condition II(A4) < oo.

Let’s analyze the martingale measure 7(A, A) = v(A, A) — |A[II(A).

Assume, that (Q,F,P)  is a fixed probability space and {Fy, t €
[0,7]} is a non-decreasing family of o-algebras F; C F.
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Assume, that:

1. Random values v([0,t), A) — are Fy-measurable for all A C By;

2. The random values v([t,t+h), A), A C By, h > 0, doesn’t depend
on og-algebra F;.

Let’s define the class H)(I1, [0, T) of random functions ¢ : [0,7] x
Y x Q — R which for all t € [0,T], y € Y are F;-measurable and
satisfy to the following condition

[ [ M{le(t, y)H1(dy)dt < oo.
0Y

Let’s analyze the partition {r;}/_, of the interval [0, T'], which satis-
fies the same conditions as in the definition of Ito stochastic integral.

For ¢(t,y) € Hy(I1,[0, T]) let’s define the stochastic integral accord-
ing to martingale Poisson measure as the following mean-square limit

[2]:
T
//(p t,y)o(dt,dy) é // v(dt,dy), (9.12)
0Y 0¥

where @) (t,y) — is any sequense of step functions from the class
H,(I1, [0, T']) such, that

Jim. //I\/I{|<p t,y) — o™ (t,y)|PHI(dy)dt — 0.

It is well known [2], that the stochastic integral (9.12) exists, it doesn’t
depend on selection of the sequence p&¥) (t,y) and it satisfies with prob-
ability 1 to the following conditions:

T
1 M{ (e, )7t dy) Fof =0
2. f‘.{(awl(t, y) + Bea(t,y))o(dt, dy) = a({‘{wl(t,y)ﬂ(dt,dy)Jr
+ﬂffs02(t y)o(dt, dy);

3. M{[] g ott.)ota, dy)| R} = T £ M {lo(e, ) FIFo) nay)a,

where , §  are some constants; ¢1(¢,y), ¢a(t,y), ¢(t,y) from the
class Ho(IL, [0, T7).

<
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9.7 Moment estimations for integrals according to Poisson measures

The stochastic integral
T

[ [ et.y)v(dt, dy)

0Y

according to Poisson measure will be defined as follows

//goty (dt,dy) //goty dtdy—i—//cpty II(dy)dt,

where we propose, that the right part of the last relation exists.

9.7 Moment estimations for stochastic integrals ac-
cording to Poisson measures

According to the Tto formula for the Tto process with jump componet
with probability 1 we get [2]:

| [ 4atry)y G utandy), (013)

where .
o= [ [ y)v(dr, dy).
0Y

We suppose, that the function (7, y) satisfies to well-known conditions
of right part (9.13) existence.

Let’s analyze [2] the useful estimation of moments of the stochastic
integral according to Poisson measure:

a(T) < max {(// ((e(ry))F +1) =1) H(dy)dr)j}, (9.14)

where

a,(t) = sup M{lz[}, b(r,y) = M{v(7,y)['}-

0<r<t
We suppose, that right part of (9.14) exists.
Since v(dt, dy) = v(dt, dy)—1(dy)dt, then according to Minkowskiy
inequality

(M{z™)" < M{=)" + {7 (9.19)
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where
t

t
éé// I(dy)dr; zt—//'yTy )o(dr,dy).
0y

The value M{|2;|*"} may be estimated using the inequality (9.4):

M{lztlﬁr}sﬁ“/ {L/wy (dy) }dr,

where we suppose, that
/ M{L/v 7, y)I(dy)

9.8 Taylor-Ito and Taylor-Stratonovich expansions

}dT < 0.

Assume, that L is a set of functions R(x,s) : R* x [0,T] — R,
which for all ¢ € [0, T], x € R™ has continuous partial derivatives:

OR OR O*R .
8t(Xt)’ ) (xt),8 o) (xt) i =1,2,...,n

and Gy s a set of functions R(x, s) : " x [0,7] — R, which for all
t € [0,T], x € R" has continous derivatives:

%(x,t); 1=1,2,...,n

Let’s define at the sets L and Gg the following operators

OR LIS, OR
(@ il
LR(x,t) = 5 —(x,t) + izzla (x,1t) NG (x,t)+
1m n 9’R
- ) (i5)
T3 2 2, BT BT g a0 )
GIRG 1) = 32 BU(x,0) 5 5506, 1); i =1,..om

Let’s examine the stochastic process 7, = R(X,, s), where R(x,s) :
R x [0,7] = R or R" x [0,T] — R" and x; is a solution of Ito
stochastic differential equation (9.10).
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9.8 Taylor-Ito and Taylor-Stratonovich expansions

Assume, that sufficient conditions for existence of solution of Ito
stochastic differential equation (9.10) fulfilled and R(x,t) € L; LR(x, t),
GV R(xi,t) € My([0,T));i = 1,...,m.

Then according to the Ito formula for all s, ¢ € [0, T such, that s > ¢
with probability 1

S

R(xs,5) = R(xi,t) + [ LR(x,, 7)dr

t

||[V]3

/Gf{ (x,,7)dED . (9.16)
1%

Stochastic Taylor formula (Taylor-Ito expansion) may be obtained by
iterated usage of the formula (9.16) for the stochastic process R(xs, s).
Let’s denote

Grk:{()\k,...,)\l):T—l—lSQk—)\l—...—)\kSQ’r;

/\lzlor)\l:O;lzl,...,k},
Eqk:{(/\k:---:/\l): Qkf)\lf...f)\k:q;
/\l=1OF)\l=0;l=1,...,k},

Mk:{()\k,...,/\l)l)\l:10r Alzo;l:1,...,k}.

S T2
TR = [ awl® awli) if k> 1, (9.17)
t t
TEo e 1w = f0when i = 1., m and w(® = 7.

Assume, that functions a(x,t) : R" x [0,T7] — R", B(x,t) :
R x [0,T] = R™>™, R(x,t) : R" x [0,7] — R! have smooth par-
tial derivatives of any fixed order.

Then for all s,¢ such that s > ¢ with probability 1 [24]:

R(xs, 8) = R(x¢,t)+

r mh mg (ix) (i) (ig-.i1)
+3 Yoo 2 Q) QR t) - T et
k=1 (Mg, A1) EMy, d1=X; ik=Xg

+Dr+1§,” (918)

where D,y1,,  is a remainder term in the integral form [24], the right
part of (9.18) exists in the mean square sense and \; = 1 or \; = 0;
Q) = Landzl—Olf)\l—OQ G oand iy =1,...,mif \ = 1;
l=1,...,N.
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If we put in order the members of Taylor-Ito expansion according
to order of vanishing in the mean-square sense when s — ¢, then with
probability 1:

R(xs,5) = R(x¢,t)+
r mAy mAy . .
L SN VRN SR S DR s

=1 (Ag,ersM)EEq, 11=A1 ik=\k
+Hr+ls,t: (919)
where

m\;

mAg . )
Hepa,, = Z > S QL QR 1) I

1 ( Ak A)€EG i1=M\1 =g

+Dr+13,t-

Using standard relations between Stratonovich and Ito stochastic in-
tegrals we may rewrite Taylor-Ito expansion using the terms of multiple
Stratonovich stochastic integrals [22], [24]. In this case stochastic Taylor
formula is called as Taylor-Stratonovich expansion.

Assume, that the functions a(x,t): R" x [0,7] — R", B(x,t) :
R x [0,T] — R™™ R(x,t) : R"x [0,T] — R! have smooth partial
derivatives of any fixed order.

Then for all s,¢ such that.s,> ¢ with probability 1 [22], [24]:

R(xs,s) = R(xq, t)+

u (LA TR (ir) (iit)
+Z Z Z e Z D/\l ...D/\] R(Xt,t) ](/\k /\1)St+
E=1 (Ao, M) €My d1=M\g =g

+D;41,,; (9.20)

where D,1,, is a remainder term in the integral form [22], [24], the right
part of (9. 20) ex1sts in the mean-square sense and also A\; = 1 or A; = 0;
D) = L—3 % GP'GY and i = 0 when A = 0; DY = Gf") and

]_
u=1,...,mwhen ; =1;1=1,...,N;

*T2

et = / / dwi dw®ifk>1,  (9.21)
J:/\(zo)\lll)) def 1 ( ) = f;l) when ¢ = 15 cee,Mm and WS'O) =T
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If we put in order the members of Taylor-Stratonovich expansion
according to order of vanishing in the mean-square sense when s — ¢,
then with probability 1:

R(xs,8) = R(x¢, t)+

r A D) (i)
+ X > DI D . CR(xe ) - T )t
F=1 e d)€Eg =M ix=A
+Hr+ls,u (9.22)
where
m)\l m)\k ( ) (Zk; 11)
Hyia,, = Z > o D - DYPR(x, 1) 3 st
k=1 (Ag,..; 1) EGr 1=M1 1 =Ap
+Dr+1s,t-

9.9 The unified Taylor-Ito and Taylor-Stratonovich
expansions

Let’s analyze the Ito stochastic differential equation (9.10) and pro-
pose, that the conditions for the existence of its solution are met.

Assume, that functions a(x,t) : R" x [0,7] — R", B(x,t) :
R x [0,T] — R™™ R(x,t)< R x [0,T] — R have smooth par-
tial derivatives of any fixed order.

By the iterated usage of the Ito formula for the process R(x, t), where
x; is a solution of the equation (9.10), and special transformations,
based on replacement of integration order in the multiple Ito stochastic
integrals [31], [32], [44] in [42] - [44], [46] the following unified Taylor-Ito
and Taylor-Stratonovich expansions were obtained (while obtaining the
unified Taylor-Stratonovich expansions we also used standard relations
between multiple Ito and Stratonovich stochastic integrals):

R(xs,5) = R(x4,t) + Z > ;! X

1 (kogisliyensli) €A,

x Y LG . GYRG, 1) I + Doy, (9.23)

.= 1--dkgyt
71,...,1,]9:1

(the first unified Taylor-Ito expansion),

Rxo) = R + ¥ 8 o=tV

1 (kygil1,m k) €A, 7!
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x Y G GIWLR(x, I + Dy, (9.24)

Iy.. lkt

(the second unified Taylor-Ito expansion),

R(xs,8) = R(x4,t) + Z > (s ;! ) X

q=1 (k,jl1,-lk) €A,

m . N . . .
x Y G GWLIRx, )L 4 Dy, (9.25)

, - ks
0 ,...,’lk=1

(the first unified Taylor-Stratonovich expansion),

Rixss)= Rxnt) 43y U=t

!
a=1 (k.j,l1 .. lk) €A, J:

x Y LG .GV R(x, ) 4 Do, (9.26)

e st
11,...,Zk:1

(the second unified Taylor-Stratonovich expansion),

where
s ta
105 = [ [ w)hde g, ()
3 t
ty )
llll lklkt t/ s — tk ’ _t/(S - tl)lldft(lzl) dff )’ (928)
st
Ill lekvlf / t— t / t— tl lldf(ll) dft( )a (929)
' «8 t xl2
le lehlf = / (s —tr)k.. / (s — tl)lldft(fl dft > (9.30)
3 t

ly,.. . ,=0,1,...; k=1,2,...54y,...,9 = 1,..., m; these integrals
when k = 0 are set equal to 1;

k
Ay={(k, g, b, L) s k+7+ XY l,=¢ k,j,lh,....[p=0,1,...},
p=1

e L...L whenj=1,2/... et L...L whenj=12,...
LP=9 =9

when j =0 when 7 =0
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. 1 . 4 o 1 o
(i) def 2 (~@) ¢ (4) (i) def * (AW 7 @ Y.
G (G L-IGY,), GO & ) (G321 - 1G) s

p-1 p-1 =
p=1,2..i=1,....m;L=1— %_%1(;5“%“, G = GI; the
1=
operators L and G ), i=1,...,maredefined in previous section; D1, ,

" is a remainer term in the 1ntegral form (see [42] - [44], [46]).

In [42] - [44], [46] the unified Taylor-Ito and Taylor-Stratonovich ex-
pansions well-ordered according to the orders of vanishing in the mean-
square sense when t — s were also examined.

In this case summation in the unified Taylor-Ito and Taylor-Strato-
novich expansions is performed using the sets

D, =
{(k, 7,0, .. k) k+2(+0+.. .+ k) =q; k, 5, bh,...,[r=0,1,...}

instead of sets
k
Aq:{(k,j,ll,...,lk):k—i—j—i-z:lp:q; k,j,ll,...,lkzo,l,...}.
p=1

Note, that the truncated unified Taylor-Ito and Taylor-Stratonovich
expansions contain the less number of various multiple stochastic inte-
grals (moreover, their major part will have less multiplicity) in compar-
ison with classic Taylor-Ito and Taylor-Stratonovich expansions [22].

It is easy to note, that the stochastic integrals from the family (9.17)
are connected by the linear relations. The same may be noted for the
family (9.21).

However, the stochastic integrals from the families (9.27)-(9.30) can’t
be connected by linear relations. Therefore we call the families (9.27)—
(9.30) as stochastic basises.

Let’s name the numbers ranky (r) and rankp(r) of various multiple
stochastic integrals which are included in the families (9.27)—(9.30) as
the ranks of stochastic bases, when summation in the stochastic expan-
sions is performed using the sets A;; ¢ =1,...,rand Dy; g =1,...,r
correspondently; here r  is a fixed natural number.

At the beginning, let’s analyze several examples.

Assume, that summation in the unified Taylor-Ito and Taylor-
Stratonovich expansions is performed using the sets

D, =
{(kajalla7lk)k+2(]+ll++lk):q’ kajalla"'alkzoala"'}'
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It is easy to see, that the truncated unified Taylor-Tto expansion,
where summation is performed using sets D, when 7 = 3 includes
4 (rankp(3) = 4) various multiple stochastic integrals: Ié:i), I(gfjfz),
Ifzft), éﬁﬁfi‘) The same truncated classic Taylor-Ito expansion [24] con-

tains 5 various multiple stochastic integrals: Jg;) gz i)

8,t) (11)s,t? (10)s,t*
(i1) (isizi)
Jonyse Jainse
For 7 = 4 we have 7 (rankp(4) = 7) integrals: I(()ift), éfflil), Il(l::)’

Iééﬁifl), Iéili‘), Il(ffltl), Iéé‘bigjiil) against 9 stochastic integrals: J((Bl,t:
Tt T60hss: Tbss T0ie Tiones Tiicher Tottes Tiities- For
r =5 (rankp(5) = 12) we get 12 integrals against 17 integrals and for
r = 6 and r = 7 we have 20 against 29 and 33 against 50 correspondently.

We will get the same results when compare the unified Taylor-
Stratonovich expansions with their classical analogues [24].

Note, that summation according to sets D, is usually used while
constructing strong numerical methods (built according to the mean-

square criterion of convergence) for Ito stochastic differential equations
(23], [24], [44].

Summation according to sets A, is usually used when building weak
numerical methods (built in accordance with the weak criterion of con-
vergence) for Ito stochastic differential equations [23], [24].

For example, ranky (4) = 15, while the total number of various mul-
tiple stochastic integrals, included in the classic Taylor-Ito expansions
[24] when r = 4, equals to 26.

It is easy to check, that rank (r) = 2" — 1 [44].

Let’s denote the total number of various multiple stochastic integrals
included in the classic Taylor-Ito expansion (9.18) by n(r), where sum-

mation is performed using the set kLTJ M.
=1

We can demonstrate [44], that ny(r) = 2(2" — 1) — 7.
It means, that lim nu(r)/ranks(r) = 2.

In table 9.1 we can see numbers

ranka (1), nm(r), f(r) = nu(r)/ranky(r)

for various values 7.
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9.9 The unified Taylor-Ito and Taylor-Stratonovich expansions

Table 9.1: Numbers ranka(r), na(r), f(r) = na(r)/ranka(r)

r 1 2 3 4 5 6 7 8 9 10
ranka(r) 1 3 7 15 31 63 127 255 511 1023
nu(r) 1 4 11 26 57 120 247 502 1013 2036

f(r) 1 1.3333 1.5714 1.7333 1.8387 1.9048 1.9449 1.9686 1.9824 1.9902

Table 9.2: Numbers rankp(r), ng(r), g(r) = ng(r)/rankp(r)

r 1 2 3 4 5 6 7 8 9 10
rankp(r) 1 2 4 7 12 20 33 54 88 143
ng(r) 1 2 5 9 17 29 50 83 138 261
g(r) 1 1 1.2500 1.2857 1.4167 1.4500 1.5152 1.5370 1.5682 1.8252

In |44] it was proven, that

r—1 T?*‘[%]
> €/ whenr=1, 3, 5,...

s=0 I=s

rl 1R ’

C; whenr=2, 4,6,...

rankp(r) =

s=0 l=s

where [z] — is an integer part of number z; C" — is a binomial coeffi-
cient.

Using ng(r) let’s denote the number of various multiple stochastic
integrals included in the classic Taylor-Ito expansion (9.19) (W.Wagner,

E.Platen) where summation is performed using the set O Egr.
¢:k=1
In [44] it is proven, that

T

2

vl
ne(r) = 3 EO Clesyamts (9.31)

s

where [z] — is an integer part of number z; C — is a binomial coeffi-
cient.

In table 9.2 we can see numbers

rankp(r), ng(r), g(r) = ng(r)/rankp(r)

for various values r.
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