Strong Approximation of Multiple Ito and Stratonovich Stochastic Integrals

Dmitry F. Kuznetsov

1 Peter the Great St.-Petersburg Polytechnic University, Russia

E-mail: kuznetsov@inbox.ru

Abstract It is well known, that Ito stochastic differential equations (SDE) are adequate mathematical models of dynamic systems under the influence of random disturbances. One of the effective approaches to numerical integration of Ito SDE is an approach based on Taylor-Ito and Taylor-Stratonovich expansions. The most important feature of such expansions is presence in them of so called multiple Ito or Stratonovich stochastic integrals, which play the key role for solving the problem of numerical integration of Ito SDE. We successfully use the tool of multiple Fourier series, built in the space L_2, to solve the problem of numerical integration of Ito SDE. We successfully use the tool of multiple Fourier series, built in the space L_2, to solve the problem of numerical integration of Ito SDE.

Introduction

Let (Ω, F, P) be a fixed probability space and W_t — is F_t-measurable $\forall t \in [0, T]$ Wiener process with independent components W_t^i; $i = 1, \ldots, m$. Let’s analyze the following Ito SDE:

$$dX_t = a(X_t, t)dt + B(X_t, t)dW_t, \quad X_0 = X(0, \omega),$$

where $a: \mathbb{R}^n \times [0, T] \to \mathbb{R}^n$, $B: \mathbb{R}^n \times [0, T] \to \mathbb{R}^{n \times m}$ satisfy the standard conditions of existence and uniqueness of strong solution $X_t \in \mathbb{R}^n$ of SDE [99]; X_0 and $W_t - W_0 (t > 0)$ are independent. In theorems 1–3 we solve the problem of combined mean-square approximation of stochastic integrals from Taylor-Ito and Taylor-Stratonovich expansions for the process X_t.

Main results

Theorem 1. Assume, that $\psi_1(t) \in C([t, T]) (i = 1, 2, \ldots, k)$ and $|\phi_j(x)|_{j=0}^\infty$ is a full orthonormal system of continuous functions in the space $L_2([t, T])$. Then

$$J[\psi(t)]_{T,t} = \lim_{n \to \infty} \sum_{i=0}^k \phi_j(t_i) dW_{t_i}$$

where $J[\psi(t)]_{T,t} = \int_t^T \phi_j(t) dW_{t} (t = 0, 1, \ldots, m)$, $W_{t=0} = 0$, $\psi_1(t) = \int_t^T \phi_j(t) dW_{t} (t = 0, 1, \ldots, m)$, $W_{t=0} = 0$, $\phi_j(t) = \int_t^T \phi_j(t) dW_{t} (t = 0, 1, \ldots, m)$, $W_{t=0} = 0$.

Keywords: multiple Ito stochastic integral; multiple Stratonovich stochastic integral; Taylor-Ito expansion; strong approximation; numerical modeling.

2010 Mathematics Subject Classification: 60H10; 60H05; 60H35; 65C30.
Let’s consider particular cases of the theorem 1 for $k = 1, \ldots$:

\[
\frac{d}{dt} \psi(t) = \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} C_{ij} \dot{\xi}^{(i)}_{j} \dot{\xi}^{(i)}_{j} - \frac{d}{dt} \phi(t) + \frac{d}{dt} \gamma(t),
\]

where $\frac{d}{dt} \psi(t)$ is a truncated series from the theorem 1 with upper limits p_1, \ldots, p_k.

The following theorem is adapt to theorem 1 to the multiple Stratonovich stochastic integrals.

Theorem 3. Let function $\psi_2(s)$ is continuously differentiated at t, T and functions $\psi_1(s), \psi_3(s)$ are two times continuously differentiated at t, T; $\{ \phi_j(x) \}_{j=0}^{\infty}$ is a full orthonormal system of Legendre polynomials or trigonometric functions in the space $L_2([t, T])$. Then

\[
J^* \psi_2(t) = \lim_{p_1, p_2 \to \infty} \sum_{j_1=0}^{p_1} \sum_{j_2=0}^{p_2} C_{j_1 j_2} \dot{\xi}^{(j_1)}_{j_1} \dot{\xi}^{(j_2)}_{j_2},
\]

where $J^* \psi_2(t)$ is a multiple Stratonovich stochastic integral; $k = 3, 4$ (for $k = 3$: $i_1, i_2, i_3 = 1, \ldots, m$; for $k = 4$: $i_1, \ldots, i_4 = 0, 1, \ldots, m$ and $\psi_1(t), \psi_2(t) \equiv 1$); the meaning of notations from theorem 1 is remained.

References