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T H E  U N I F I E D  T A Y L O R - I T O  E X P A N S I O N  

O. Yu. Kulchitski  and D. F. K u z n e t s o v  UDC 519.2 

We consider the problem of the Taylor-Ito expansion for Ito processes in a neighborhood of a fixed time 
moment. The Taylor-Ito expansion known in literature is unified by a canonical system of repeated stochastic 
Ito integrals with polynomial weight functions. The unified expansion has some computational advantages, such 
as recurrent relations between the expansion coefficients, ordering of the expansion with respect to smallness of 
its terms, and a smaller number of applied repeated stochastic integrals of different types. The unified expansion 
is more convenient in constructing algorithms of numerical solution for stochastic Ito differential equations. 
Bibliography: 11 titles. 

1. INTRODUCTION 

This paper is devoted to the problem of the Taylor-Ito series expansion for Ito processes. This problem is 
relatively recent in the theory of random processes; the first publications concerning the problem appeared 
in the 1970s and 1980s (Milstein, 1974; Wagner and Platen, 1978 and 1982; Platen, 1981 and 1982). In [3, 
4], Wagner and Platen were the first to introduce and apply a Taylor-Ito expansion, i.e., an expansion of 
a smooth inertialess nonlinear transformation of a solution of a stochastic Ito differential equation into a 
series in repeated stochastic integrals with application of the Ito formula. 

In this paper, we apply the authors' results [7, 9, 10] in construction of the unified Taylor-Ito expansion. 
Let us explain what we have in mind. It is possible to reduce repeated stochastic integrals from the Taylor- 
Ito expansion in [3, 4] to a system of canonical repeated stochastic Ito integrals of smaller multiplicity 
with polynomial integrands. In [7, 10], these transformations are based on formulas of the change of the 
integration order for repeated stochastic Ito integrals obtained by the authors [9]. The result of collecting 
similar terms is called the unified Taylor-Ito expansion. It is important to note that the coefficients of 
the unified Taylor-Ito expansion are determined by recurrent relations. Another important property of the 
unified Taylor-Ito expansion is that it contains a significantly lesser number of different repeated stochastic 
integrals than the Taylor-Ito expansion in the form of Wagner and Platen [3, 4]. To make a comparison, let 
us note that the unified Taylor-Ito expansion up to terms of third order of smallness contains 12 different 
repeated stochastic integrals, while the similar Taylor-Ito expansion in the form of Wagner and Platen 
contains 17 different repeated stochastic integrals. 

In addition, the more terms of expansion are taken into account, the more apparent is the mentioned 
difference. This advantage of the unified Taylor-Ito expansion is especially important since approximation 
of repeated stochastic integrals is a complicated theoretical and computational problem. 

2. DEFINITIONS AND ASSUMPTIONS 

Consider a probability space (12, 9 v, P). Let ft = f(t, w) E Rm be a Wiener process such that 

M { d f t d f  [ }  = E}dt,  

E} =diag{a}l , cry2,... ,or},,}; a}, < c~, i =  1,2 , . . .  ,m, 

where M{.} is the operator of mathematical expectation. 
Consider a system of stochastic Ito differential equations of the following form: 

dxt = a(xt, t)dt + E(xt, t)dft, x0 = x(0), (1) 
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where xt = x(t ,w) E R n  is a solution of Eq. (1). It is assumed that  the functions a (x , t )  E R~ and 
E(x,  t) E Rn• are mult iply continuously differentiable with respect to both  arguments  and satisfy the 
conditions of existence and uniqueness of a solution for Eq. (1). 

We say tha t  a random process gt E R1 is adapted  with respect to  the Wiener process ft E Rm on [a, b] 
if, for any t imes 7, t, s E [a, b] such that  ~- _< t < s, the values g~- are stochastically independent  with the 
differences f(i) - f~i)(i _- 1 , . . .  ,m),  where ft (i) is the i th  component  of the Wiener process ft. 

We say tha t  a process gt is continuous in mean of degree m on [a, b] if the condition 

l im M {I g, - 1 " }  = 0 
t---~1" 

is fulfilled for any times t, T E In, b]. 
Consider a part i t ion a = t o , t l , t 2 , . . .  , tN = b of a segment [a,b] such that  ti < ti+l for 0 < i < N - 1. 

Denote A N = m a x 0 < i < g _  1 I t i + l  - -  t i ] .  

The  mean-square limit 

fb N - - 1  I /f  (i) - f ( : ) )  
gtdf~i)qt = 1.i.m. E gtk \ tk+, qt~+, (2) 

AN---* 0 
a a k~--O 

is called the generalized stochastic Ito integral of random processes gt and qt with respect to the Wiener 
process f~i) E Rl( i  = 1 , . . . ,  m) (see Stratonovich [1]). 

Assume that  the processes qt and gt satisfy the following conditions. 
(A1) qt  - -  1 .  

(A2) The  process gt is adapted with respect to the Wiener process ft (i) E R1 (i = 1 , . . .  , m).  
(A3) The  process gt is mean-square continuous on [a, b]. 
(A4) M {gt 2 } < oo for all t E [a,b]. 
It is easy to show that  the conditions just  formulated imply the existence of the generalized stochastic 

integral (2). It is also easy to show that  the same conditions imply the existence of a stochastic integral of 
the form 

b N--1 

~a gtdtqt gtk -tk) qtk+l" (3) 1.i.m. E (tk+l 
AN---*0 

k----O 

D e f i n i t i o n  1. We say that a process rls = R(xs,  s) is Ito continuously differentiable in the mean-square 
sense for s E [0, T] along trajectories of Eq. (1) if  the representation 

/" s rls =~t  + Bo{R(x~,~-)}d~" + B~i){R(x~,7)}df(~ i) 
i = l  .I t 

(4) 

takes place for aft s, t E [0, T] such that s >__ t with probabifity 1, and the integrals on the right in (4) exist 
in the mean-square sense. 

In formula (4), x r  is a solution of Eq. (1) and B0{R(xr ,T)}  and B~i){R(x~,7-)}, i = 1 , . . .  ,m ,  are 
processes continuous in the mean-square sense on [0, T] called the systematic and diffusion Ito derivatives 
of the process ~s, respectively. 

L e m m a  1 (Ito formula). Assume that 
(1 ~ the partial derivatives a R ( x , t )  and Ox--~R(x,t) 02 Ox(,)Oxu)R(x,t), i , j  = 1 , 2 , . . . , n ,  exist and are 

continuous on Rn • [0, T]; 
(2 ~ the functions a (0 (x, t) and E (iv) (x, t) and the processes a (i) (xt, t) and E (ij) (xt, t) (i = 1 , . . .  , n, j = 

1 , . . .  , m) have the following property: the processes n{  R(x t ,  t) } and G(o j) {R(xt,  t) }, j = 1 , . . .  , m, satisfy 
conditions (A3) and (A4). 

Then the process rls = R(xs,  s) is Ito continuously differentiable in the mean-square sense on [0, T], and  

its derivatives Bo{ R(xt ,  t) } and B[i) { R(xt ,  t) }, i =  1 , . . .  , m,  are given by the following formulas: 

B0{R(xt,  t) } = L{ R(xt ,  t) }, B~ i) {R(x, t) } = G(o i) {R(x, t) }, (5) 
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where 

and 

L { }  ~ t J  

In addition, the equality 

o{.} + o{.} 1 . o: �9 
ot 'Ox(,) (,) 

i=1 j : l  l,i=l 
(6) 

n 

C~i){ .} = ~-2 P,(J') (x, t) , i  = 1 , . . .  ,m.  (7) 
j = l  

r]s =rh + L{R(xr,~')}d~" + G(o i) {R(x~ , r )}  d g  ~) 
i=l t 

holds for all s, t E [0, T] such that s >_ t with probability 1, and the integrals on the right exist in the 
mean-square sense. 

We call a family of k-index elements a k-rank matr ix  (k)A, i.e., (k)A = IIA (i~''ik) "~ ..... mk Thus,  
i l , . . .  , i k = l "  

(~ is a scalar value, (1)A is an ml  x 1-matrix, (2)A is an ml  x m2-matrix,  and so on. The  symbol 
(k)A = (k_l)A(i~) m~., where (k-1)A(il) []A(i~...ik) m2 ..... rnk zI----1 = i2 .. . . .  ik=l , denotes a block matr ix  such tha t  its 
elements are of rank k - 1. Below we sometimes omit  the rank of scalars and column matrices. 

The  matr ix  (k)c defined by the formula 

ml, . . .  ,ml r/tl-t-l,.-. ,m/+k 
(k)C = Z A(il""ik+l)B(il""Q) 

I]il . . . . .  Q = I  il+1 .... ,Q+~=I  

is called the convolution of matrices (k+Z)A and (0B; below we denote this matr ix  by (k)C = (k+0A(0(0B. 

D e f i n i t i o n  2. A process rls = R(xs,  s) is called N- t imes  Ito continuously differentiable in the mean-square  
sense on [0, T] along trajectories of Eq. (1) i[  the representation 

f t  8 (r')B~,..~l {R(xs, s)} = ( r ' )B~. .m {R(xt ,  t ) } +  (r~)B0~,..~ {R(x~, T)}dT 

+ f 8  {R(x- ,  1 

is s for a111 = 0, 1 , . . .  , N - 1, and s, t E [0, T] such that s >_ t with probability 1 and has the following 
l 

additional properties: the inteEra/s on the right exist in the mean-square sense; "/q = 0, 1;  rt = Y~ 7i; 
i=1  

(rq)B~q.. m {R(xt ,  t)) ,  q = 1, 2 , . . .  N,  are mat r ix  r andom processes continuous in the mean-square sense. 
These processes are called the Ito qth derivatives of  the process r]s in the mean-square sense along trajectories 
of system (1); (~ 0 {R(xt,  t))  is called the systematic part of the qth derivative, (a)B1... 1 {R(xt ,  t)} is 

q q 

cedled the diffusion part of  the qth derivative, and the rema/ning processes (~DB~q..m{R(xt, t)} are caJled 

mixed par t s  of  the qth derivative. In the case q 0, we set  rq -- 0; (~q)B~q.... n {.) def = = "; ( r q ) B o , ~ q . . m  {.} de j  

( 0 ) B 0 { . } ;  ( r q + l ) B l % . . . ~ ,  { .}  de=f (1)B 1 {.}. 

Let (1)D3{.} = /93(./){ �9 i=1' j = 1 , . . .  ,k ,  be vector differential operators  and let 

A p { . } =  { Cp{'}. , p = l , . . . , k + l ,  

where Cp{.} is a scalar differential operator.  
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Denote 

Ak+l {D(k ik) {nk {... {D~ il) {A1 {-}}}. . .  } } }  iml,...ik=l 

dej ( k )Ak+IDaAk . . .D1AI{ .  } = Ak+I { ( k ) D k A k . . . D 1 A I { ' } }  

_ -  

. . . .  

L e m r n a  2. Assume that all the conditions o f L e m m a  i are satisfied. Assume that the processes (~'+l)Hl+l 
H i . . .  HI{R(x~,  s)} and the functions (~'+l)/-/~+lHl...  HI{R(x ,  s)} s a t i s~  conditions (1 ~ and (2 ~ of  Lem- 
ma 1 componentwise for all l = 0, 1 , . . .  , N - 2. Then the process rl~ = R(x~, s) is N- t imes  Ito continuously 
differentiable in the mean-square sense on [0, T], and  its derivatives are given by the following formulas: 

(n+1)B.n+~...~ {R(xs, s)} = (~'+~)Hl+lHz... Hi  {R(x~, s)}, 

l+1 
where Hp{.} = (1)a0{-}, L{.}; rt+, = E ~p; 7p = I for Hp{.} = (i)a0{- } and "Tp = 0 for Hp{.} = L{.}. 

p=l 
The differential operators (i)G0{'} and L{.} are the same as in Lemma  1; l = 0, 1 , . . .  , N  - 1. 

3. REPEATED STOCHASTIC INTEGRALS AND THEIR PROPERTIES 

Let us mention some propert ies of repeated stochastic integrals tha t  we need below. One can find proofs 
of the corresponding s ta tements  in [9, 11]. 

Following (2) and (3), consider a repeated stochastic integral of the form 

F ab = Ck-i  (ti) r ( tk - i  Wtk ~vv, uvv .�9 
�9 " " ~ k  t k - - 1  " 

. ] a  

where ~y(t) j = 1 , . . .  , k -  1, are some functions, Ct is a random process, and W (q) = f~q) for q = 1 , . . .  , m  

and W (q) = t for q = 0, where f~q) are independent  scalar Wiener processes. 

Let us formulate sufficient conditions for the existence of repeated stochastic integrals J(~) in the mean- 
square sense [9, 11]. 

L e m m a  3. Let the functions ~pj(t), j = 1 , . . .  , k - 1, be continuous on [a, b]. Assume that the process Ct is 

adapted with respect to the Wiener processes f(q) (q = 1 , . . .  , m) and continuous in the mean square sense 
on [a,b]. Assume, in addition, that M {r 2 } < co for all t E [a,b]. Then the repeated stochastic integrals 

Ja k) k = 1,2,.  exist in the mean-square sense. 
b " ' '  

Consider the proper ty  of change of integration order in repeated stochastic integrals. 

D e f i n i t i o n  3. The mean-square limit 

N--1 
l.i.m. E r ( W ( ~ - ~ -  W(~ ~)) q(k--1) ~.ri+ib , A N--~O j----O 

where 
s(k-,~ dej { f b r ... f b_ 1 r for k > 1, 

tlb -- 1 for k = 1, 

is called the integral 

*abT(k) def• CtidWt(~k) r  . . .  Ck_l(tk)dW(:~)" 
tk--I 

The existence of the integral r(k) and the property of change of integration order are established by the "ab 
following theorem�9 
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T h e o r e m  1. Assume that the functions r l = 1 , . . .  , k - 1, and the process Ct satisfy the conditions 
of  L e m m a  3. Then the integral r(k) exists in the mean-square  sense, and  the equality "~ab 

I a  (k) r (k) 
b -~ "ab  

holds with probability 1. 

The following s ta tement  is a corollary of Theorem 1. 

C o r o l l a r y .  Under the conditions of Theorem 1, the equedity 

ZZ 2 Z' b t~ "%dVK(J)dVK(ik)S (k-l) r j) .n,Tz(i')r 
"e" ~- t l  rib ~ ~*r, t l  ~ t l b  

holds with probability i for j = 0 , . . .  , m.  

Proof. Consider the process F~t = fd r Under  the conditions of Theorem 1, the equali ty 

.E'a$1(A, Vl/$1 ~.)tt b : " ~ k - - l ( t i )  . . . ' ~ l ( t k - 1 )  ~, 'atkt ,bvvtk~ "~TJTf(ik)"~TJTf(ik--1)(A,vu . . . d 1) 
, / a  J ~ 2  

holds. It remains to apply Theorem 1 to the r ight-hand side of the latter equality. 

Below we use the following proper ty  of repeated stochastic integrals. 

L e m m a  4. Assume that the conditions of Theorem 1 are fulfilled. Let h(t) be a continuous function on 
[a, b]. Then the equality 

td (t)S -1) = ~. ~r,~.~uAik)c(k-1) Wtlbk~y~vvt ~tb  
,, 'a 

holds ~ith probability ~ for k > ~, and the integr~s J': r  ~ and J: r - ~  e~ist 
in  the mean-square sense. 

The  following properties of the integrals T(k) hold under  the conditions of L e m m a  3: ab 

�9 
M I G b  } = 0, (8) 

fq ~1,2 " A, r ( t z ) . . .  r (tk-1) M { r  2, }d tkd tk - , . . .  dh.  
J a  J a  

Introduce the following notation: 

(9) 

{] , s 

j(il...i,) ( s -  T1)hdf~(~ 1) f ( s - - -  ~Z2"r , : ,  ~ , - 2  . . .  f (s - T~)'~df.(~ '), k > 0,  

l l ...lk s,t "~- "0 Tk-- i 

1, k = O, 

and 
= j(il...i,) ~ .... 

(k) J l l " " l ' s ' t  l l " " l ' s ' t  , i , = 1  " 

Theorem 1 and properties (8) and (9) imply the existence and the  following properties of the  integrals 
j(i~...i,) for k > 0: 

l l  . . . l k s , t  
(i~ ...i,) 

M ( J;i ...l,,,, ) = 0 ;  

M { fJ (i'~') ~ 2 ~ l l " " l ' s ' t  J ] 

1 1 3 4  



(7 2 (r 2 cr 2 (S - -  t) 2(ll+'''+l~)+k 
AI A2 "'" A~ 

(2/k + 1)(2(/k + lk-1) + 2 ) . . .  (2(/k + . . .  + /1 )  -~- k) '  

/ S(S _ _- TlJ df(p) j (  il ...i~: ) 7(pil...ik) 
] "r ll. . .It~s,~- ~'jll...lks,t' p = 1 , . . .  , m;  

S(s T)JdTj[i,.[~k) (s - t) j+ l  _ __ j( i l . . . ik)  1 r(i~...ik) 
I... ks,r j ' ~ -  T ll... lks,t j ; 1 ~l,-Fj-Fll2... lks,t; 

/" if'-' J(~ '"~)  (s - n )  ~ (s - ~. ~Zldf(~') .dL(~ ~). 
l l . . . l k s , t  ~ " ' "  ~ ]  r k  " "  

Introduce a matr ix  of rank k of the form 

(k)(sOt) jh. . . lk= (SO (it...ik) m _ (S t)Jj(i~...i~) ~ 
t ) j l ' " ' l k  i~ . . . . .  i k = l  7!  l,...lks,t . . . .  , i k = l  

Consider the following family of matrices of rank k: 

where 

: ( k , j , z , ,  E 

B =  { ( k , j , l , , . . .  ,lk) : k , j ,  l l , . . .  ,Ik E Z1 C A f u  {0}}, 

and define an operat ion on the set of matrices of rank k by the formula 

(C B | D B) def E (a)Cjtt . . . t~ k = . (k)Djll. . . lk. 
(k,j,ll ..... lk)6B 

It is easy to see tha t  the operation defined in this way is commuta t ive  and distributive. 

4. EXPANSION OF ITO PROCESSES 

Let us prove a theorem on expansion for a process 77s = R(xs,  s). 

(10) 

( i i )  

(12) 

T h e o r e m  2. Assume that an Ito process ~Ts = R(xs,  s) generated by a solution of Eq. (1) is (r + 1)-times 
Ito continuously differentiable in the mean-square sense on [0, T] along trajectories of Eq. (1). Then this 
process can be represented by the series 

r 

7Is = E ( CAq{~t} | (s e t) Aq) + D~+ls,, (13) 
q=O 

in a neighborhood of a fixed time t E [0,T] so that the equality in (13) holds with probability 1, the 
right-hand side of (13) exists in the mean-square sense, and the following notation is adopted: 

f s f8 D r + i s , ,  = (QA'{rl~}dT| ((H~.{~}~.dL)| 

cA"{~r} = {(k)Cjh...,k {Th}: ( j ,  l l , . . .  , l k )  E Ar ; 

H A ' { ~ }  : {0)G0 {(})Cjh.. . /~{,~}} : (j, l l , . . .  , l } )E  Aq};  

(14) 

where 
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(k)Cjl,...lk{r/t } = { (k)LJGt,. . .Gtk{r/ t}  for k > 0 
LJ { r/t } for k = 0 ; 

Ag = {(k,j, 11,... , l k )  : k + j + 11 +. . .  + lk = q; k,j, 11,... , Ik = 0, 1 , . . .  }; 

Lj{. } def { L{L{...{L{.}}...}}_ for j >0 
for j = 0 

(,%{.} = ( ( ' ) a , _ , L { . } -  ( ' )La ,_ , { . } )  , p =  1 ,2 , . . . ;  

O)Go{. } and L{.} are defined by relations (6) and (7), respectively. 
Proof. We use induction to prove our statement.  Apply the Ito formula to the process r/s: 

r/~ = r/t + Dis. ,  = (cA~ | (s e t) A~ + DI,.,, 

where 

DI,,, L{r/,}dT + G0{r/, }.ldfr 

= (QA~174 ((Hd~174176 

Relations (15) and (16) are particular cases of (13) and (14) for r = 0. 
integrands in Dls.t : 

DI~,~ = D* ls,t -b D2s, t ,  

(15) 

where 

(16) 

Apply the Ito formula to the 

(17) 

D* = (s - t)L{r/t} + Go{r/t }lJo, , = (C A' { r / t }  | (s e t) A' ), 
i s , t  , . 

D2s,, = ~s  (~Sl  L2{r/r}dv + ~S' GoL{r/~}l.df~) dsl 

+ ~s  (~8'LGo{r/~}dv + ~s'(2)GoGo{r/~}l.df~) l.dfsl. 

Changing the order of integration in (19) by Theorem 1, we obtain the following relations: 

S D2s., = L2{r/,}dT(s - 7) + LGo{r/,}dvl.Jo,,, 

+ ~SGoL{r/,}l.df,(s- T) + ~8 ((2)GoGo{r/,}l.dfr) l.Jo,., 

= ( Q A ' { r / , } d T |  ( (HA'{ r / .~}~.df , ) |  

Relations (15)-(20) lead to the representation 

where 

1 

r/8 = E ( CA~(r/t} | (s e t) A~) + D2,,,, 
q=O 

f s f s D2,. ,=  (QA ' { r I .~ }dT |  ((HA'{r / .~} l .df~-) |  

(i8) 

(19) 

(20) 

(21) 

(22) 
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It is easy to see t ha t  relations (21) and  (22) are par t icu lar  cases of (13) and (14) for r = 1. Thus ,  our 
theorem is proved for r = 0, 1. Cont inuing the  descr ibed expansion process, at the  next  step we get  the  
following relations: 

1 
1 r/s = E ( CAq{r/t} | (s 0 t) Aq) + ~(s - t)2L 2 {r/t} 

q=0 

+ (aoL {tit} - Lao {r/t}) 1. j~8,~ + ( 2 ) a o a  ~ {r/t} .2 (2)Joo~, t 

+(s - t)LGo {r/t} .1 Jos,~ + D3~,~ 

1 

= E ( CAq{r/t} | (s e t) Aq) + (cA2{r/t} | (s @ t) A2) + D3,,, 
q----0 

2 

= E ( CA~{r/t} (9 (s e t) A~) + D3,,,, (23) 
q=0 

where f8 D3s,~ L 3 {r/.} d 1 = 7 ~ ( s - T ) 2  + L 2 a o { r / . } d r l j % , ~ ( s - r )  

# + (LaoL{v,I-L2ao{r/,})e, ~.z,,~ 

f s f s 1 

+ ((~)aoLao {r/,} 1- err) .1J0~,(~ - ~) 

= (QA:{r / , }d~- |  ( (HA:{r / , }~ .d fr ) |  (24) 

Hence, the  s t a t emen t  of our theorem is valid for r -- 2. Assume tha t  the s t a t emen t  of our  t heo rem is 
valid for some n = r. Let us prove tha t  it is then  valid for n = r + 1. Applying the  I to formula  to the  
integrands in (14), we get the relations 

where 

and 

Dr+ls,t -- Dr+ls,t -t- Dr+28,t, 

�9 # ) ( ( # )  ) D~+~,= A~(W}G d~-(sO~-) A~ + HA~{~} ~. dr,- O ( s e r )  A" , 

Dr+2.,~ = f t  8 ( ~ ' l d U A ~ { r / . } d ' r l |  ( (Z" IdVA ' { r /~ . } }d f .~ ) |  

dU A~ {r/~} = {(k)x#~...lk{r/~.}dT + (k+l)Yjl~...tk {r/~}.ldfr : (j, l l , . . .  ,Ik,k) E A~} ,  

dVA" {r/.~ } = { (k+ l) Zjh...tk {r/,}dT + (k+2)Wjh...l k {r/,}l.df, : (j, ll, . . . , Ik, k ) E A,  } , 

(25) 
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(k)xjl~...lk {fir} ---- (k)LJ+2Gh... Glk {fir }, 

(k+l)Zjll...Zk {~?r} = (k+I)LGoLJGI~ ... Glk {r],}, 

(k+l )Yjh...Zk, = (k+I)GoL3+ IGh ... Gl~ {rb}, 

(a+2)Wjll...lk, = (a+2) GoGoLJGh ... Gzk {rl,}. 

By the corollary of Theorem 1, it is possible to change the order of integration in repeated stochastic 
integrals in (25), hence we have 

Dr+2,,t = ~S ((dUA~{rlr} jfrSdT1) |  + ~S ((dVA~(~lr}l.~Sdfrl) Q ( s e l " l ) A ' ) .  (26) 

Consider the integrals f~ d~-l ( s ~" - ~(i~...ik) s _ ~(i~...ik) ,_ ~"l)jl~...lk and f3 df(q)(SO 'l)jl~...l~ a,t, q= 1,... ,m. 
By properties (11) and (12), we have 

s ~ ( i l . . . i k )  
d~'l(s e ~'ljjh...l k 

I _di~...~k) 1 ~_~(i~...ik) for k > 0 (s e "  Jj+~h...lk (~_r (S v ' Jj+l,h+j+l,Z~...lk 
= ( 8 _ . ) j + ,  ; (27)  

(j+l)~ for k = 0 

i S  . ~ ~ ( i l . . . i k )  __ 1 _ ~ ( q i l . . . i k )  k 
df~ (q) (s @ ,1Jjh...~k (S -- ~-)----------~ (S O ' JJJh...~ ' = O, 1, . . . .  (28) 

Subst i tute  (27) and (28) into (26) and note tha t  the result obtained is equivalent to the following relation: 

D~+~.,~= (QA.+, {~,.,-}er ~ (s e -,-)~"+') + ((H'~"+'{~.,.II.dr,)~(se~-)A"+'). 

This  proves (14). It follows from (14) tha t  

Dr+l~.t -- D* r+l~,t -'}- Dr+2s,t  , 

where 

D*~+~,,, = (QA'{?]t} f t S d T Q ) ( s e v ) A ' )  + ((HA'{rh}l. f S d f r )  Q(8(~T) At) . (29) 

Subst i tu t ing (27) and (28) with r = t into (29), we arrive at the formula 

D* - (CA"+ ' { r /d  | (s e t) ~'+'  ) r + l s , t  - -  " 

This  proves relation (13). Our theorem is proved. 

5. UNIFIED TAYLOR-ITO SERIES 

It is easy to see that  some terms on the r ight-hand side of formula (13) have higher orders of smallness 
in the  mean-square sense as s --~ t than  the remainder  t e rm D~+l~,t. This  conclusion follows from proper ty  
(10). The following theorem describes a modification of expansion (13) such tha t  the terms of the modified 
expansion are ordered according to their  orders of smallness. In this case, the remainder  te rm has the 
highest  order of smallness. 
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T h e o r e m  3. Under the conditions of Theorem 2, the foBowing unified Taylor-Ito expansion of a process 
r/s = R(xs ,  s), s E [0, T], holds in a neighborhood of a fixed time t E [0, T]: 

,7, = X :  (c~{ '7 , }  e (8 e t) ~'~) + H,.+,,.,, 
q=O 

where 
HT+I,,, d~=e (C{rh}U. e ( s e t )  U") + D,.+I,,,, 

D~+~,.,= (OA~{rl~-}dre(ser)A')+ ((H&{rl,.}~.df,)| 

Dq = { ( k , j ,  l i , . . .  , Ik) : k q- 2(j + l~ + . . .  + Ik) = q; k , j ,  l ~ , . . . ,  Ik = O, 1 , . . .  } ,  

(Jr = {(k , j ,  l l , . . .  ,Ik) : k + j + ll + . . .  + lk <_ r; 

k + 2 ( j + l ~ + . . . + l k )  >_r+ l ; k , j , l ~ , . . . , l k = 0 , 1 , . . . } ,  

v/M {(H~+,,,,) 2} < Cr(s- t ) (T+l) /2;  C~=cons t  < o o ; r = 0 , 1 , . . . ,  

and the remaining notation coincides with that in Theorem 2. 

Proof. It is easy to see that it is possible to represent expansion (13) in the following form: 

r 

,7, = X~ (c':"{,Td e (s e t) D~) + m+ , , , , ,  
q-----O 

where 
Hr+l,,t dee (cU'{Tlt} e (s e t) v-) + Dr+l,,,. 

It follows from the Minkowski inequality that 

(30) 

Let us estimate the terms of the right-hand side of (30). Since 

(cu'{~,} e (s e t) v-) 

(8 - t)J m 

j~ 
( k , j , l z  . . . . .  l k ) E U r  i l  . . . . .  i k = l  

E LJG(il) G(ik) (rh} j(il...i~) 
lz " " " l k  l l . . . I k s , t  ' 

it follows from property (I0) and from the Minkowski inequality that, in a small neighborhood of time t, 
the inequality 

holds, where 

Z 

Thus, we have the inequality 

min + j + ll + . . .  + lk = 
( k , j , l z  . . . . .  l k ) E U r  2 

I 

V " {r ) M C{Th} U , |  2 <_C, . ( s - t )  2 , C r = c o n s t  <oe .  (31) 
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Consider the value Dr+l,,,: 

D r + l s , ,  = ~t s 

m (S" -- E E LJ+IG(i') G( ik)  (8-T)JdTJ(i'"'ik) 
- z ,  . . .  7! 

(k,j , l l , . . .  , l k )6A,  il ,... , i k=l  

G(P)LJG (i~) G (ik) {r/,} (s - r)J df(p)j(h...ik) + o l~ "" l~ j! r ll . . . lks r " 
p = l  t 

Theorem 1, property (10), and the Minkowski inequality imply that, in a small neighborhood of time t, 
the inequality 

AI{(Dr+I,.,) 2}_<C r ( s - t )  z ,  C r = c o n s t < o o ,  

holds, where 

z' = min ~ 1 + k 
kWj+ll-b. . .Wlk=r;O<k<r [ -2 

Thus, we have 

It follows from (30)-(32) that 
. \ r + l  {M _< 

Our theorem is proved. 

1 k ] r + l  
+ j + l l + . . . + l k ;  ~ + - ~ + j + l l + . . . + I k  ~--  2 

C r' = const < oo. 

Cr = const < oo. 

(32) 
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