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THE UNIFIED TAYLOR-ITO EXPANSION
O. Yu. Kulchitski and D. F. Kuznetsov UDC 519.2

We consider the problem of the Taylor-Ito expansion for Ito processes in a neighborhood of a fized time
moment. The Taylor-Ito expansion known in Literature is unified by a canonical system of repeated stochastic
Ito integrals with polynomial weight functions. The unified expansion has some computational advantages, such
as recurrent relations between the expansion coefficients, ordering of the expansion with respect to smallness of
its terms, and a smaller number of applied repeated stochastic integrals of different types. The unified expansion
is more convenient in constructing algorithms of numerical solution for stochastic Ito differential equations.
Bibliography: 11 titles.

1. INTRODUCTION

This paper is devoted to the problem of the Taylor-Ito series expansion for Ito processes. This problem is
relatively recent in the theory of random processes; the first publications concerning the problem appeared
in the 1970s and 1980s (Milstein, 1974; Wagner and Platen, 1978 and 1982; Platen, 1981 and 1982). In (3,
4], Wagner and Platen were the first to introduce and apply a Taylor-Ito expansion, i.e., an expansion of
a smooth inertialess nonlinear transformation of a solution of a stochastic Ito differential equation into a
series in repeated stochastic integrals with application of the Ito formula.

In this paper, we apply the authors’ results [7, 9, 10] in construction of the unified Taylor-Ito expansion.
Let us explain what we have in mind. It is possible to reduce repeated stochastic integrals from the Taylor—
Ito expansion in [3, 4] to a system of canonical repeated stochastic Ito integrals of smaller multiplicity
with polynomial integrands. In [7, 10], these transformations are based on formulas of the change of the
integration order for repeated stochastic Ito integrals obtained by the authors [9]. The result of collecting
similar terms is called the unified Taylor-Ito expansion. It is important to note that the coefficients of
the unified Taylor-Ito expansion are determined by recurrent relations. Another important property of the
unified Taylor-Ito expansion is that it contains a significantly lesser number of different repeated stochastic
integrals than the Taylor-Ito expansion in the form of Wagner and Platen [3, 4]. To make a comparison, let
us note that the unified Taylor-Ito expansion up to terms of third order of smallness contains 12 different
repeated stochastic integrals, while the similar Taylor-Ito expansion in the form of Wagner and Platen
contains 17 different repeated stochastic integrals.

In addition, the more terms of expansion are taken into account, the more apparent is the mentioned
difference. This advantage of the unified Taylor-Ito expansion is especially important since approximation
of repeated stochastic integrals is a complicated theoretical and computational problem.

2. DEFINITIONS AND ASSUMPTIONS

Consider a probability space (2, F, P). Let f; = f(¢t,w) € R,y be a Wiener process such that
M{df,dfT} = T2dt,

E?=diag{aj2t1, cr]%z,...,a?m}; crj%i<oo, i=1,2,...,m,

where M{-} is the operator of mathematical expectation.
Consider a system of stochastic Ito differential equations of the following form:

dx; = a(xe, t)dt + I(xy, t)df;, xo = x(0), (1)
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where x; = x(t,w) € R, is a solution of Eq. (1). It is assumed that the functions a(x,t) € R, and
E(x,t) € Rpxm are multiply continuously differentiable with respect to both arguments and satisfy the
conditions of existence and uniqueness of a solution for Eq. (1).

We say that a random process g; € R; is adapted with respect to the Wiener process f; € Ry, on [a,b]
if, for any times 7,%,s € [a,b] such that 7 < ¢ < s, the values g, are stochastically independent with the
differences £{ — ft(i)(i =1,...,m), where ft(i) is the ¢th component of the Wiener process f;.

We say that a process g; is continuous in mean of degree m on [a, b] if the condition

lim M{| g —g-["}=0

is fulfilled for any times ¢, 7 € [a, b].

Consider a partition a = to,1,t2,... ,tn = b of a segment [a,b] such that t; < t;4; for 0 < i < N — 1.
Denote Ay = maXo<i<N-—1 |ti+1 - til-

The mean-square limit

/ gtd t qt - 11 m Z Gts (ft(:.),_l 'f(l)> Qtit1 (2)
is called the generalized stochastic Ito 1ntegral of random processes g; and ¢; with respect to the Wiener
process £}’ YeR (¢=1,...,m) (see Stratonovich [1]).

Assume that the processes G and g: satisfy the following conditions.

(Al) g = 1.

(A2) The process g; is adapted with respect to the Wiener process ft(z) ERi(i=1,...,m).

(A3) The process g; is mean-square continuous on a, b].

(Ad) M {g?} < oo for all t € [a, ).

It is easy to show that the conditions just formulated imply the existence of the generalized stochastic
integral (2). It is also easy to show that the same conditions imply the existence of a stochastic integral of

the form
N-1

b
/ gedbgy = Lim. > g (ber1 k) Quey, - 3)
a An—0 pard

Definition 1. We say that a process n, = R(Xs, s) is Ito continuously differentiable in the mean-square
sense for s € [0,T) along trajectories of Eq. (1) if the representation

Mo =m0 + / Bo{R(xr, 7)}dr + 3 / BO{R(x,, 7)}df® (4)
t i1t

takes place for all s,t € [0,T] such that s > t with probability 1, and the integrals on the right in (4) exist
in the mean-square sense.

In formula (4), x, is a solution of Eq. (1) and Bo{R(x,,7)} and B;i){R(X-,-,T)}, it =1,...,m, are
processes continuous in the mean-square sense on [0, T called the systematic and diffusion Ito derivatives
of the process 7, respectively.

Lemma 1 (Ito formula). Assume that

(1°) the partial derivatives %R(x, t) and 3 (,) R(x, t)mR(x t), i,7 = 1,2,...,n, exist and are
continuous on Ry, x [0,T;

(2°) the functions a®¥) (x,t) and £ (x,t) and the processes a®) (x,,t) and 0D (x,,t) i=1,...,n, j =
1,...,m) have the following property: the processes L{ R(x;,t)} and G((,j ){R(xt,t)}, j=1,...,m, satisfy
conditions (A3) and (A4).

Then the process ns = R(xs, s) is Ito continuously differentiable in the mean-square sense on [0,T], and
its derivatives Bo{R(x:,t)} and Bil){R(xt, t)},i=1,...,m, are given by the following formulas:

Bo{R(x,t)} = L{R(x:,t)}, B {R(x,1)} = G {R(x, 1)}, (5)
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where

_0) o{) 1 ShS i 8%{}
L{}=—2~ +;a( )(x,t) Vo +3 g Zz £ (x, )6 (x, ool (6)
and
G(z){} ZE(M)( t)a{(})’z_l m. 7)

In addition, the equality

8 m 8 . )
Mo =10+ / L{R(xr7)}dr+ 3 / G {R(x,, 7)} £
t i=1 t

holds for all s,t € [0,T] such that s > t with probability 1, and the integrals on the right exist in the
mean-square sense.

We call a family of k-index elements a k-rank matrix (P4, je., P4 = ”A(il"'i")”:.fl' “_1 Thus,
(04 is a scalar value, A4 is an mq x 1-matrix, (¥4 is an m; x mo-matrix, and so on. The symbol
KA = ]|(k“1)A(i1)l|Zf__1, where (F=1) A1) = ”A(“ “)|’m2' 'Z’::__kl, denotes a block matrix such that its
elements are of rank k — 1. Below we sometimes omit the rank of scalars and column matrices.

The matrix (*)C defined by the formula

Mgl M4k

ko = Z A(’L1 ki) Bli1-.d)
11 ”—-1 1[+1,...,i[+k=1

is called the convolution of matrices *t9)A and () B; below we denote this matrix by (FIC = k+) AOO) B

Definition 2. A process 7, = R(xs, s) is called N-times Ito continuously differentiable in the mean-square
sense on [0, T along trajectories of Eq. (1) if the representation

8
(n)Bm..m {R(xs,5)} =(”)Bw-.fn {R(x:, t)}+/t (”)Bow..m {R(x;,T)}dT

8
+/ (DB, {R(Xr,7)} - dEr
¢
is fulfilled for alll = 0,1,... ,N—1, and s,t € [0,T] such that s > t with probability 1 and has the following
l
additional properties: the integrals on the right exist in the mean-square sense; v, = 0,1; 11 = Z Yi;

(’q)B.,q“,Yl{R(xt,t)}, g = 1,2,... N, are matrix random processes continuous in the mean-square sense.

These processes are called the Ito qth derivatives of the processns in the mean-square sense along trajectories

of system (1); OB, ,{R(x:,t)} is called the systematic part of the gth derivative, @B, | {R(x¢,t)} is
~~ . <~

q q
called the diffusion part of the gth derivative, and the remaining processes ("9 B, ., {R(x:,t)} are called
mixed parts of the qth derivative. In the case g = 0, we set g = 0; By .y (= wf, ;s D Boy, vy {-} def
©Bo{-}; "V Bre (€ OBy {1}

Let W D;{} = ’

. m
Dg’) {}“ o j=1,...,k, be vector differential operators and let
1=

Ap{} = {C,,'{-} , p=1,...,k+1,
where Cp{-} is a scalar differential operator.
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Denote

o {21 {01 801} T

21,...ik=1

% (5 Ay, 1 DpAg ... D1AL{} = Arsr {(")DkAk . ..DlAl{-}}
= Aps1 {<1>D,c {(k‘l)Ak ...DlAl{-}}}

o= A {<1>Dk {Ak... {<1>01 (A} ... }}}

Lemma 2. Assume that all the conditions of Lemma 1 are satisfied. Assume that the processes (”+1)Hl+1
H;...H1{R(xs,s)} and the functions "+VH 1 H; ... Hi{R(x,s)} satisfy conditions (1°) and (2°) of Lem-
ma 1 componentwise for alll = 0,1,... ,N — 2. Then the process s = R(xs, s) is N-times Ito continuously
differentiable in the mean-square sense on [0,T), and its derivatives are given by the following formulas:

(rl+1)B’71+1-~-’h {R(XS’ S)} = (rl+1)Hl+1Hl s HI{R(XS’ S)},

41

where Hp{-} = (I)GO{'}aL{'}:' Tie1 = ) Vi Yp = 1 for Hp{-} = (I)GO{'} and vp = 0 for Hp{-} = L{-}.
p=1

The differential operators VGo{-} and L{-} are the same as in Lemma 1; [ =0,1,... ,N — 1.

3. REPEATED STOCHASTIC INTEGRALS AND THEIR PROPERTIES

Let us mention some properties of repeated stochastic integrals that we need below. One can find proofs
of the corresponding statements in [9, 11].
Following (2) and (3), consider a repeated stochastic integral of the form

tk—2 te—1 .
(k) def/ 'l,bk . tl '(Ijl(tk—l)/ ¢t dw(lk)dIVt(zkll) .th(121)7
a

where 9;(t) j=1,... ,k — 1, are some functions, ¢; is a random process, and Wt(q) = ft(q) forg=1,...,m
and W9 =t for ¢ = 0, where £19 are independent scalar Wiener processes.

Let us formulate sufficient conditions for the existence of repeated stochastic integrals J; (%) in the mean-
square sense [9, 11].

Lemma 3. Let the functions v;(t), j = 1,... ,k—1, be continuous on [a,b]. Assume that the process ¢; is

adapted with respect to the Wiener processes ft@) (g =1,...,m) and continuous in the mean square sense
on [a,b]. Assume, in addition, that M {¢?} < oo for all t € [a,b]. Then the repeated stochastic integrals

Ji’;) k=1,2,..., exist in the mean-square sense.
Consider the property of change of integration order in repeated stochastic integrals.
Definition 3. The mean-square limit

‘ (k—1)
Lim Z ¢ (W"S;iz WT(;’C)) S"j+1b’

AN—0
where

gl=1) def{ft i (b2) AW 5. ft,, ko1 (te) AW fork > 1,
tab for k =1,

is called the integral
b ) b )
Ic(zll:) d__e_f/ ¢t1th(11k) wl(tZ) W(zk 1) / T/Jk—l(tk)th(,:l)-
a te—1

The existence of the integral I g;) and the property of change of integration order are established by the
following theorem.
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Theorem 1. Assume that the functions ¥;(t), l = 1,... ,k — 1, and the process ¢, satisfy the conditions
of Lemma 3. Then the integral I i’;) exists in the mean-square sense, and the equality

k k
I = g®

a

holds with probability 1.
The following statement is a corollary of Theorem 1.

Corollary. Under the conditions of Theorem 1, the equality
b oty . (i) (b1 b b N
/a /a GrdW AW, St(lb_ )=/a ¢rdWT(J)/ th(:k)St(lb_ :

holds with probability 1 for j =0,... ,m.
Proof. Consider the process Fp; = f: d),dW,gj ). Under the conditions of Theorem 1, the equality

b ) (k1) b . te—2 71 . (k1) (i1)
/ For, dW 0 S, =/ ¢k—1(tl)---/ ¢1(tk—1)/ Fap WK aw =0 . aw !
a a a a

holds. It remains to apply Theorem 1 to the right-hand side of the latter equality.
Below we use the following property of repeated stochastic integrals.
Lemma 4. Assume that the conditions of Theorem 1 are fulfilled. Let h(t) be a continuous function on

[a,b]. Then the equality
b ) b .
/ iAW h(t)SE ™ = / geh(t)aw sy~
a a

holds with probability 1 for k > 1, and the integrals [} ¢.dW{* h(t)SE™ and [ ¢:h(t)dW ™ S5 ™ exist
in the mean-square sense.

The following properties of the integrals J c(l’;) hold under the conditions of Lemma 3:

M{I} =0, (8)

te—2 th—1

A 2 b
M{(39) Y= o3, %, . 0%, / o). [ Wteer) [ M{G Ydtkdteos .. dtr.  (9)

a

Introduce the following notation:

1 Tk—1

r (@) | G(Ga) [ '

(i) [(s —m)dfl) (s —m)dfl® ... [ (s —m)*df$, k>0,
t
1

k=0,

?

and
m

J(’il---ik)

(k) =
Jll...lks,t - I1- -kt

Ty rig=1 )
Theorem 1 and properties (8) and (9) imply the existence and the following properties of the integrals
Jl(il'”i") for k > 0:

1olig

M{J(zlzk)} =0

ll...lk_,'t
L (g 2
ll---lks,t
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aJ%il 012‘12 U a-2fik (S ~ t)2(ll+m+lk)+k

_ : 10
(20 + 1) (2(1k +h-1)+2) ... QU +...+ 1)+ k) (10)
3 . . . .
/t (s — rYafP i) = J]({’]j;l'::j, p=1,...,m; (11)
s i+1
o Greeds) (=TT G 1 (dyein) ) v
\/t (3 - T)JdTJll‘]:.lk:,-,- - j + 1 Jl]_.l..lk:’t - J + 1']11—1{-j+’c112'"lks,g’ (12)

Livoligs

) ) 3 Thk—~1 . :
i) =/ (s—n)’km/ (s —m)dfln) . df ().
¢ t

Introduce a matrix of rank & of the form

m

(s_t)J J(“’Lk) "
J! ll~-~lks,t

®) (s ot)i,. 1 = H(S © t)§§ii'.1§:) .

i1, ,0=1 i1 e ip=1

Consider the following family of matrices of rank k:

CB = {(k)lelu_lk : (k,j,ll,.. . ,lk) € B} ,
where ’ :
B = {(kyjalla"' ’lk) : k7j7llv"' 7lk € Zl CNU {0}}a
and define an operation on the set of matrices of rank k by the formula

def : k (k
(CPoDB)= Z ®Cy, 1 S ®Dy .
(k1j1117~--1lk)EB

It is easy to see that the operation defined in this way is commutative and distributive.

4. EXPANSION OF ITO PROCESSES
Let us prove a theorem on expansion for a process s = R(x;, s).

Theorem 2. Assume that an Ito process 7, = R(X,,s) generated by a solution of Eq. (1) is (r + 1)-times
Ito continuously differentiable in the mean-square sense on [0,T] along trajectories of Eq. (1). Then this
process can be represented by the series :

r

1s = (C*{m}© (s©t)*) + Drpy,, (13)
q=0

in a neighborhood of a fixed time t € [0,T] so that the equality in (13) holds with probability 1, the
right-hand side of (13) exists in the mean-square sense, and the following notation is adopted:

Dry,, = /t ’ Q% {n-}dr @ (so)*) + /t ’ (HA {n,}idf;) @ (s 1)), (14)

where
Cefne} = {OC.aedme} : Gilay- 1) € Ag )

QA {n-} = {L{(k)th...lk{ﬂr}} 20, k) € Aq};
B4 {n:} = {OC0 {VCin i} ) : Gl 1) € A}
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(k)Lle e {T}t} for k>0
*) (. =¢ T F ;
it ={ |, o s

Ay ={(k,5,l1,... ,lx) ck+j+h+. +lk=q k5, 0,...,lgk=0,1,... };
L{L{.. {L{}}...}} for j >0
LJ{.}déf N, i’

J 3
) for j=0

1
WG () = ; ((I)GP—IL{'} - (1)LGp—1{'}) Cp=1,2...;
M Go{-} and L{-} are defined by relations (6) and (7), respectively.
Proof. We use induction to prove our statement. Apply the Ito formula to the process 7:
ns=m+ D1,, = (C*{p} o (s t)AO) + Dy, ,, (15)
where
Du. = [ Lndar+ [ Gofaniat
= @ nidroGor)+ [ (o) o (som)). (16

Relations (15) and (16) are particular cases of (13) and (14) for » = 0. Apply the Ito formula to the
integrands in D, ,:

Dls,t - Dls,t + ‘D2s.t’ (17)
where
Di, ., = (s =t)L{m} + Go{n:}}o,, = (CH{n.} @ (s & t)*1), (18)
D, = / ( / L*{n:}dr + / GOL{nT}%dfT) ds,
t t t
8 81 81
+ / ( / LGo{n, }dr + / (Q)GoGo{n,.}!df,.> 1df, . (19)
i t t

Changing the order of integration in (19) by Theorem 1, we obtain the following relations:

D2s,t =/ L2{7]T}dT(S—T)+/ LGO{nr}dT}JO.q,r
t t

+ / GoL{n }df,(s — ) + / (@)GOGO{T;,}!dfT) 1o, .
t t

8 8
- / (@* {n,}dr @ (s 7)4) + / ((H**{n,}1d£,) @ (so 7)™). (20)
t t
Relations (15)-(20) lead to the representation

1

ms =Y (C*%{n} @ (s©t)*) + Dy,,, (21)
g=0
where s s
D,,, = / (@Y {n-}Ydr o (ser)*) + /t ((HA {n.} df-) © (se 7)) (22)
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It is easy to see that relations (21) and (22) are particular cases of (13) and (14) for » = 1. Thus, our
theorem is proved for 7 = 0,1. Continuing the described expansion process, at the next step we get the

following relations:
1

To= 3 (CH{m} © (s©1)%) + 5(s ~ 1P°L* {n.}

q=0

+(GoL {m} = LGo{n})* T, + PGoGo {m} * Po, ,

+(s —t)LGo {n:} * Jo, , + Ds,,

1

=Y (C*{m}o (sot)y*)+ (C*{n} o (s©t)*) + Ds,,
g=0

2
=Y (C*{n} o (set)™) +Ds,,, (23)
=0

q

where

Ds,, = / L3 {n:} dT%(S - 7')2 +/ L?G, {n-}dr ! Jo, (s =)
t t
+ / (LGoL {n,} — L2Go {n,}) dr * 1, .
i
* @ 2 () ’ 2 1 1 2
+ [ OLGGo {n,}dr > @y, . + (GOL (n,} df,) s(s=7)
t t
+ / (<2>GOLG0 {n,#df,) S o, (s =)
t
+ / (("GoGoL tne} ~ PCoLGo {nr}) dt,) .
t
+/ ((3)GOG0GO {n+} %df}> ?(2)«]003,,
i
= / (Q*{n-}dr © (s 7)) + / ((HA{n,}1df;) © (seT)"2). (24)
t t :

Hence, the statement of our theorem is valid for » = 2. Assume that the statement of our theorem is
valid for some n = r. Let us prove that it is then valid for n = r + 1. Applying the Ito formula to the
integrands in (14), we get the relations

—_— *
DT'HSJ - DT+1.~7,: + D"""Zs,w

Do, = (@ (mpo [ arts on*)+ (i [ dff) o (sam™),

Drya,, = /t ) ( /1t k dUAf{nT}dn@(sen)A’) + /t | <( /t " dVAT{nT}ldfn> @(sen)A’), (25)

and

where

dUAr{nT} = {(k)lel_,,lk{nT}dT + (k+1)yﬂl___lk{n.,.}}dfT (4,5l k) € AT} ,
avAnin} = {02, a{neddr + COWy, i {0 HaE s Gl D K) € A,
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(k)lel...lk {771-} = (k)Lj+2Gl1 LR le {"77'},
**D Zi e {ne} = BTULGOLIG, ... Gy {n.},
(k+1)Y311...lkT = (k+1)G0Lj+1Gll e le {771'},

EDWit..te, = B GoGoLI Gy, ... Gi{nr}.

By the corollary of Theorem 1, it is possible to change the order of integration in repeated stochastic
integrals in (25), hence we have

Dras,, =/ts <(dUAf{nT}/:dn> @(sen)f‘r) +/ts ((dVAr{n,.}%/:dfﬁ> @(sen)Ar). (26)

Consider the integrals [’ dri(s © 7'1);2'_'_'_;:) and [*dfiP(son )Jli ;:)dn, g=1,.

By properties (11) and (12), we have
8 . .
[ ansemn
-

(31.-k) 1 (1..1k)
(se7)ifi 1 — G=pF (8O 7)1t 0p.0,  fOr K>0

—r)itl
s(j_:l)! for k=0
sdf(Q) (8 or )(il...ik) _ 1 (s© T)(qi1~-~‘ik) k=0.1 (28)
; 1 /500 (s — ,’_)j il e =U L.

Substitute (27) and (28) into (26) and note that the result obtained is equivalent to the following relation:

Drea. = /t (@ e Ydr @ (se 7)) + /t (A e }dE) © (s © 1A

This proves (14). It follows from (14) that

*
Dry1,, =Dy, , + Drao,,,

= <QAr{m} /t Tdro (s GT)A’”) + (<HAr{nt}¥ /t | df,) (s eT)Ar) . (29)

Substituting (27) and (28) with 7 = ¢ into (29), we arrive at the formula

where

ri1,. = (CA i {n} @ (sot)d).
This proves relation (13). Our theorem is proved.

5. UNIFIED TAYLOR-ITO SERIES

It is easy to see that some terms on the right-hand side of formula (13) have higher orders of smallness
in the mean-square sense as s — ¢ than the remainder term D41, ,. This conclusion follows from property
(10). The following theorem describes a modification of expansion (13) such that the terms of the modified
expansion are ordered according to their orders of smallness. In this case, the remainder term has the
highest order of smallness.
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Theorem 3. Under the conditions of Theorem 2, the following unified Taylor-Ito expansion of a process
ns = R(xs,8), s € [0,T), holds in a neighborhood of a fixed time ¢t € [0, T}:

r

=) (CP{n} @ (s©1)P) + Hryy,,,
q=0

where dof
H,-+1M = (C{’Ot}Ur ® (S S t)UT) + Dr+13,ta

8 s
Dry1,, = / (@Y {n-}dro(sor)*) + / (HA {n-}df;) @ (se 1)),
t 4
‘qu{(kaj’llv7lk)k+2(]+ll+'+lk)=q7 kaj’ll"'-alk=0’1,"'},
U,-={(k,j,l1,...,lk):k+j+ll+...+lk§r;
E+2(+hLh+...+0) >r+ 1k 5,4L,...,l,=0,1,...},

\/.M{ 1) }<C(s )T /2, ¢ = const < 007 = 0,1, ...,
and the remaining notation coincides with that in Theorem 2.
Proof. 1t is easy to see that it is possible to represent expansion (13) in the following form:

r

ne= Y (CPHm}® (s ©)P%) + Hrp,,,

q=0

where ot
HT'Hs t = (CUT{U } © (3 © t)Ur) + Dr+1

It follows from the Minkowski inequality that

\/M{ r+1:)0} < \/M{ (CU-{m} e (sot)r) } \/M{ (Drt1,.)?}- (30)
Let us estimate the terms of the right-hand side of (30). Since

(CU{m} @ (sot)’r)

-y P b6 A,

|
(k,gilay..o le)EUR J T2 geee yig=1

it follows from property (10) and from the Minkowski inequality that, in a small neighborhood of time ¢,
the inequality

\/;W {(CUr{m} O (s et)Ur)z} <C.(s— ¢, C,. = const < oo,

holds, where
r+1

k
= i -+ 7+ =
# = kdlle)eU, {2 trtat Hk} 2

Thus, we have the inequality

\/M {(C{m}w o(set)r)’} <Ci(s—F, € =const < oo. o (31)
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Consider the value Dy4q, ,:

Dris,o= [ (@ lnnddroson™)+ [ (B (n} dt) 0 sory™)

s . .
- Ty ([rreeimy e

(k. dilyse JlR)EAS 21 yeeesie=1
+Z/ G(P)LJG(h) ('tk){ ‘r}( ) df(P)Jl(l‘ll l::)f)

Theorem 1, property (10), and the Minkowski inequality imply that, in a small neighborhood of time ¢,

the inequality

\/]\I{(D,.H,,t)?} < C:(s - t)z’, C: = const < 0,

holds, where

I

= min DL A 1+k+ Fl4. 4l b=
T kil = 0<k<r g TITh ks 2 Jtht b= 2

Thus, we have

\/M {(Dr41,.)%} < Cl(s—t)™", C. = const < co. (32)

It follows from (30)—(32) that

VM {2 < Cs =), €, = const < oo.

Our theorem is proved.
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