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Preface

The basis of this book is composed on the monographs:

1. Kuznetsov D.F. Multiple Stochastics Ito and Stratonovich Integrals and
Multiple Fourier Serieses. Electronic Journal "Differential Equations and Control
Processes". 2010, no. 3. (In Russian). Available at:
http: //www.math.spbu.ru/diffjournal /pdf/kuznetsov_book.pdf

2. Kuznetsov D.F. Strong Approximation of Multiple Ito and Stratono-
vich Stochastic Integrals. Multiple Fourier series approach. (In English). St.-
Petersburg, Polytechnical University Press, 2011. 282 p.,

which are the first monographs where the problem of strong (mean-square) ap-
proximation of multiple Ito and Stratonovich stochastic integrals is sistematically
analyzed in the context of numerical integration of stochastic differential Ito equa-
tions.

The presented book and mentioned monographs for the first time successfully
use the tool of multiple and iterative Fourier series, built in the space Lo and
poitwise, for the strong approximation of multiple stochastic integrals and open a
new direction in researching of multiple Ito and Stratonovich stochastic integrals.

We obtained a general result connected with expansion of multiple Ito stochas-
tic integrals with any fixed multiplicity k, based on generalized multiple Fourier
series converging in the space Lao([t, T]¥).

This result is adapted for multiple Stratonovich stochastic integrals of 1 — 4
multiplicity for Legendre polynomial system and system of trigonometric func-
tions, as well as for other types of multiple stochastic integrals. The theorem on
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expansion of multiple Stratonovich stochastic integrals with any fixed multiplicity
k, based on generalized Fourier series converging pointwise is verified.

We obtained exact and approximate expressions for mean-square errors of ap-
proximation of multiple Ito stochastic integrals of any fixed multiplicity k. We
provided a significant practical material devoted to expansion and approximation
of specific multiple Ito and Stratonovich stochastic integrals of 1 — 5 multiplic-
ity using the system of Legendre polynomials and the system of trigonometric
functions.

We compared the methods formulated in this book with existing methods of
strong approximation of multiple stochastic integrals. We consider some weak
approximations of multiple Ito stochastic integrals.

We proved the theorem about integration order replacement for the class
of multiple Ito stochastic integrals. This theorem is generalized for the case of
multiple stochastic integrals according to martingale. We brought out two families
of analytical formulas for calculation of stochastic integrals for the Ito processes
of sufficiently general form.

This book will be interesting for specialists dealing with the theory of stochas-
tic processes, applied and computational mathematics, senior students and post-
graduates of technical institutes and universities, as well as for computer experts.

It is well known, that Ito stochastic differential equations are adequate mathe-
matical models of dynamic systems of various physical nature which are under the
influence of random disturbances. We can meet the mathematical models built
on the basis of Ito stochastic differential equations or systems of such equations
in finances, medicine, geophysics, electrotechnics, seismology, chemical kinetics
and other areas |7] - [20]. Importance of computational solution of Ito stochastic
differential equations is arisen from this circumstance.

It is well known, that one of effective and perspective approaches to numer-
ical integration of Ito stochastic differential equations is an approach based on
stochastic analogues of Taylor formula for solution of this equations [24], [25],
[46]. This approach uses finite discretization of temporary variable and performs
numerical modeling of solution of Ito stochastic differential equation in discrete
moments of time using stochastic analogue of Taylor formula.

The most important difference of such stochastic analogues of Taylor formula
for solution of Ito stochastic differential equations is presence of so called multiple
stochastic integrals in them in the forms of Ito or Stratonovich which are the
functionals of complex structure in relation to the components of vector Wiener
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process. These multiple stochastic integrals are subjects for study in this book.
In one of the most common forms of record used in this monograph the mentioned
multiple Ito and Stratonovich stochastic integrals are detected using the following
formulas:

to . .
J[¢(k)}T7t — /¢k(tk) : ../¢1(t1)dwgl) x -th(Zk)
t

t
(Ito integrals),

*T *t2

T Wy = [nlte) ... [ a(tr)dwy? ... dwy,”
t

(Stratonovich integrals),

where ¢;(7); 1 =1,...,k — are continuous functions at the interval [¢,T] (as a
rule, in the applications they are identically equal to 1 or have polynomial shape;
w, — is a random vector with m + 1 component: w{®) = £ when i =1,...,m
and W;O) = T; 1,...,0 = 0, 1,...,m; fT(i); t = 1,...,m — are independent
standard Wiener processes.

The given multiple stochastic integrals are the specific objects of the the-
ory of stochastic processes. From one side, nonrandomness of weight func-
tions ¢;(7); I = 1,...,k is the factor simplifying their structure. From the
other side, nonscalarity of Wiener process f. with independent components fT(i);
i = 1,...,m, and the fact, that functions ¢;(7); | = 1,...,k are different for
various [; I = 1,...,k are essential complicating factors of structure of multiple
stochastic integrals. Considering features mentioned above, the systems of multi-
ple Ito and Stratonovich stochastic integrals play the extraordinary and perhaps
the key role for solving the problems of numerical integration of Ito stochastic
differential equations. We want to mention in short, that there are two main cri-
teria of numerical methods convergence for Ito stochastic differential equations: a
strong or mean-square criterion and a weak criterion where the subject of approxi-
mation is not the solution of Ito stochastic differential equation, simply stated, but
the distribution of Ito stochastic differential equation solution. Both mentioned
criteria are independent, i.e. in general it is impossible to state, that from execu-
tion of strong criterion follows execution of weak criterion and vice versa. FEach of
two convergence criteria is oriented on solution of specific classes of mathematical
problems connected with stochastic differential equations.

Using the strong numerical methods, we may build sample pathes of Ito
stochastic differential equation numerically. These methods require the com-
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bined mean-square approximation for collections of multiple Ito and Stratonovich
stochastic integrals. Effective solution of this task composes the subject of this
monograph. The strong numerical methods are using when building new mathe-
matical models on the basis of Ito stochastic differential equations, when solving
the task of numerical solution of filtering problem of signal under the influence
of random disturbance in various arrangements, when solving the task connected
with stochastic optimal control, and the task connected with testing procedures
of evaluating parameters of stochastic systems and other tasks.

The problem of effective jointly numerical modeling (in terms of the mean-
square convergence criterion) of multiple Ito or Stratonovich stochastic integrals
is very important and difficult from theoretical and computing point of view.

Seems, that multiple stochastic integrals may be approximated by multiple
integral sums. However, this approach implies partition of the interval of integra-
tion of multiple stochastic integrals (this interval is a small value, because it is a
step of integration of numerical methods for stochastic differential equations) and
according to numerical experiments this additional partition leads to significant
calculating costs.

The problem of effective decreasing of mentioned costs (in several times or
even in several orders) is very difficult and requires new complex investigations
(the only exception is connected with a narrow particular case, when 4; = ... =
ir, # 0 and ¥1(s),. .., ¥Yr(s) = ¥(s). This case allows the investigation with using
of the Ito formula. In more general case, when not all numbers 44, .. ., ¢} are equal,
the mentioned problem turns out to be more complex (it can’t be solved using
the Ito formula and requires more deep and complex investigation). Note, that
even for mentioned coincidence (i; = ... = i # 0), but for different functions
¥1(8), ..., ¢¥K(s) the mentioned difficulties persist, and relatively simple families
of multiple Ito stochastic integrals, which can be often met in the applications,
cannot be expressed effectively in a finite form (for mean-square approximation)
using the system of standard Gaussian random values. The Ito formula is also
useless in this case and as a result we need to use more complex but effective
expansions.

Why the problem of mean-square approximation of multiple stochastic inte-
grals is so complex?

Firstly, the mentioned stochastic integrals (in case of fixed limits of integra-
tion) are the random values, whose density functions are unknown in the general
case. Even the knowledge of these density functions would hardly be useful for
mean-square approximation of multiple stochastic integrals.
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Secondly, we need to approximate not only one stochastic integral, but sev-
eral multiple stochastic integrals which are complexly depended in a probability
meaning.

Often, the problem of combined mean-square approximation of multiple Ito
and Stratonovich stochastic integrals occurs even in cases when the exact solution
of Ito stochastic differential equation is known. It means, that even if you know
the solution of Ito stochastic differential equation, you can’t model it without
enganging combained numerical modelling of multiple stochastic integrals.

Note, that for a number of special types of Ito stochastic differential equations
the problem of approximation of multiple stochastic integrals may be simplified
but can’t be solved. The equation with additive vector noise, with scalar non-
additive noise, scalar additive noise, equation with a small parameter is related
to such types of equation. For the mentioned types of equations, simplifications
are connected with the fact, that either some coefficient functions from stochas-
tic analogues of Taylor formula identically equal to zero, or scalar noise has a
strong effect, or due to presence of a small parameter we may neglect some mem-
bers form the stochastic analogues of Taylor formula, which include difficult for
approximation multiple stochastic integrals.

Furthermore, the problem of combined numerical modeling (proceeding from
the mean-square convergence criterion) of multiple [to and Stratonovich stochastic
integrals is rather new.

One of the main and unexpected achievements of this book is successful us-
age of functional analysis methods (repeated and multiple generalized Fourier
series (converging in Lo([t, T]*) and pointwise) through various systems of basis
functions in this academic field.

The problem of combined numerical modeling (proceeding from the mean-
square convergence criterion) of multiple Ito and Stratonovich stochastic integral
systems was analyzed in the context of problem of numerical integration of Ito
stochastic differential equations in the following monographs:

[I] Milstein G.N. Numerical integration of stochastic differential equations.
Kluwer. 1995. 228 p. (translation from edition to Russian language, 1988);

|II] Kloeden P.E., Platen E. Numerical solution of stochastic differential equa-
tions. Springer-Verlag. Berlin. 1992. 632 p. (2nd edition 1995, 3rd edition 1999);

[ITI] Milstein G.N., Tretyakov M. V. Stochastic numerics for mathematical
physics. Springer-Verlag. Berlin. 2004. 596 p.;

[IV] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice
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of Numerical Solution. Publishing house of the Polytechnical University, Saint-
Petersburg. 2010. 816 pp. 4th edition (in Russian).

Books [I] and [III| analyze the problem of mean-square approximation only
for two elementary multiple Ito stochastic integrals of first and second mul-
tiplicities (k = 1 and 2; ¥1(s) and w9(s) = 1) for the multivariable case:
11, 19 = 0, 1,...,m. In addition, the main idea is based on the expansion of
so called process of Brownian bridge into the Fourier series. This method is called
in [I] and [III] as the method of Fourier.

In [II] using the method of Fourier, the attempt was made to perform mean-
square approximation of elementary stochastic integrals of 1 — 3 multiplicity (k =
L,...,3;91(s),...,9¥s3(s) = 1) for the multivariable case: 4;,...,i3 =0, 1,...,m.
However, as we can see in chapter 6, the results of monograph [II], related to
the mean-square approximation of multiple stochastic integral of 3rd multiplicity,
cause a number of critical remarks.

The main purpose of this monograph is to detect, validate and adapt newer
and more effective for applications methods (than presented in books [I] - [III]) of
combined mean-square approximation of multiple Ito and Stratonovich stochastic
integrals.

Talking about the history of solving the problem of combined mean-square
approximation of multiple stochastic integrals, the idea to find bases of random
values using which we may represent multiple stochastic integrals turned out to
be useful. This idea was transformed several times in the course of time.

Attempts to approximate multiple stochastic integrals using various integral
sums were made until 1980s, i.e. the interval of integration of stochastic integral
was divided into n parts and the multiple stochastic integral was represented
approximately by the multiple integral sum, included the system of independent
standard Gaussian random variables, whose numerical modeling is not a problem.

However, as we noted before, it is obvious, that the interval of integration of
multiple stochastic integrals is a step of numerical method of integration for Ito
stochastic differential equation which is already a rather small value even without
additional splitting. Numerical experiments demonstrate, that such approach
results in abrupt increasing of computational costs accompanied by the growth
of multiplicity of stochastic integrals (beginning from 2nd and 3rd multiplicity),
that is necessary for building more accurate numerical methods for Ito stochastic
differential equations or in case of decrease of the numerical method integration
step, and thereby it is almost useless for practice.
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The new step for solution of the problem of combined mean-square approxima-
tion of stochastic integrals was made by G.N. Milstein in his monograph [I] (1988),
who proposed to use converging in the mean-square sense trigonometric Fourier
expansion of Wiener process, using which we may expand a multiple stochastic
integral. In [I| using this method, the expansions of two simplest stochastic inte-
grals of 1st and 2nd multiplicities into the products of standard Gaussian random
values was obtained and their mean-square convergence was proved.

As we noted, the attempt to develop this idea was made in monograph [II]
(1992), where it is obtained expansions of simplest multiple stochastic integrals
of 1 — 3 multiplicity. However, due to the number of limitations and technical
difficulties which are typical for method [I], in [II] and following publications this
problem was not solved more completely. In addition, the author has reasonable
doubts about handling of the method of series summation, given in [II], related
to integrals of 3rd multiplicity (see section 6.1.4).

It is necessary to note, that the method [I] excelled in times or even in orders
the method of integral sums considering computational costs in the sense of their
diminishing.

Regardless of the method [I]| positive features, the number of its limitation is
also outlined: absence of obvious formula for calculation of expansion coefficients
of multiple stochastic integral; practical impossibility to make exact calculation of
the mean-square error of approximation of stochastic integrals with the exception
of simplest integrals of 1st and 2nd multiplicity (as a result, it is necessary to
consider redundant terms of expansion and it results to the growth of computa-
tional costs and complication of numerical methods for Ito stochastic differential
equations); there is a hard limit for a system of basis functions in the course of
approximation — it may be only trigonometric functions; there are some tech-
nical problems if we use this method for stochastic integrals whose multiplicity
is higher than 2nd (see section 6.1.4). It is necessary to note, that the analyzed
method is a concrete forward step in this academic field.

The author thinks, that the method presented by him in chapter 1 (hereafter,
the method based on multiple Fourier series) is a breakthrough in solution of
problem of combined mean-square approximation of multiple stochastic integrals.

The idea of this method is as follows: multiple Ito stochastic integral of mul-
tiplicity k is represented as a multiple stochastic integral from the certain non-
random discontinuous function of k variables, detected on the hypercube [t, T,
where [t,T] — is an interval of integration of multiple Ito stochastic integral.
Then, the indicated nonrandom function is expanded in the hypercube into the
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generalized multiple Fourier series converging at the mean-square in the space
Lo([t, T)¥). After a number of nontrivial transformations we come (theorem 1) to
the mean-square convergening expansion of multiple Ito stochastic integral into
the multiple series of products of standard Gaussian random values. The coeffi-
cients of this series are the coefficients of multiple Fourier series for the mentioned
nonrandom function of several variables, which can be calculated using the explicit
formula regardless of the multiplicity k& of the multiple Ito stochastic integral.

As a result we obtain the following new possibilities and advantages in com-
parison with the method of Fourier [I].

1. There is an obvious formula for calculation of expansion coefficients of
multiple Ito stochastic integral with any fixed multiplicity £. In other words, we
can calculate (without any preliminary and additional work) the expansion coeffi-
cient with any fixed number in the expansion of multiple Ito stochastic integral of
preset fixed multiplicity. At that, we don’t need any knowledge about coefficients
with other numbers or about other multiple Ito stochastic integrals, included in
the analyzed collection.

2. We have new possibilies to obtainment of exact and approximate expres-
sions for mean-square error of approximation of multiple Ito stochastic integrals.
These possibilities are realized using exact and estimates formulas (see chapter
4) for mean-square errors of approximations of multiple Ito stochastic integrals.
As a result, we won’t need to consider redundant terms of expansion, that may
complicate approximations of multiple stochastic integrals.

3. Since the used multiple Fourier series is a generalized in the sense, that it
is built using various full orthonormal systems of functions in the space Lo([t, T'),
we have new possibilities for approximation — we may use not only trigonometric
functions as in [I] but Legendre polynomials as well as function systems of Haar
and Rademacher-Walsh (see chapters 2 and 5).

4. As it turned out (see chapter 5), it is more convenient to work with Leg-
endre polynomials for building approximations of multiple stochastic integrals —
it is enough just to calculate coefficients of the multiple Fourier series, and ap-
proximations themselves appear to be simpler than for the case of the system of
trigonometric functions. For the systems of Haar and Rademacher-Walsh func-
tions the expansions of multiple stochastic integrals become extremely complex
and ineffective for practice (see chapter 2).

5. The question about what kind of functions (polynomial or trigonometric) is
more convenient in the context of computational costs of approximation turns out
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to be nontrivial, since it is necessary to compare approximations made not for one
integral but for several stochastic integrals at the same time. At the same time
there is a possibility, that computational costs for some integrals will be smaller
for the system of Legendre polynomials and for others — for the system of trigono-
metric functions. The author thinks, that (see bottom lines in tables 6.2 and 6.3)
computational costs are 3 times less for the system of Legendre polynomials at
least in case of approximation of special family of multiple stochastic integrals of
1 — 3 multiplicity. In addition, the author supposes, that this effect will be more
impressive when analyzing more complex families of multiple stochastic integrals.
This supposition is based on the fact, that the polynomial system of functions
has a significant advantage (in comparison with the trigonometric system) for
approximation of multiple stochastic integrals for which not all weight functions
are equal to 1 (compare formulas (5.4), (5.5), (5.7), (5.8) with formulas (5.42),
(5.47), (5.46), (5.45) correspondently).

6. The Milstein method leads to repeated series (in contrast with multiple
series taken from theorem 1 in this book) starting at least from the third mul-
tiplicity of multiple stochastic integral (we mean at least triple integration on
Wiener processes). Multiple series are more preferential in terms of approxima-
tion than the repeated ones, since partial sums of multiple series converge in any
possible case of joint converging to infinity of their upper limits of summation
(lets define them as pi,...,pr). For example, for more simple and convenient
for practice case when p; = ... = pp = p — oo. For repeated series it is obvi-
ously not the case. However, in [II] the authors unreasonably use the condition
p1 = p2 = p3 = p — o0 — within the frames of the Milstein method.

7. The convergence (see chapters 4 and 5) in the mean of degree 2n, n € N
of approximations from theorem 1 and convergence with probability 1 for some
of these approximations is proven.

Let’s deal with the content of this monograph according to chapters.

Chapter 1 is devoted to expansions of multiple Ito stochastic integrals. The
new method of expansion of multiple Ito stochastic integrals based on the general-
ized multiple Fourier series and converging in the mean-square sense is formulated
and proven. This method is generalized for the case of discontinuous full orthonor-
mal systems of functions in the space Lo([t,T]). Using the example of multiple Ito
stochastic integrals of 2nd and 3rd multiplicity it is demonstrated, that expansions
from theorems 1 and 2 are similar for a particular case: ¥ (s), ¥2(s), ¥3(s) = ¥(s);
11 =19 =13 = 1,...,m with well-known representations of multiple Ito stochastic
integrals based on Hermite polynomials.
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Chapter 2 is devoted to expansions of multiple Stratonovich stochastic in-
tegrals. We adapt the results of theorems 1 and 2 for expansions of multiple
Stratonovich stochastic integrals in the first part of this chapter. The theorem
about expansion of multiple Stratonovich stochastic integrals of 2nd multiplic-
ity (theorem 3) is proven for the case of two times continuously differentiated
functions 1;(s) and s(s) (i1,32 = 1,...,m). We obtained similar expansions
for multiple Stratonovich stochastic integrals of 3rd and 4th multiplicity for the
cases of system of Legendre polynomials and the system of trigonometric func-
tions when 91(s),...,%4(s) = 1 (41,...,74 = 0, 1,...,m) (see sect. 2.3.1, 2.4
and 2.5).

The generalization of some of these results (theorem 4) for the system of
Legendre polynomials and binomial expressions v;(s) = (t — s)¥ (j = 1, 2, 3)
are given in the following cases:

1. ’il 752'2, 'i27é'i3, ’il #23 and ll, lg, l3:0, 1, 2,...;
2. 7;122'2757:3; llzlz#lg andll, l2, 13:0, 1, 2,...;
3. 7;1#2'2:7:3; ll#lzzlg andll, l2, 13:0, 1, 2,...;
4. ’il,ig,igz 1,...,m; l1:l2:l3:landl:0, 1, 2,....

Also we got even more general modifications of theorem 4 (theorems 5 and
5’) for the system of Legendre polynomials and the system of trigonometric func-
tions in the following cases (11(s), ¥2(s), ¥3(s) — are continuously differentiated
functions):

1. 91 # 19, 19 # 13, 1 7 13;

2. 11 = 1ig # 43 and P1(s) = Pa(s);

3. 11 75 19 = ’i3 and @bg(s) = 'gbg(s);

4. 41,149,713 = 1,...,m and ¥1(s) = ¥a(s) = P3(s).

The generalizations of these results (theorems 6 and 6’) for the systems of
Legendre polynomials and the system of trigonometric functions (case of two
times continuously differentiated functions 11(s), ¥2(s), ¥3(s)) are given without
the conditions 1 — 4 (i1, i, i3=1,...,m).

In the second part of chapter 2 we analyze another approach to expansion
of multiple Stratonovich stochastic integrals of any fixed multiplicity k&, based on
the generalized repeated Fourier series converging pointwise. We analyze in detail

the cases when k = 2, 3, 4 and propose generalization for the case of fixed k
(theorems 10, 13).

At the end of chapter 2 we analyzed the method of expansion of multiple
Stratonovich stochastic integrals of the 2nd, 3rd and 4th multiplicities, which is a
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modification of theorem 10 (we analyzed new passage to the limit in this theorem
for k = 2, 3, 4) and provides a possibility to obtain new and significantly differ
proofs of theorems 3, 6 and 8 than those, that were presented earlier. See theorems
14 — 16. These results create an entire picture about expansion mechanism of
multiple Stratoinovich stochastic integrals, using multiple and repeated Fourier
series.

In chapter 3 we analyze versions of the theorem 1 for other types of multiple
stochastic integrals. We formulated and proved analogues of theorem 1 for mul-
tiple stochastic integrals according to martingale Poisson measures (theorem 17)
and for multiple stochastic integrals according to martingales (theorem 18).

Chapter 4 is devoted to obtainment of exact and approximate expressions
for mean-square errors of approximation of multiple Ito stochastic integrals,
created using theorem 1. We analyzed the case of any fixed k and pairwise
various %1,...,% = 1,...,m, as well as the case of any possible numbers
11,...,0t = 1,...,m and any fixed k.. Here k — is a multiplicity of multiple
stochastic Ito integral. The convergence in the mean of degree 2n, n € N of
expansions from theorems 1 and 2 is proven.

In chapter 5 we provide a significant practical material, based on the results of
chapters 1 and 2. We got approximations of specific multiple Ito and Stratonovich
stochastic integrals with multiplicities 1 — 5 using theorems 1 — 8 and the system
of Legendre polynomials. For the case of trigonometric system of functions using
theorem 1 and the results of chapter 2 we obtained approximations for specific
multiple [to and Stratonovich stochastic integrals with multiplicities 1 — 3. We
obtained a lot of formulas for mean-square errors for developed approximations.
Convergence with probability 1 of several approximations for double stochastic
[to integrals is proven.

Chapter 6 is devoted to other methods of approximation of multiple Ito and
Stratonovich stochastic integrals. We analyzed Milstein method and compared it
with the method based on theorem 1. We also analyzed a combined method and
a method of integral sums of mean-square approximation of multiple stochastic
integrals. The last part of the chapter 6 is devoted to the weak approximations
of multiple Ito stochastic integrals.

In chapter 7 we determined the class of multiple Ito stochastic integrals, for
which with probability 1 the formulas of integration order replacement corre-
sponding to the rules of classical integral calculus are reasonable. We proved the
theorem of integration order replacement for the class of multiple Ito stochastic
integrals. We analyzed many examples of this theorem usage. These results are
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generalized for the case of multiple stochastic integrals according to martingale.

Chapter 8 is devoted to some exact formulas for stochastic integrals. We
represented multiple Ito stochastic integrals of kth multiplicity with using of Her-
mite polynomials. One formula for double Stratonovich stochastic integrals and
one formula for multiple Stratonovich stochastic integrals of kth multiplicity are
proven. We brought out two families of analytical formulas for calculation of
stochastic integrals for the Ito processes of sufficiently general form.

In chapter 9 we gathered a support material which may be used while reading
this book. We provided concepts of Ito and Stratonovich stochastic integrals,
Ito formula, Ito stochastic differential equation, stochastic integrals according
to Poisson random measures and martingales, various variants of Taylor-Ito and
Taylor—Stratonovich expansions for solution of Ito stochastic differential equation.

Dmitriy F. Kuznetsov February, 2017

Electronic Journal. http://www.math.spbu.ru/diffjournal A.13



Contents

1

2

Expansions of multiple Ito stochastic integrals based on generalized multiple

Fourier series, converging in the mean 18
1.1 Imtroduction . . . . . . . . . .. e 18
1.2 Theorem on expansion of multiple Ito stochastic integrals of any fixed multiplicity & 20
1.3 Expansion of multiple Ito stochastic integrals with multiplicities1 -6 . . . . . . 32
1.4 Expansion of multiple Ito integrals of any multiplicity £ . . . . . . . . ... ... 37
1.5 Comparison of theorem 2 with representations of multiple Ito stochastic integrals,
based on Hermite polynomials . . . . . . . .. .. .. ... 0 L. 39
1.6 On usage of full orthonormal discontinuous systems of functions in theorem 1 . . 43
1.7 Remarks about usage of full orthonormal systems in theorem 1 . . . . . . . . .. 47

Expansions of multiple Stratonovich stochastic integrals, based on general-

ized multiple and repeated Fourier series 49
2.1 Expansions of multiple Stratonovich stochastic integrals of 1st and 2nd multi-
plicity. Polynomial and trigonometriccases . . . . . . . . . .. . ... ... ... 49
2.2 About the expansion of multiple Stratonovich stochastic integrals of 3rd multi-
plicity. Some relations for the case of weight functions of general form . . . . . . 68
2.3 Expansions of multiple Stratonovich stochastic integrals of 3rd multiplicity, based
on theorem 1. Cases of Legendre polynomials and trigonometric functions . . . . 76
2.3.1 The case ¢1(T), 1/)2(7'), 1/13(7') =1; 01,080,053 =1,....m . .. .. ... ... 76
2.3.2 The case 1,[71(7'),’@[)2(7') = (t—T)l, 1/13(7') = (t—’T)lS; il :ig 7523 ...... 94
2.3.3 The case wg(T), 7/)2(7’) = (t - T)l, wl(T) = (t — T)ll; 7;3 =19 # 11« v v e 100
2.3.4  The case 11 (7),¥o(7),¥3(T) = (t — 7)1, 00,03 =1,...,m . . . . . ... 107
2.3.5 Expansion of multiple Stratonovich stochastic integrals of 3rd multiplic-
ity. Case of weight functions of polynomial form . . . . .. .. ... ... 109

2.3.6 Expansion of multiple Stratonovich stochastic integrals of 3rd multiplic-
ity. Case of continuously differentiated weight functions . . . . . . . . .. 110

2.3.7 Expansion of multiple Stratonovich stochastic integrals of 3rd multiplic-
ity. Case of two times continuously differentiated weight functions . . . . 116

2.4 Expansions of multiple Stratonovich stochastic integrals of 3rd multiplicity, based
on theorem 1. Trigonometriccase . . . . . . . . . . . .. ... ... 128



Differential Equations and Control Processes, N 1, 2017

2.5 Expansion of multiple Stratonovich stochastic integrals of 4th multiplicity, based

on theorem 1. Polynomial and trigonometriccases . . . . . . . . ... ... ... 134
2.6 Expansion of multiple Stratonovich stochastic integrals of kth multiplicity, based

on theorem 1. Polynomial and trigonometriccases . . . . . . . ... ... .... 155
2.7 Expansion of multiple Stratonovich stochastic integrals of any fixed multiplicity

k, based on generalized repeated Fourier series . . . . . . . . ... .. ... ... 156

2.7.1 The case of integrals of 2nd multiplicity . . . ... ... ... ... ... 156

2.7.2 'The case of integrals of 3rd and 4th multiplicity . . . . . ... ... ... 161

2.7.3 'The case of integrals of multiplicity & . . . . . ... ... ... ... ... 166

2.8 Expansion of multiple Stratonovich stochastic integrals of 2nd, 3rd and 4th mul-
tiplicity, based on generalized multiple and repeated Fourier series. Another
proof of theorems 3,6 and 8 . . . . . . . . . . ... ... ... ... ... ... 181

2.8.1 The case of integrals of 2nd multiplicity. Another proof of the theorem 3 181
2.8.2 The case of integrals of 3rd multiplicity. Another proof of the theorem 6 184
2.8.3 The case of integrals of 4th multiplicity. Another proof of the theorem 8 191

Expansions of multiple stochastic integrals of other types, based on general-

ized multiple Fourier series 204
3.1 Expansion of multiple stochastic integrals according to martingale Poisson’s mea-

SUTES .« v v v e e e e e e e e e e e e e e e e 204
3.2 Expansion of multiple stochastic integrals according to martingales . . . . . .. 209

3.3 Remark about full orthonormal systems of functions with weight in the space
Lo([t,T]) - - o o o o e e 213

Exact and approximate expressions for errors of approximations of multiple

stochastic integrals 217
4.1 'The case of any fixed k£ and pairwise different numbers 7;,...,5, =1,...,m . . . 217
4.2 'The case of any fixed £ and numbers 4y,...,5.=1,....m . . . . . .. ... ... 221
4.3 'The case of any fixed £ and numbers 4y,...,4 =0,1,...,m. . . . .. ... ... 221
4.4 The other proof of lemma 10 . . . . . . . . . . . ... Lo 222
4.5 Exact calculation of mean-square error of approximation. The case £k = 1, 2;
T,00 = 1, 0y M o o o e e e e 225
4.5.1 Thecase k=1 . . . . . . . . . . . e 225
4.5.2 Thecase k=2and any 41,50 =1,...,m . . . . .. ... ... 226
4.6 Exact calculation of mean-square error of approximation. The case k = 2, 3, 4;
i1y...,04 = 1,...,m (another approach) . . . . .. .. ... ... ... ... . 229
4.6.1 Thecase k=2, =io;00=1,....,m . . . . . .. . .. .. .. ...... 229
4.6.2 Thecase k=3 and any 41,209,533 =1,...,m . . . . . . . . ... ... ... 231
4.6.3 The case k =4 and any 1,%9,93,%4=1,...,m . . . . . . ... ... ... 236

Electronic Journal. http://www.math.spbu.ru/diffjournal A.15



Differential Equations and Control Processes, N 1, 2017

4.7 Convergence in the mean of degree 2n of expansion of multiple Ito stochastic
integrals from theorem 1 . . . . . . . .. ..o oL 239

4.8 Some peculiarities of calculation of mean square error of approximation for the
systems of polynomial and trigonometric functions . . . . . . . . .. .. ... .. 243

Approximation of specific multiple Stratonovich and Ito stochastic integrals247

5.1 Approximation of specific multiple stochastic integrals of multiplicities 1-5 using

Legendre polynomials . . . . . . . .. .. .o oo 247
5.2 About Fourier-Legendre coefficients . . . . . . . . .. ... o oL 270
5.3 Approximation of specific multiple stochastic integrals of multiplicities 1-3 using

the trigonometric system of functions . . . . . .. .. ... 000000 273
5.4 Convergence with probability 1 of expansions of some specific multiple stochastic

integrals . . . . . . Lo 282
5.5 About the structure of functions K (¢1,...,%), used in applications . . . . . . . 289

Other methods of approximation of multiple Stratonovich and Ito stochastic

Integrals 291
6.1 Milstein method of strong approximation of multiple stochastic integrals . . . . 291
6.1.1 Introduction . . . . . . . ..o 291
6.1.2 Approximation of multiple stochastic integrals of 1st and 2nd multiplicity 292
6.1.3 Comparison with method based on multiple Fourier series . . . .. . .. 295

6.1.4 About problems of Milstein method in relation to multiple stochastic
integrals of multiplicities above the second . . . . . . . . ... ... ... 296

6.2 Usage of multiple integral sums for approximation of multiple Ito stochastic
integrals . . . . . . L 298

6.3 Comparison of effectiveness of Fourier-Legendre series, trigonometric Fourier se-
ries and integral sums for approximation of stochastic integrals . . . . . . . . .. 301

6.4 Multiple stochastic integrals as solutions of systems of linear stochastic differen-
tial equations . . . . . .. L L e 311
6.5 Combined method of approximation of multiple stochastic integrals . . . . . . . 312
6.5.1 Basicrelations. . . . . ... Lo 312
6.5.2 Calculation of mean-square error . . . . . ... ..o 315
6.5.3 Numerical experiments . . . . . . . . ... Lo Lo Lo 317
6.6 Weak approximation of multiple Ito stochastic integrals . . . . . . . . ... ... 318

Theorems about the integration order replacement in the multiple stochastic

integrals 329
7.1 'The theorem of integration order replacement in multiple Ito stochastic integrals 329
7.1.1 Formulation and proof . . . . . . . . ... ... ... ... 332
7.1.2 Corollaries and generalizations . . . . . . . . . ... .. ... ... ... 339

Electronic Journal. http://www.math.spbu.ru/diffjournal A.16



Differential Equations and Control Processes, N 1, 2017

7.1.3 Integration order replacement for the concrete multiple Ito stochastic

integrals . . . . . . L 343

7.2 Integration order replacement in multiple stochastic integrals according to mar-
tingale . . . ..o L 345
8 Some exact formulas for Ito and Stratonovich stochastic integrals 350

8.1 Representation of multiple Ito stochastic integrals using Hermite polynomials . . 350

8.2 One formula for multiple Stratonovich stochastic integrals of kth multiplicity . . 352

8.3 One formula for double Stratonovich stochastic integrals . . . . ... ... ... 353
8.4 Analytical formulas for calculation of stochastic integrals . . . . . . . ... ... 355
8.4.1 Additive separation of variables . . . . . ... ... 00000 357

8.4.2 Multiplicative separation of variables . . . . . ... ... ... ...... 361

9 Stochastic integrals and stochastic differential equations 365
9.1 TIto Stochastic integral . . . . . . .. . .. oo o 365
9.2 Stratonovich stochastic integral . . . . . . .. ..o 0oL 367
9.3 Itoformula . . .. .. . . . 368
9.4 Tto stochastic differential equation . . . . . .. . . .. ... .. ... ... 369
9.5 Stochastic integral according to martingale . . . . . . ... .. ... 370
9.6 Stochastic integral according to Poisson random measure . . . . . . . ... ... 371
9.7 Moment estimations for stochastic integrals according to Poisson measures . . . 373
9.8 Taylor-Ito and Taylor-Stratonovich expansions . . . . . . . .. ... ... .... 374
9.9 The unified Taylor-Ito and Taylor-Stratonovich expansions . . . . . .. .. ... 377
Bibliography 382

Electronic Journal. http://www.math.spbu.ru/diffjournal A.17



Chapter 1

Expansions of multiple Ito stochastic
integrals based on generalized multiple
Fourier series, converging in the mean

This chapter is devoted to expansions of multiple Ito stochastic integrals, based
on generalized multiple Fourier series converging in the mean. The method of gen-
eralized multiple Fourier series for expansions and mean-square approximations
of multiple Ito stochastic integrals is derived here. In this chapter it is also ob-
tained generalization of this method for discontinuous basis functions. And here
is given a comparison of derived method with well-known expansions of multiple
[to stochastic integrals based on Ito formula and Hermite polynomials. As well as
the proof of convergence in the mean of degree 2n, n € N of considered method
is obtained.

1.1 Introduction

The results of this chapter are fundamental for following chapters of this mono-
graph and perhaps for the book in whole. For the first time we use power tool
of generalized multiple Fourier series converging in the mean in order to derive
expansions of stochastic integrals.

The idea of representing of multiple Ito and Stratonovich stochastic integrals
in the form of multiple stochastic integrals from specific nonrandom functions of
several variables and following expansion of these functions using Fourier series
in order to get effective mean-square approximations of mentioned stochastic in-
tegrals was represented in several works of the author. Specifically, this approach
appeared for the first time in [47] (1994). In that work the mentioned idea is
formulated more likely at the level of guess (without any satisfactory grounding),
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and as a result the work [47] contains rather fuzzy formulations and a number of
incorrect conclusions. Nevertheless, even in [47] we can find, for example formulas
(4.3), (4.37), (4.38). Note, that in [47] we used multiple Fourier series according to
the trigonometric system of functions converging in the mean. It should be noted,
that the results of work [47] are true for a sufficiently narrow particular case when
numbers 41, ..., i}, are pairwise different; 41,...,4 = 1,..., m (see formula (1.1)).

Usage of Fourier series according to the system of Legendre polynomials for
approximation of multiple stochastic integrals took place for the first time in [45]
(1997, submitted for publication in December 1996), [32] (1998), [34], [35], [37]
(1999), as well as in [36] (2000). In particular, you can find formulas (5.3) — (5.8),
(5.18) in this works. Note, that the approach taken from work [47] was formulated,
proved and generalized in its final variant by the author in [42] (2006) (theorem
1 in this book).

The question about what integrals (Ito or Stratonovich) are more suitable for
expansions within the frames of distinguished direction of researches has turned
out to be rather interesting and difficult.

On the one side, theorem 1 conclusively demonstrates, that the structure of
multiple Ito stochastic integrals is rather convenient for expansions into multiple
series according to the system of standard Gaussian random variables regardless
of their multiplicity k.

On the other side, the results of chapter 2 convincingly testify, that there is
a doubtless relation between multiplier factor %, which is typical for Stratonovich
stochastic integral and included into the sum, connecting Stratonovich and Ito
stochastic integrals, and the fact, that in point of finite discontinuity of sectionally
smooth function f(z) its Fourier series converges to the value 3 (f(z—0)+ f(z+0)).
In addition, as it is demonstrated in chapter 2, final formulas for expansions of
multiple Stratonovich stochastic integrals (of second multiplicity in the common
case and of third and fourth multiplicity in some particular cases) are more com-
pact than their analogues for Ito stochastic integrals. The expansion of multiple
Stratonovich stochastic integrals of any fixed multiplicity k& based on repeated
Fourier series and obtained in chapter 2 [45], [35], [32] is also seems interesting.

And still, estimating the results of chapter 1 and 2 of this monograph, the
author adhered to the judgment, that the structure of multiple Ito stochastic
integrals is more suitable for expansion in multiple series according to the system
of Gaussian random variables.

Actually, when proving theorem 1 for the case of any fixed multiplicity k of
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multiple Ito stochastic integral we used multiple Fourier series converging in the
mean. The deduction of theorems 3 — 8, 14 — 16 for multiple Stratonovich stochas-
tic integrals of 2nd, 3rd and 4th multiplicity in addition to the results of theorem
1 required also usage of the theory of repeated or multiple Fourier series con-
verging pointwise, and resulted to more complex researches than those that were
performed for proving of theorem 1, which nevertheless didn’t provide common
results (we analyzed the cases of multiple Stratonovich stochastic integrals of 2nd,
3rd and 4th multiplicity, where the results related to integrals of 4th multiplicity
have an individual pattern, although they are of vital importance for practice).

Expansions of multiple Stratonovich stochastic integrals of any fixed multiplic-
ity k obtained at the end of chapter 2 are rather interesting but include repeated
series, approximation of which is less convenient than approximation of multiple
series.

1.2 Theorem on expansion of multiple Ito stochastic inte-
grals of any fixed multiplicity &

In this section we will get the expansion of multiple Ito stochastic integrals of any
fixed multiplicity & based on generalized multiple Fourier series converging in the
mean in the space Ly([t, T]F).

Assume, that (2, F,P) — is a fixed probability space and {Fy, t € [0,7]} —
is a non-decreasing collection of o-algebras, defined at (2, F, P).

Assume, that f(¢,w) def fi, t € [0,T] — is a standard Wiener process, which
is F;—measurable for all ¢ € [0, 7], and process fia — fa forall A >0, ¢t > 0 is
independent with the events of o-algebra Fa.

Hereafter we call stochastic process £ : [0,7] x  — R! as non-anticipative
when it is measurable according to the family of variables (¢,w) and function
E(t,w) def &; is Fi-measurable for all ¢ € [0, T] and &, independent with increments
fian — fafor A> 7 t>0.

Let’s examine the following multiple Ito (J[#/*)]7;) and Stratonovich
(J*[®)]74) stochastic integraIS'

JpWg, = /¢k tr) - /¢1 3} th 2 dw,g )7 (1.1)
*T *t2 _
TPy = [ its) ... [ gut)dwi . dwi?, (1.2)
t t
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where ¢y(7); I = 1,..., k — are continuous functions at the interval [¢, T'); W,@ =

£ wheni=1,...,m;w =t i1,...,5,=0, 1,...,m; f) (i =1,...,m) —
are independent standard Wiener processes.

The problem of effective jointly numerical modeling (in terms of the mean-
square convergence criterion) of multiple Ito stochastic integrals, as we mentioned
before, is very important and complex from theoretical and computing point of
view. The exception is a very narrow particular case, when 41 = ... =i # 0 and
1(8), ..., ¥K(s) = ¥(s) (see this chapter and chapter 6). We can analyze this

case using the Ito formula.

This problem, as we will see in this chapter, cannot be solved using the Ito
formula and it requires deeper and more complex investigation for the case when
not all numbers iy, ..., % coincide among themselves. Note, that even in case of
such coincidence (i; = ... =i # 0), but with various ¥;(s), ..., ¥x(s) the men-
tioned problem persists, and relatively simple families of multiple Ito stochastic
integrals, which can be often met in the applications, cannot be expressed ef-
fectively in a finite form (for mean-square approximation) using the system of
standard Gaussian random values. The Ito formula is useless in this case, and as
a result we need to use more complex but effective expansions.

Assume, that {¢;(z)}32y — is a full orthonormal system of functions in the
space Lao([t, T']); ¥1(7), . . ., ¥x(T) — are continuous functions at the interval [¢, T].

Let’s analyze the following function

t) . p(ty), < ...<t
K(ty,... t) = {gl(oglerwﬁ’;( k), h Moty ke [t T

The function K (ty,...,%) is sectionally continuous in the hypercube [t, T,
i.e. the hypercube may be cut in finite number of parts using the sectionally
continuous surfaces in such manner, that the function K (¢1, ..., %) is continuous
in each part and has limits at the border of part, and it may have gaps along
these cuts.

At this situation it is well known, that the multiple Fourier series of function
K(t1,...,tr) € La([t, T]¥) is converging to this function in the hypercube in the
mean-square sense, i.e.

P1;eePp—200

] P1 Pk k
lim HK(tl, ceey tk) Z ca Z Cjk---j1 ll;[l ¢jl (tl)

J71=0 Jr=0

=0, (1.3)
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where || f|| = < I3ty ty)dt dtk)2 and we have Parseval equality
[¢,T]*

| Kti,... ty)dty...dty = lim S5 c e (1.4)

yeesPp—0O0 T
[t7T]k b1 Dk 1 =0 Jk_

k
CJle - / K(tla cey tk) ll_[l QSJI (tl)dtl ce dtk
T] =

[t,T]k
Let’s formulate the basic theorem:
Theorem 1. Assume, that the following conditions are met:
L. i(7); i=1, 2,...,k — are continuous functions at the interval [t,T].

2. {#j(x)}520 — is a full orthonormal system of continuous functions in the
space Lo([t, T)).

Then the multiple Ito stochastic integral J[y®]p; of the form (1.1) is ex-
panded in the multiple series converging in the mean-square sense

Tl =, tig 35 G (-

D1 D=0 jl 0 Ik 0

Slim Y g (AW g (nk)Ang:)), (1.5)
N—=oo (1 1,)€Ck

where Gk:Hk\Lk; HkZ{(ll,...,lk): ll,...,lkzo, 1,...,N—1},
I%:{mr”ngh”w@zo,anN—h
ly 7 blg #7)s g7 =10,k

= f ¢;,(s)dwl) — are independent standard Gaussian random variables for

'va’rzous iy or gi (if 4 # 0);

k
Cipii= | K(tl,...,tk)l[[l &, (t))dty . . . dty; (1.6)

[¢,T]*

t) .t i <...<t
K@hHJQ:{gﬁﬁﬂggk)l Moty e e [t T

Proof. At first, let’s prove preparatory lemmas.
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Let’s analyze the partition {7;}}_, of interval [t, T] for which

t=m<...<7v=T, Ay = max ATj—>0WithN—>OO, (17)
0<j<N-1

where A7j = Tj41 — 75

Lemma 1. Assume, that condition 1 of theorem 1 is met. Then

— J2—1 k .
J[p* )]Tt = Li.m. Z Z I ¥u(7,)A TZ w. p. 1, (1.8)
N—=oo j—0 —01=1
where Aw! “ = Wﬁ“ll — ( 0.4 =0, 1,. ' {le}g:_ol — partition of interval

¢, T], satzsfyzng the condztzon (1.7); hereznafter "w.p.1" means "with probability
1"

Proof. Proving it is easy to notice, that using the property of stochastic
integral additivity, we can write down:

N-1 jo—1 k

J[ ] = > . Z 11 J[lpl}n,ﬂ,m +en wp.1, (1.9)
J=0 =01=1
where
N—1 Tkt 8 . :
ev=3 | i(s) [ vra(r) T[] dwliv)dw i+
jk=0 Tjk Tjk
k-3 (k)
+ Zl G[wk—r-l—l}NX
r=
e ; | |
<Y [ ) [ rera (D) IHET I dw ) dw )t
Je—r=0 Tip—r Tip—r
Js—1
[ ]N Z J[ ]7'324-1,7']’2)
J2=0
N-1 jr—1 ]m—i—l_]-

G[ ] Z Z Z H J[d)l]T]lﬂ,T]l

S

— / ¢l (T)dw(ll)

OB L W e, 05 917 E W = (g, ).
Using standard evaluations (9.3) and (9.4) for the moments of stochastic in-
tegrals, we obtain
lim. ey = 0. (1.10)

N—x
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Comparing (1.9) and (1.10) we get

— Jjo—1 k

J[p®p ¢=1lim. z Y I I Wryanm, wop-1e (1.11)
=0 =0 J1=01=1
Let’s rewrite J{41r, ,, -, in the form
. Tt .
Thlrynim, = n(mi) AW+ [ () = (7)) dw ™

and put it in (1.11).

Then, due to moment properties of stochastic integrals, continuity (as a result
uniform continuity) of functions ¥;(s) (I = 1,...,k) it is easy to see, that the
prelimit expression in the right part of (1.11) is a sum of prelimit expression in
the right part of (1.8) and of the value which goes to zero in the mean-square
sense if N — oo. The lemma is proven. O

Remark 1. The result of lemma 1 may be generalized, i.e. the function

Yi(s) in (1.8) may be replaced with a mean-square continuous stochastic process
¢s from the class Mo([0,T]) (see sect. 9.1)

Remark 2. It is easy to see, that if AW%) in (1.8) for somel € {1,...,k} is
replaced with (Awgi))p; p =2; 4 # 0, then the differential dwgf’) in the integral
J[@Zi(k)]T,t will be replaced with dt;. If p = 3, 4,..., then the right part of the
formula (1.8) with probability 1 will become zero. If we replace AW%) in (1.8)
for some 1 € {1,...,k} with (A7;)’, p =2, 3,..., then the right part of the
formula (1.8) also with probability 1 will be equal to zero.

Let’s define the following stochastic integral:

N-1
Lim. Y ®(r,,...,75) H Awm 1)), (1.12)

N—ro0 jla"'ajk:()

Assume, that Dy = {(t1,...,tx) : t < t; < ... <t < T}. We will write
O (ty,...,tx) € C(Dy), if ®(t1,...,t;) is a continuous in the closed domain Dy,
nonrandom function of k variables.

Let’s analyze the multiple stochastic integral of Ito type:

ta
kdéf/ / (t1,...,t th(). dw,g ),
t %
where ®(ty,...,t) is a nonrandom function of k variables.
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It is easy to check, that this stochastic integral exists in the mean-square

sense, if the following condition is met:

/ /<I>2t1,... p)dty ... dty, < oo.

Using the arguments which similar to the arguments used for proving of lemma
1 it is easy to demonstrate, that if ®(t1,...,%x) € C(Dy), then the following

equality is fulfilled:

T
197 < [ [, .. te)dwt) .. dwi) =
t t

= Lim. oy O(yy, ) H AW w.p.l. (1.13)

— 00 jkIO j1=0

=

In order to explain, let’s check rightness of the equality (1.13) when k£ = 3.
For definiteness we will suggest, that ¢1,49,i3=1,...,m.

We have

T .
1018 [ [ [ @(tr,ta, o) dwl? dwii el =
t tt

=lim > ¥ [ [®(t, by, )dwl dwi? Aw) =

N=00  j2=0 j=0 Tjy 1

N- 1.73—1 Tia+1 , Tjy (i) (i2) .
=lim. Y % / /+/> (t1, b, 75 dw, V) Awl) =

N—o0 j3_0 ,72 =0 Tj Tjy

N—1js=1ja=1 241 Tir i1 (1) (i) A oo (i
=lim ¥ X ¥ [ [ ®(t,ty,7)dwy dwi? Aw 4

N—o0 J3 0J2 0]1 0 Tjo Tj1
—1j3—1 Tzt :
+lim. z > [ [ty by, 7wy dwi Awl), (1.14)
N—=0o j.=0j,= =0 75, T, Js
Let’s demonstrate, that the second limit in the right part of (1.14) equals to

Zero.
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Actually, the second moment of its prelimit expression equals to

N-1j73—1 Tia+1 T2
> / /(I)z(tl,t2,7j3)dt1dt2ATj3 <

J3=072=0 75, T,

—1j3—11
< M? z Y S (A7) ATy, — 0,
j2=0 j2=0 2
when N — oo. Here M is a constant, which restricts the module of function

®(t1,12,13), because of its continuity; At = 741 — 7;.

Considering the obtained conclusions we have

T t3 to

3 dé ///q)tl,tz,t3 th th th =

5

—1j3—1jp—1 T2t Tir+l

= |.i.m. Z >y / / @(tl,tQ,TJB)dw,g )dwg )Aw(i?):

Tj
N=00 j2=04o,=01=0 75, 7, ?

N—1j3—1jo—1 Tjo+1 Tj1+1

=lim. Y ¥ ¥ / /(q’(thtza%)—‘I’(tthwTiz))x

N=00 js=0jo=0 1=0 7j, 7,

X dw,g )dw,g )Aw(i3)

Tj3
N ]..73 1 .72 1 T.72+1 T.71+1

Him SN S [ [ (@(t, 7, i) — ®(T, Ty i) X

N=00 js=0j,=0j1=0 73, 73
de( )dw,g )AW%)
—1j3—1j2—1
+1im. Z Z Z (I)(T]17TJQ7TJ3)AW( )A ( )AW7('13) (1'15)
N=00 j2=0 jo=0ji=0 7

In order to get the sought result, we just have to demonstrate, that the first
two limits in the right part of (1.15) equal to zero. Let’s prove, that the first one
of them equals to zero (proving for the second limit is similar).

The second moment of prelimit expression of the first limit in the right part
of (1.15) equals to the following expression:

N—1jg—1j,—1 Tiz+1 Tir+1

S XY [ @tte ) — Ot 7, T,) dhidta ATy, (1.16)

J3=0 j2=0 j1=0 Tjs  Ti

Since the function ®(¢y, t9, t3) is continuous in the closed bounded domain Dj,
then it is uniformly continuous in this domain. Therefore, if the distance between
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two points in the domain Dj is less than § > 0 (§ > 0 and chosen for all € > 0
and it doesn’t depend on mentioned points), then the corresponding oscillation of
function ®(t1,t9,t3) for these two points of domain Dj is less than e.

If we assume, that A7; < § (j =0, 1,..., N — 1), then the distance between
points (t1,t2, 7j,), (t1, 7j,, 7j;) is obviously less than ¢. In this case

|(I)(t1,t2,7'j3) - (I)(tlaszaTj3)| <e.

Consequently, when A7; < § (j =0, 1,..., N — 1) the expression (1.16) is
evaluated by the following value:
N—1js—15—1 (T — 1)3

2 2
£ Z Z Z AleATj2ATj3 <€ 6
13=0 72=0 751=0

Because of this, the first limit in the right part of (1.15) equals to zero. Simi-
larly we can prove equality to zero of the second limit in the right part of (1.15).

Consequently, the equality (1.13) is proven when k = 3. The cases when
k =2 and k > 3 are analyzed absolutely similarly.

It is necessary to note, that proving of formula (1.13) rightness is similar,
when the nonrandom function ®(¢y, ..., %) is continuous in the open domain Dy,
and bounded at its border.

Assume, that

. Nl k i) def (k)
Lim. 3 O (1j,,..., ) [ Awl) < J'[®]7).
N=voo d1yeeer Gk =0 =1

JaF Iy aF T ¢or=1,...,k

Then we will get according to (1.13)

to
Jet =[] ¥ (cp(tl,...,tk)dngl)...dwg,ik)), (1.17)
t (t1,--5tk)

where summation according to derangements (¢y,...,%x) is performed only in
the expression, which is enclosed in parentheses, and the nonrandom function
®(t1,...,t;) is assumed to be continuous in the corresponding domains of inte-
gration.

Not difficult to see, that (1.17) may be rewritten in the form:

T
J®)%) = 2/ et t)dwl L dw,
)t t
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where derangements (¢q,...,%) for summing are performed only in the values
dwgl) - dwt(zk), at the same time the indexes near upper limits of integration in
the multiple stochastic integrals are changed correspondently and if ¢, changed
places with ¢, in the derangement (¢y,...,%), then i, changes places with i, in
the derangement (i1, ..., 1).

Lemma 2. Let us assume, that the following condition is met
T
/.../@2(t1,...,tk)dt1...dtk < o0,
t t

where ®(t1,...,tx) — is a nonrandom function. Then

9 T to
M {\1[@]@\ } <Cp [ [ @ty t)dtr .. dty, Cr < oc.
t t

Proof. Using standard properties and estimations of stochastic integrals (see
sect. 9.1) for & € My([to, t]) (see also sect. 9.1) we have

M{ 2} :to/tM“gTQ}dT’ M{

Let’s denote

t

J<-w) [M{g ) (119

to

fe.ar,
to

o
to

ti1 to

l i1 ;
@) tpe = [ - [ @, ti)dwyy) L dwy?,
t t

where [ =1,..., k— 1 and £[®]_, , ¥ B(ty,..., ).

In accordance with induction it is easy to demonstrate, that
!
E®)irL 0 € Ma([1, 7))

using the variable #;,1.

Subsequently, using the estimations (1.18) repeatedly we can be led to confir-
mation of the lemma. O

Not difficult to see, that in the case ¢1,...,4; = 1,...,m from lemma 2 we
have:
(k;)2 T to )
M{‘I[@]T’t }:/.../@ (t1, ... tp)dts . .. dty. (1.19)
t t
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Lemma 3. Asume, that ¢;(s); i = 1,...,k — are continuous functions at
the interval [t,T]. Then

k
11 Jledr = J®)7) wpd, (1.20)
=1

T . k
where J[pi)rs = [ i(s)dw@: ®(ty,.... 1) = I1 @i(t;) and the integral J[CID]%
t )

I=1
is defined by the equality (1.12).
Proof. Let at first 4; 2 0; [ =1,..., k. Let’s denote

def " (i)
Sl = ZO oi(7j) Aw;L.
J:

Since ) .
11;11 Jloiln — 11;11 Jlpilre =
= ﬁ(ll;[l J[ng]Tt) (J[en — i) ( l_k[ J[sog}N>,

g=Il+1
then because of the Minkowsky inequality and inequality of Cauchy-Bunyakovsky

(™

where C} < 00.

k k

II Jledn — 11 J[‘Pl]T,t

=1 =1

2}>§ = C’“l:zk:l (M{J[@y — Jlolrdl'})®,  (1.21)

Note, that
Jle)n — Joilrs = J;g J[Avi]r, 17,5
where -
T, = [ (oilrg) = oi(s)) dwi?.

Since J[Ay] are independent for various g, then [27]

Tg+15Tg

N-1 4 N-1 4
M{ z, /Aot }: > '\"{‘J Atz }+
j= iz

2
+6 2 M{‘J Al } (1.22)

2y j—1
} Z(] M{‘J[Awl]ﬂ;ﬂﬁq
q:
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Because of gaussianity of J[Ayyl,,, -, we have
9 Tj+1
M{[[8¢1 5[ = [ (aulm) — euls))%ds,

Using this relations and continuity and as a result the uniform continuity of
functions ¢;(s), we get

W
<3 (§(T—t)+ (T —1)%),

where A7; < 4, § > 0 and choosen for all € > 0 and doesn’t depend on points of
the interval [¢,T]. Then the right part of the formula (1.22) tends to zero when
N — o0.

N-1

4 N-1 N-1 j—1
J[Acpl}TjH,Tj } <el (3 ZO (ATj)z +6 > AT > ATq> <
j=

j=0 q=0

Considering this fact, as well as (1.21), we come to (1.20).

If for some [ € {1,...,k} : ng) = {;, then proving of this lemma becomes
obviously simpler and it is performed similarly. O

According to lemma 1 we have

N-1 Ir-1 .
Tt )]Tt = lLim. Z Z Yi(m,) - - -¢k(le)Ang) AW%’“) =
N—o lp= L= k
N-1 la—1 .
— Lim. Y K(ny, ) AW AW =
N—oo 1,=0 1,=0 k
N-1 N-1
= llm . Z K(Tl17 e le)AW Aw’l’:k =
N—oo 1,=0 1,=0 k
N-1 .
= l.i.m. z K(Tlla SRR le)AWgI) AW%’“) -
N—ro0 L,...,lp=0 *

lq#lr; qg#r; ¢r=1...,k

—//

tl;:)

t) for summing are executed only in the expression,

(K(tl, o t)dw) .dwi,ik)) , (1.23)
where derangements (¢4, .. .,

enclosed in parentheses.
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It is easy to see, that (1.23) may be rewritten in the form:

J[gb(k)];r,t = / /K t, ... dw,g D dw,g ),

(tla a

where derangements (¢, .. .,tk) for summing are performed only in the values
dwt(fl) e dw,gi"), at the same time the indexes near upper limits of integration in
the multiple stochastic integrals are changed correspondently and if ¢, changed
places with ¢, in the derangement (¢1,...,%;), then i, changes places with 4, in

the derangement (i1, ..., ).
Note, that since integration of bounded function using the set of null measure

for Riemann integrals gives zero result, then the following formula is reasonable
for these integrals:

T

/G(tl,...,tk)dtl...dtk_ 2/ 7Gt1,... tr)dty ... dty,
t

[t’T]k tla -5t t

where derangements (¢i,...,%;) for summing are executed only in the values
dti,...,dt, at the same time the indexes near upper limits of integration are
changed correspondently and the function G(t1, . . ., tx) is considered as integrated
in hypercube [t, T*.

According to lemmas 1 — 3 and (1.17), (1.23) with probability 1 we get the
following representation

Jp® g, =
A o7 (i1) (i)
=Y S G [ T (60 (t) - bu(t)aw L dwi®) +
leO Jk:O t t (tlr":tk)
D1 Dk
+REPE =30 Y Gy X
Jj1=0 Je=0
N-1
x1.i.m. > ¢, (11,) - - - Dj, (le)AW i) AWT;’“
N—o lla lk =0 k
lg#l; g# T ¢r=1,...,k
—f—R‘%%’pk —

y41 P ) N-1 (i1) ix)
=2 -2 G (1-1-m- > (). i(m)Awz .. Awps

—Lim X gy (m)AwEY g, (m)AWg,f)> + Ry =
(l17"'7lk)€Gk
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=88 G (TG0

J1=0 Jk=0

—Lim. > ¢ (Tll)Awgl s (le)Awg’“)> + R,
N—o0 (lla"':lk)EGk ! k

where
T &
R%z...,pk — Z / /( tl, L. —
(t1,5tk) t
S SENS SEo H qul(tl))dwt o dwl®), (1.24)
J1=0 Jx=0
where derangements (¢q,...,%) for summing are performed only in the values
dwgl) e dwéi’“), at the same time the indexes near upper limits of integration in
the multiple stochastic integrals are changed correspondently and if . changed
places with ¢, in the derangement (¢1,...,%;), then ¢, changes places with ¢, in
the derangement (iy,...,1).

Let’s evaluate the remainder RE ;" of the series.

According to lemma 2 we have
T

M{(R%}""pkf} < Cy / /< (t1, ..., tk)—

tla 7 t t

-3 S G 11 ¢Jl(tl))2dt1...dtk _

=0 jx=0

—Cy | (K(tl,... D=3 3G 11H¢Jl(tl)>2dt1...dtk—>0 (1.25)

[t,T] Jj1=0 Jk=0

if p1,...,pr — 00, where the constant Cj depends only on the multiplicity k& of
multiple Ito stochastic integral. The theorem is proven. O

Not difficult to see, that for the case of pairwise different numbers iy, ..., 7 =
1,...,m from theorem 1 we get:
BN = 15 (ix)
J[¢ ]T,t - pl}-.-l,ll?irboo Z_ ]kZ_ CJk J Y

1.3 Expansion of multiple Ito stochastic integrals with mul-
tiplicities 1 — 6

In order to evaluate significance of theorem 1 for practice we will demonstrate its
transformed particular cases for k=1,...,6:
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T
/¢ (tl)dwt Z CJlel ) (126)
Jj1=0
T to
/ Va(t2) / (t1) th th =
t
= Z 00.72]1 < Ji Sj2 ) - 1{21 22750}1{J1 ]2}> (127)
J1:J2=

T ri= % Ciji (C}f”gﬁ”(}s)—1{“_12#0}1“1_]2}@3

J1,J2,J3=0

~ Vi) L=t — 1{1-1:2-37&0}1{]-123-3}(};2)), (1.28)
T[] = 5 Cj4---j1<ﬁ G-
Jtoeds=0 -
~Lpiminoy L= 6, G = Linmiorr L =i G CJ4 -
~Liiir 0y =i Gy CJs ~ Lipmiaror L imiay 1 651
~Lpimisro L (=i G~ Liamiaroy Liimin GG+
T 1i=ip0} L=} His=iaz0} L (o=} +
T =is0) Li=js} Hin=iaz0} L =i} +

+1{i1=i4¢0}1{j1=j4}1{i2=i3¢0}1{3'2:3'3}) ) (1.29)

5 .
IO = % Cpa(IL-

.715 5.75

1{11_127'50}1{]1 J2}CJ C4 CJ(E’)) 1{@1_l3¢0}1{31 J3}CJ C-4 CJ(;5)

) ~ia) _

~1gi,zivopL gy G CJ5 o (s P Te Lleile)
) (i5) ) +(is)

1{12—%3750}1{]2—13}CJ1 34 Jjs 1{@2_14#)}1{32_]4}@ J3 355
) (i) ) ~(is)

—Li=i 20115 JS}le 33 Ja Liy=is203 15, J4}CJ J2 355

) ~(i3)
_1{i3=i5750}1{j3=j5}<—j1 CJ4 - 1{14 15750}1{]4_35}CJ1 Jo 133 +

+1{i1=i27é0} 1{j1 =j2} 1{i3=i47é0} 1{J'3=J'4}Cj5 +
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1 im0} L =) Liomiooy Lgsmiod G+
11, inoy Lo} Lisminto) L =i G+
1 girmi0y Lo Loty Lgomi G +
143, ig0y Lo Liaminio) L gamio) G+
1 gir=i0y L= Liamioroy Lgimio) G +
1 im0} L (=g} Liminto L =i} G +
1 gir=i0y L= Lirmiooy Lomio) G+
1 im0} L =g} Liismioto) L (ia=in) G +
1 firzis20) Lo Linmisoy Lomin) G+
+1gir=is 20} L= Loty Lamid G +
1 {irmis0) Lo Loty Lgsmi G +
11,0} L=} Lisminto) L =i G+
1 im0} L) Liomioroy Lgsmint G+

(i1)
1, =is 203 L o=} L{is=iaz0} L {Gs=3a}Cj ) (1.30)

00 6 i
J[QP(G)]T,t = z Ocja---j1 (H CJ(IZI)_
J1y-506= -

) (ia) +(i5) ) (ia) +(i5)

1{@1 26#0}1{31 Je}CJ J3 ja SJs _1{%2 16#0}1{32 J6}€J 33 ja Sjs

) (i) +(i5) ) (is) +(i5)

1{13—16760}1{]3—]6}§J Jo  Sja SJs _1{14 16750}1{14—36}CJ Jo SJ3 SJs

) (i3) +(ia) ) (is) +(ie)

1{15 26#0}1{35 JG}CJ J2 SJ3 Sja 1{11 @27“)}1{]1 JZ}CJ ]4 Js  SJe
(i5) ~(is) (i5) ~(is)
1{11—13760}1{31—J3}CJ C Ja CJ? CJG - 1{11—14#0}1{11—14}CJ CJ:& CJ? Cj:ie

) (is) (i) ) (is) »-(is)

1{11 15750}1{31 Js}Ch J3 Ja Sje _1{12 13750}1{32 J3}CJ1 Ja Sjs  Sje
1{22—24750}1{]2_34}4.]1 CJs CJ(;5)CJ(6)_1{l2 15¢0}1{32_35}CJ1 CJ3 CJ(24)CJ(;6)

) +(i5) (i) ) (is) »-(is)

]‘{13 Z43‘&0}1{.73 J4}CJ J2 Sjs  SJe _1{l3 z5760}]‘{33 J5}CJ J2 Sja Sje

L fismisry Ly GV P ()

+ 110 =in201 L (i =jo} L =iarz0} L (s J4}CJ CJG
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1 a2} L= Liomio 0} L =i G Cgﬁ
1 im0} L =i} Liiamioro) L (gumio) G i
1 im0} L =i} Litaminto) L gamin G i
+1gi,mi20) L) Lirmioor Lgamin) G 36)
1 im0} L =iy Liiamioro) L (Gumio) G i
+1gi,miy0y L= L inmisoy L amio) G Cge
+14i, =0 L 1= Liamis0) Liinmin} G G
+14i, =0 L =i Linmisr0) L=t G G
+14i, =0} L 1= Liamisr) Linmin} G G
+14i,=i20) L 1= Liamier) Liinmia} G G
141,20 L 1= Linmisr) =it G G
1 iy} L} Litamioro) (=it G i
1 iy} L (jmi) Litsmioro) L (is=in) G i
1 iy} L iami} Litminto) L o=in G i
1 im0} L o=} Litmiato) L gomin G o™
+Lgig=i, 20} L= Lismioor Lgsmint G Gt
+Lgig=i, 20} L= Linmioor Liamiot G G 4)
L figmin0) L jomin) Linmisr) Liinmin} G G
L im0} L jomin) Liamisr) Liinmint G G

(i5)
1 fig=ir 20y L {jo=ji } L{in= Zs¢0}1{h—33}@4 is

(i)
1 figin 0} L o) Lisminzo} L Gmin} G Gl

(i5)
+1 figmin 20} L oo} Linminzoy L amin} G Gl
+1{26 Z27'50}1{36 32}1{13 14750}1{% J4}€J J5

(i)
1 figmintor L iomiat Lisis 0 L —in) SO

+1{'56 12#0}1{36 Jz}l{h 14750}1{11 J4}€J Js
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1 figmi 0} Lo Loty L=t G- 95)
L figis0) Lomiod L inmisoy L amint GV G
1 figmint0) L o=} Liiaminto  (iu=in) G i
L figiy0) Lomio L inmisoy L amin G G

(i)
1 gigis 20} L (jomio) Lisminzoy L =i} G Gl

+Lfigiy0y Lmiod L inmisoy =iy G J5)
+Lfigis0y Lmio) L inmiooy L Giming G G
1 figmi0) Lo} Liisminto) L (=i} G C i
L figis0y Lomin L inmisroy L amint GV G
1 iy} L o=} Lir=into L (1=t G it
L gig=is0y L =i L iniooy L =it G G
ity Lomin L inmisoy L =it G G
+1figmit0} L (iomsi} Lot} L (=i} G @5
1 figis0) L jmio) Linmisor Lgsmin G G
+Lfigmint0) L iomin} Liin=isro  (ia=in G i
L figis 20} Ljumio) L inmisoy L amint G G
L fig=is0y Lomio Linmisoy L =i G G
+1{16_Z57é0}1{36_35}1{11—13¢0}1{J1_J3}CJ Ja L

+Lfig=is20y Lmiod L inmiooy L =i G G

~Liig=ir 20} L{jo=j1} Lin=is0} L (go=3s} L i =ia 20} L {ja=1a}
~Liig=ir 20} Ljs=j1} Lin=ia0} L (o=} Lis=is 20} L {js=js}
~Lig=ir 20} Ljo=j1} Lin=ia20} L {jo=3} Lis=is 20} L {js=js}
—Lis=in0} Lja=io} Lin=is0} L (r=js} Lis=ia 20} L {Gs=3is}
~Lig=io 20} Ljo=jo} L{ir=ia20} L (g1 =ja} Lia=is 20} L {js=js}
—Lis=in20} Lja=io} Lir=is0} L (r=js} Li=is 20} L (=3}
~Ltig=is 20} Ljo=js} L{ir=is20} L (1=} Lio=ia 20} L {jo=js}
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~Lfig=is 20} Ljo=jo} Lir=ia0} L (51 =ju} Lio=is 20} L (o=}

~Lig=ig20} L {ja=jo} L{ir=ia£0} L {ji =jo} Lis=is 20} L {ju=js}

—Lis=isz0} Lja=ia} Lin=is20} L (r=js} Lio=is 20} L (=3}

~Liig=is20} Ljs=ja} Lir=ia0} L (51 =5} Lo =is 20} L (o=}

—Lis=is0} Lja=ia} Lin=ioz0} L (1 =0} Lis=is 20} L {js=3is}

~Lig=is 20} Ljo=js} L{in=ia20} L (g1 =ja} Lo =is 20} L {jo=4s}

~Lig=is 20} Ljs=js} L{ir=ia0} L (g1 =52} Lis=ia 20} L {js=ja}

—1{i6=i5¢0}1{je=j5}1{i1=i3¢0}1{j1=j3}1{iz=i4¢0}1{j2=j4}> : (1.31)
where 14 — indicator of set A (14 = 1, if condition A is executed and 14 = 0

otherwise).

Note, that according to the theorem 1 the series in (1.26) — (1.31) understand-
ing as multiple series:

o0 def . D1 Dk
> ¥ lim > .Y
Jiyeogk=0  PLroPETOO g Gi—0

1.4 Expansion of multiple Ito integrals of any multiplicity
k

Lets generalize formulas (1.26) — (1.31) for the case of any multiplicity of the
multiple Ito stochastic integral. In order to do it we will introduce several deno-
tations.

Let’s examine the unregulated set {1,2,...,k} and separate it up in two
parts: the first part consists of 7 unordered pairs (sequence order of these pairs is
also unimportant) and the second one — of the remains k — 2r numbers.

So, we have:

({\{m; 92}, - -5 {g2r1, ng}J}7 {5117 g Qk—27:})7 (1.32)
paR 1 pa;:c 2

where {g1,92, -+, 92r—1,92r,q1, - - - s Gk—2-} = {1,2,...,k}, curly braces mean ir-
regularity of the set taken in them, and the round braces — regularity.

Let’s call (1.32) as partition and examine the sum using all possible partitions:

Z Ag192,e-,92r—1920q1 -+ Qh—21 * (133)
({{gla 92}, ERR] {927'717 927"}}’ {CIb LR ’qk*Q’l"})

{91592, <+ 92r—1,92r,41, - - - 7qlc—27‘} = {1’ 27 s ’k}
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We give an example of sums in the form (1.33):

Z ag192 = ai2,
({91,92})
{91a92} = {1,2}

gy 929594 =

>
({{gla 92}, {933 94}})
{gla g?ag3ag4} = {1a 27 3a4}

= 1234 + @1324 + A2314,

Ag192,q142 =

>
({91, 92} {q1, a2})
{91,92, 01,02} = {1,2,3,4}

= a12,34 + @13 24 + Q1423+

+a23 14 + G24,13 + a34,12,

Z aglg2aQIQZQ3 —
({glaQZ}a{QI,an(.B})
{glag2aq1an7q3} = {172737475}

= @12,345 T 13,245 + Q14,235+
+a15,234 + 23,145 + Q24,135+
+a25,134 + 34,125 + Q35124+

+a45,123,

>
({{g1, 92}, {93,941}, {@:})
{gla927 93,94, CIl} = {15 27 33 47 5}

= 012,345 T 13245 + Q14,23 5+

Qg g2,9591.51 —

+a12,354 + a13254 + G15234+
+a12543 + A15243 + @14 25 3+
+a15342 + A1354,2 + Q14532+
+a52,34,1 + a5324,1+
+a54,231-

Now we can formulate the basic result of theorem 1 (formula (1.5)) using
alternative more comfortable form.
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Theorem 2. In conditions of the theorem 1 the following converging in mean-
square sense expansion s valid:

00 k )
W= > Cua(I1G0+

jlr"ajk:()
[4] r
r
+2. (=1)"- 2 Lii,, = i, #0}
r=1 ({{gla 92}3 R {927"717‘927‘}}3 {(Ih e anfQT}) s=1
{917927"'agQT—l,QQTaqla"-an—Zr}:{1’27"'7k}
NP e (1.34)
Uoyg—1 = Jag, } ] Jg )’ ’
where
00 def . D1 Dy
Yoo = im0 >
Jiyengi=0  PLeoPRTOO o0 =0

In particular from (1.34) if k = 5 we obtain:

(5) O S (i)
W= > Cua(llG0-

jl;---;j5:0

3 .
(iq;)
— ({91,9 }% @, 3)) 1{i91= i92750}1{j91:j92}l1:[1gqul 4+
1,927, 1,492,943 -

191,92, 01,92, 03} = {1,2,3,4,5}

+ 2 Liiy, = i, 20110, = gy} X
({{917 92}7 {g3a 94}}7 {Q1})
{917 92,93, 94, (I1} = {1a 27 3a47 5}

(igy)
X 1{i93: ig4 #0}1{]‘93: jg4 }qul ) )
The last equality obviously agree with (1.30).

1.5 Comparison of theorem 2 with representations of mul-
tiple Ito stochastic integrals, based on Hermite poly-
nomials

Note, that rightness of formulas (1.26) — (1.31) can be collaterally verified by the
fact, that if iy = ... =g =4 =1,...,m and ¢¥1(s),...,¥e(s) = ¥(s), then we
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can deduce the following equalities which are right with probability 1:

1
Jw(l)]T,t = FCST,t,

1
Ty = & (5~ Ary)

1

TP = 57 (07, — 30r:A74)

T W]r, = % (67, — 667,As + 3AT,),
T[r, = % (6., — 1063 Az + 1507,A%,,)
IOy = o (8, — 155h,Ar, +4563,03, — 150%,)
where 67y — th¢(s)df8<i>, Ar; = f¢2(s)ds, which can be independently obtained
using the Ito formula and Hermite polynomials (see sect. 8.1).

When k& = 1 everything is evident. Let’s examine the cases k = 2, 3. When
k =2 (we put p; = ps = p):

JW@)]Tt = lpl J11. ( > C.72.71CJ1 @2 Z Cth) =

J1,J2=0 J1=0

—

LS e o DD s o () )) =
Io% Z ZO( J201 + .71.72) CJ1 Cjz + 'ZO J1ij1 <.J1
J1=0J2 =

¢

e (b Eoed (@)

’U

]1 =0
~ (3 £ el v £ (€ ))-
11#12
= Lim ((ﬁzocﬁqﬂ) __leo ):%(5%,,:—&,0. (1.35)

Let’s explain the last step in (1.35). For Ito stochastic integrals the following
estimation [5] is right:

q

) < (e )’} 0o

df;
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where ¢ > 0 — is a fixed number; f, — is a scalar standard Wiener process;
& € My([t, T]) (see sect. 9.1); K, — is a constant, depending only on g;

f|§r|2d7' < oo w.p.1; M{(7|§T|2d7)%} < 0.
t t

Since .
p . p
e = X GGyl = [(90s) = X Cdinls) )t
= t J1=

then using the estimation (1.36) to the right part of this expression and consid-
ering, that

GOk éo Ciudi(s)) ds =0

if p — oo we obtain

p=00 =0

T
[ w(s)dfl) =g -lim. ZChCJl,q>0 (1.37)
t

Hence, if ¢ = 4, then it is easy to conclude, that

p—0

p 2
Li.m. ('Zo legj(l)) = 5%’,5.
=

This equality was used in the last transition of the formula (1.35).
If k=3 (we put p; = ps = p3 = p):
P N p .
JP]r, = Lim. ( Y ChninCl G — Y Cigindl-

= . .
P00 \j1,2,43=0 J1,33=0

Z CJ23231CJ1 Z Cthchjz ) -

.717.72_ .717.72_

=l.i.m-< Z Chainin ¢ ¢~

oo \.
P J1,52,J3=0

p .
— > (Chjijs + Chijijs + Cjijsin) C§3)> =

J1,33=0

p j1i—1lja—1
<Z Z Z ( Jaj2J1 + C]3]1J2 + CJ2J1J3 + CJ2.73.71
p 0 j2=0 j3=0

+Cj1j2j3 + Cj1j3j2) C](I)C;;)C.g)-l_
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p -1

+E ¥ - Cypis + i) (¢ ¢4
= ( JajiJs J1J3J3 .73.73.71) J3 J1
J3=

lel

C, C. (i)* )
+ Z Z ( Jsjig1 + J1j1d3 + .71.73.71) le CJ3 +

Jj1=0 j3=0

+Zp:0... C(i)?’_ Zp: (Ciivis + Ciivis + Ciini) €9 ) =
) J1J1J1 J1 J3J1J1 J1J1)3 J1J3J1 73

Jj1=0 J1,J3=0

p j1i—1lja—1
Lim. <2 Z Z CJ1 Cjzcﬂsch CJ2 ng
J

p—)oo 1=052=073=0
p -1 ) p -1 N2 (i
+ pop e j4¢)<@+ ¥ ¥ cre () Gl
=0 j3=0 =0Js=
p : .
+g > G, (@9) > Cflcjgfé)) =
Jj1=0 J1 ,J3=0
qim (L i C; ;. C;. (¢t
P00 6 P J1J273571 )2 SJ3
1%, 3']22%]3'3311'01 #i3
Ji—1 ) J1i—1 N2
s z:z j4¢)<¢+ z:z 205 (6)) ¢+
=0 j3=0 =0js=
p ) .
o > Cj, (CJ(> N> Cflcj&g)) =
6j1=0 .71]3
. 1 2 i) () (i
=w£@?2%%%¢¢¢—
P J1,J2,J3=0
J1—1 N2 (i p j1i—1 N2
52 £ E e (@) 6+ 8 e (¢) ¢
=0j3= J1=0j3=0
p A\ 3
+§%@D%
p -1 ) p Ji—1 NN
Y Yo j4¢)<@+ > X 2 () D+
Jl =075=0 J1 =07j3=0
p . .
3 (A8 2 (i) _
6 2_: c (6 ) - _J ]Z OCjICjBCj3> =

_ 1 2w (i)) _
f pl—)oo ( (Z C,hC_h) 2JIZ:0 C,h .732:0 CJ3CJ'3 e

1
= o (3~ 86rir) (1.39)
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The last step in (1.38) is arisen from the equality

p—00

b N\ 3
llm ( OC-hC](:)) = 5%’7:,
1=

which can be obtained easily when ¢ = 8 (see (1.37)).

In addition, we used the following correlations between the Fourier coefficients
for the examined case: lej2 + Cj2j1 = CjICj2, 2Cj1j1 = 0]217 Cj1j2j3 + Cj1j3j2 +
Ciagsis + Chajiis + Chsoin + Chajuie = CinCixChas 2(Chijugs + Ciijogi + Cagiin) =
C3 Cj,, 6Cj,5,5, = C3 and the formula (2.275) if k = 2, 3.

Cases k = 4, 5, 6 can be analyzed similarly using the formula (2.275) when
k=4,5, 6.

1.6 On usage of full orthonormal discontinuous systems of
functions in theorem 1

Analyzing the proof of theorem 1, we can ask a natural question: can we weaken
the condition of continuity of functions ¢;(z); j =1, 2,...7

We will tell, that the function f(z) : [t, T] — R' satisfies the condition (%), if
it is continuous at the interval [¢, T| except may be for the finite number of points
of the finite discontinuity, as well as it is continuous from the right at the interval
AR

Afterwards, let’s suppose, that {¢;(z)}32, — is a full orthonormal system of
functions in the space La([t,T]), moreover ¢;(z), j < oo satisfies the condition
().

It is easy to see, that the continuity of function ¢;(z) was used substantially
for proving of theorem 1 in two places: lemma 3 and formula (1.13). It’s clear,
that without damage to generality, partition {7; };-V:O of the interval [¢, T in lemma
3 and formula (1.13) can be taken so "small", that among the points 7; of this
partition will be all points of jumps of functions p1(7) = ¢;(7), ..., @r(T) =
?;.(T); g1, ..., Jr < 00 and among the points (7;,,...,7;,); 0 < j1 < ... < g <
N — 1 there will be all points of jumps of function ®(¢1,...,t).

Let’s demonstrate how to modify proofs of lemma 3 and formula (1.13) in the
case when {¢;(z)}32, — is a full orthonormal system of functions in the space
Ly([t, T]), moreover ¢;(z), j < oo satisfles the condition ().

At first, appeal to lemma 3. Proving this lemma we got the following relations:
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N-1 4 N-1 4
M{ ) J[AQOZ]T]-H,T]- }: ) M{‘J[Agol]'rj+l,7j }+
7=0 7=0
N-1 9y 1 9
+6 3 M{|J[A¢,., 7| } X M{[T1A¢,.. [} (1.39)
Jj=0 g=0
Tj+1
M{TAG .} = [ (o) = au(s))ds, (1.40

Tj
Ti+1 2

M{ T8¢} =3( [ (alm) = lo?as) . )

7
Propose, that functions ¢(s); Il = 1,..., k satisfy the condition (%), and the
partition {Tj}j-v:_ol includes all points of jumps of functions ¢;(s); I = 1,... k.
Tit1
It means, that, for the integral i (¢1(1j) — ¢i1(s))?ds the subintegral function is
Tj

continuous at the interval [7;, 7;+1) and possibly it has finite discontinuity in the
pOiIlt Tj+1-

Let u € (0, Ar;) is fixed, then, because of continuity which means uniform

continuity of the functions ¢;(s); I = 1,...,k at the interval [7j, Tj41 — pu] we
have:
Tit1 Tj+1—H
| () —@u(s))Pds = [ (oi(r) — ils))ds+
Tj+1
+ / (¢i(15) — wi(s))ds < e*(ATj — p) + M?p. (1.42)
Ti+1—H

Obtaining the inequality (1.42) we proposed, that A7; < §;7 =0, 1,...,N—
1 (6 > 0 is exist for all e > 0 and it doesn’t depend on s); |¢i(75) — @i(s)| < e if
s € [1j41— M, Tj+1] (because of uniform continuity of functions ¢;(s); 1 =1, ..., k);

lo1(5) — @i(s)] < M, M — is a constant; potential point of discontinuity of
function ;(s) is supposed in the point 7j41.

Performing the passage to the limit in the inequality (1.42) when p — 40,

we get
Tj+1

/ (@i(15) — i(s))?ds < e2Ar;.

7
Using this estimation for evaluation of the right part (1.39) we get

"

N-1
Z J[ASOI]TJ'_H,TJ'

J=0

4 N-1 N-1 Jj—1
} < €4<3 > (ATj)2 +6 > AT ATq> <
i=0 0

Jj= j=0 q=
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<3 (8(T—t)+ (T —1t)%). (1.43)

This implies, that I\/l{

remains reasonable.

4
} — 0 when N — oo and lemma 3

N-1
E ‘][A(pl]TjH,Tj
7=0

Now, let’s present explanations concerning the rightness of the formula (1.13),
when {@;(z)}52, — is a full orthonormal system of functions in the space
Ly([t, T]), moreover ¢;(x), j < oo satisfies the condition (x).

Let’s examine the case k = 3 and representation (1.15). We can demonstrate,
that in the studied case the first limit in the right part of (1.15) equals to zero
(similarly we demonstrate, that the second limit in the right part of (1.15) equals
to zero; proving of the second limit equality to zero in the right part of the formula
(1.14) is the same as for the case of continuous functions ¢;(z); 7 =0, 1,...).

The second moment of prelimit expression of the first limit in the right part
of (1.15) looks as follows:

1'73 1]2 1 TJ2+1 T.71+1

Z X [ [ @tte 1) - Bt 7, 7)) dhdts ATy,

J3=0j2=051=0 735, 75

Further, for the fixed p € (0, A7) and p € (0, A7j,) we have

Tig+1 Tj1+1

/ / tl,tQ,TB — q)(tl,TjQ,Tj3))2 dtldtg =

Tjo  Ti

Tjo+1—H Tjo+1 Tj1+1—P Tj1+1

= ( / + / )( / + / ) ((I)(tl,tQ,Tj3) - (I)(tl,Tj2,Tj3))2 X
Tjo Tjg+1—H Ti Tjy+1=P
thldtg
Tjo+1—H Tjp+1=P  Tjp+1—H Tj41 Tjo+1  Tj1+1—P Tjo+1  Tjp+1
() ] T [T
Tjg Tjy Tjp  Tjh141—P  Tjg+1—H  Tjp Tjo+1—H Tjy+1—P

X (B(t1, g, 75,) — B(t1, 7j,, 7,)) dtrdty <
e (ATj, — p) (AT, — p) + M?p (A7), — p) +
M?u (ATj, — p) + MPpp, (1.44)
where M — is a constant; A7; < §; 5 =0, 1,...,N — 1 (§ > 0 is exists for all
e > 0 and it doesn’t depend on points (¢1, 2, 75,), (t1, 7j,, Tjs)); We also propose

that, the partition {Tj}jy:_ol contains all points of discontinuity of the function
®(t1,t9,t3) as points 7; (for every variable).

Electronic Journal. http://www.math.spbu.ru/diffjournal A.45



Differential Equations and Control Processes, N 1, 2017

When obtaining of (1.44) we also suppose, that potential points of disconti-
nuity of this function (for every variable) are in points 7,41, Tj,+1, Tjs+1-

Let’s explain in details how we obtained the inequality (1.44). Since the
function ®(t;,ts,t3) is continuous at the closed bounded set Q3 = {(¢1, 2, t3) :
1 € [le, Tj+1 — p},tQ € [TjQ, Tjp+1 — ,U,},tg c [Tj3, Tjs+1 — l/], }, where p, 4, v — are
fixed small positive numbers (v € (0, ATj,), € (0, A7j,), p € (0, A7j,)), then
this function is also uniformly continous at this set and bounded at closed set Ds
(see sect. 1.2).

Since the distance between points (t1,t2,75,), (t1,7j,,Tjs) € @3 is obviously
less than d (AT]' < (5; j = O, 1, ce ey N — 1), then |(I)(t1,t2, Tj3) —(I)(tl, Tiys Tj3)| <E.
This inequality was used during estimation of the first double integral in (1.44).
Estimating of three remaining double integrals we used the feature of limitation
of function ®(t1,ts,t3) in form of inequality |® (1,2, 7j,) — @(t1, )y, 755) | < M.

Performing the passage to the limit in the inequality (1.44) when u, p — +0
we obtain the estimation

Tja+1 Tjr+1
/ / tl,tQ,TJ3 CI)(tl,Tj2,Tj3))2dt1dt2 S 62ATJ‘2ATj1.

TJZ TJI
Usage of this estimation provides

N—1j3—1j2—1 T2t Tl

S XX [ ] @ty tem) = (7, 7)) dhdb ATy, <

J3=072=0j1=0 Tio  Tjy

N=1js—1jo-1 T — )3
< 62 Z Z Z AleAszATjS < 62g.
43=0 j2=0 j1=0 6
The last evaluation means, that in the considered case the first limit in the
right part of (1.15) equals to zero (similarly we may demonstrate, that the second

limit in the right part of (1.15) equals to zero).

Consequently, formula (1.13) is reasonable when k = 3 in the analyzed case.
Similarly, we perform argumentation for the case when k£ = 2 and &£ > 3.

Consequently, in theorem 1 we can use full orthonormal systems of functions
{#;(2)}52, in the space La([t, T1), for which ¢;(z), j < oo satisfies the condition
().

The example of such system of functions may serve as a full orthonormal
system of Haar functions in the space Ly([t, T]) :

1 1 z—1
) = S o) = e (75

Electronic Journal. http://www.math.spbu.ru/diffjournal A.46




Differential Equations and Control Processes, N 1, 2017

wheren =0, 1,...;5 =1, 2,...,2" and functions ¢, ;(z) has the following form:

23, 1 € [2%, J—+2n+1)
Pnj(T) =

25, e[+ 2, L)
0 otherwise

n=20,1,...;7=1, 2,..., 2" (we choose the values of Haar functions in the
points of discontinuity in order they will be continuous at the right).

The other example of similar system of functions is a full orthonormal
Rademacher-Walsh system of functions in the space Lao([t, T]):

1
W) =T

1 r—1 r—1
)= =gom (=) -om (75)
where 0 < my < ... < my; my,....,mg =1, 2,...; k=1, 2,...; op(z) =
(=B € [0,1];m =1, 2,...; [y] — integer part of y.

1.7 Remarks about usage of full orthonormal systems in
theorem 1

Note, that actually functions ¢;(s) of the full orthonormal system of functions
{#;(s)}52, in the space La([t,T]) depend not only on s, but on ¢, T.

For example, full orthonormal systems of Legendre polynomials and trigono-
metric functions in the space Ly([t, T']) have the following form:

2j + 1 T+t\ 2
9i(s,t,T) = T—tPj<<8_ 2 )T—t)’

P;j(s) — Legendre polynomials;

. 1 when 7 =0
27r(s .

¢i(s,t,T) = ——— \[Sln when j =2r — 1,

3 ) =t V2co SQW when j = 2r

r=1,2,....

Note, that the specified systems of functions will be used in the context of
realizing of numerical methods for Ito stochastic differential equations for the
sequences of time intervals: [Tp, T1], [T1, T3], [Ts, T3], - - -, and spaces Lo([To, T1]),
Ly([Th, T3]), Lo([T3, T5)), - - - -
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We can explain, that the dependence of functions ¢;(s,t,T) from ¢, T' (here-
inafter these constants will mean fixed moments of time) will not affect the main

characteristics of independence of random variables. C((jng,t = fgbjl(s, t, T)dw;
i £01=1,... k.

Indeed, for fixed ¢, T due to orthonormality of mentioned systems of functions,
we have:

M {C((;ng,tC((;ng,t} = Lgi=i, 2011 =5}
where
T
/ ¢; (s, t,T)d wi;
t
u#0;l, r=1,... k.
, T _
On the other side random variables C((;;;TI by = fl ;. (s,t1, T1)dw'®) and
) t

s

(Ju)
Ty = ty is possible) according to property of Ito stochastic integrals.

. Tz .
¢ (’.’)TQ’tQ = tf ;. (s,t2, To)dw() are independent if [t;, T1] N [ta, To] = O (the case

Therefore, two important characteristics of random variables C((;;;Tt which are
the basic motive of their usage are stored.

In the future, as it was before, instead of ¢;(s,¢,T") we will write ¢;(s) and
instead of C((;-gT’t we will write CJ@ for brevity sake.
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Chapter 2

Expansions of multiple Stratonovich
stochastic integrals, based on generalized
multiple and repeated Fourier series

This chapter is devoted to expansions of multiple Startonovich stochastic inte-
grals. We adapted the results of chapter 1 (theorem 1) for multiple Stratonovich
stochastic integrals of multiplicity 1 — 4. Also, we consider other approach to
expansion of multiple Stratonovich stochastic integrals of any fixed multiplicity
k, based on repeated generalized Fourier series converging pointwise.

2.1 Expansions of multiple Stratonovich stochastic inte-
grals of 1st and 2nd multiplicity. Polynomial and
trigonometric cases

In the following sections of this chapter we will denote full orthonormal sys-
tems of Legendre polynomials or trigonometric functions in the space Lo([t, T])
as {6,(2)} 2

In the mentioned sections we will also pay attention on the following well-
known facts about these two systems of functions.

Assume, that f(z) — is a bounded at the interval [t,T] and sectionally smooth
function at the open interval (t,T). Then the Fourier series '§0 Cipi(z); C; =
J:

T
I f(z)¢j(z)dz converges at any internal point © of the interval [t,T] to the value
t

1 (f(z—0) + f(z+0)) and converges uniformly to f(z) in any closed interval

of continuity of the function f(x), laying inside [t,T]. At the same time the
Fourier series obtained using Legendre polinomials converges if t =t and x =T
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to f(t+0) and f(T — 0) correspondently, and the trigonometric Fourier series
converges if ¢ =t and x = T to 5 (f(t+0)+ f(T —0)) in case of periodic
continuation of function.

Assume, that ¢ (7), 12(7) — are continuously differentiated functions at the
interval [t,T]. For the case k = 1 we obviously have

T

/¢1(t1)dft(1Z Z C.hC] )

t

where the series converges in the mean-square sense;
T
Cj, = [ 1(t) ey, (t)dt; G, / bi (1)dED; iy =1, m,
t

According to the standard connection of Stratonovich and Ito stochastic in-
tegrals with probability 1 we have

T
J*[’gb(Q)}T,t = J[¢(2)]T,t + %1{@‘1:@‘27&0} /lbl(tl)’l’bg(tl)dtl. (21)
t

On the other side, according to theorem 1

to

T
[ ata) [ (1) dEVdtf =
t t

b P2 def
2 Z C.7231< J1 C]z) 1{11 127'50}1{.71 .72}>

® j1=0j,=0
(i2)
Z le( i G~ Hi=iazo} 1, .72}>
J1,J2=0
= Z CmeCg o _1{%1—1#0} Z ij (2-2)
J1,J2=0 71=0

The following natural questions take place: is it legal the partition of limit in
two limits in the last formula and is the following equality reasonable (it proves
the possibility of such partition):

T x
%/ P1(t1)a(t)dty = jZO Ciiir- (2.3)
t 1=

Note that, according to (5.35), (5.36) the formula (2.3) (polynomial case) is
right, at least if ¢1(7) =t — 7, ¥o(7) = 1; 1(7) = 1, tho(7) = t — 75 (1),
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Po(T) =t —7; P1(7) = (t—7)% a(1) = 1; Yi(7) = 1, () = (t — 7)2
and according to (5.48) the formula (2.3) (trigonometric case) is right, at least if
() =t—T1, (1) =1L, 01(r) =1, e(r) =t —1; 7 €L, T].

Since if 11 (s) = ta(s) the equality Cj,j, = 3C3 is realized, then in this case
the equality (2.3) is a conclusion of Parseval equality.

From (2.1) - (2.3) it follows:

D1 D2
¢ = lLim. Z ZCJ2J1 J1 J27

)
D1 ,p2_> 1 0]2 0

where the series converge in the mean-square sense.
Let’s prove (2.3) in more general case.

Let’s analyze the function

K*(t1,t2) = K(ty,t2) + %1{t1=t2}¢1(t1)¢2(t1), (2.4)

where t1,ty € [t,T] and K (t1,t2) has the form:

t ty), t1 <t
Kl = {0 < e el

Let’s expand the function K*(t1,t) using the variable ¢;, when ¢, is fixed,
into the Fourier series at the interval (¢, 7)) :

K1) = 3 Gyt (t) (0 #1,T), (2.5)
n=
where

T T
Cj, (t2) = /K*(tlat2)¢j1(t1)dtl = /K(t17t2)¢j1(tl)dtl =
t ?

= ¢2(t2)/2¢1(t1)¢j1(t1)dt1,

{#j(z)}32o — is a full orthonormal system of Legendre polynomials in the space
Ly([t, T]).
The equality (2.5) is executed pointwise in each point of the interval (¢,7)

according to the variable t1, when t5 € [¢, T is fixed due to sectionally smoothness
of the function K*(¢1,t9) according to the variable ¢; € [¢,T] (to — is fixed).

Note also, that due to well-known features of the Fourier series, the series
(2.5) converges when t; = ¢,T.
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Obtaining (2.5) we also used the fact, that the right part of (2.5) converges
when t; = t9 (point of finite discontinuity of function K (t1,%3)) to the value

% (K (s — 0,4) + K(ts + 0, £5)) = %¢1(t2)¢2(t2) = K*(ty, ta).

Function Cj (t2) is a continuously differentiated one at the interval [¢,T.
Let’s expand it into the Fourier series at the interval (¢,7):

Cj,(t) = i@ Ciniibi(ta) (ta #,T), (2.6)
J2=

where
T
.72]1 /CJI t2 ¢J2 t2 dt? - /¢2 t2 ¢]z t2 /¢1 tl ¢J1 (tl)dtldt%
t

and the equality (2.6) is executed pointwise at any point of the interval (¢,7T) (the
right part of (2.6) converges when to = ¢, 7).

Let’s substitute (2.6) into (2.5):
Kt = Y Y Cinti (M) (t); () € (KT (27)

J1=0j2=0
Moreover the series in the right part of (2.7) converges at the boundary of
square [t, T2
It easy to see, that putting ¢; = t5 into (2.7), we will obtain:

1 o0 o0
SVit)ya(t) = 20 3. Ciji 94 (1) 95 (t). (2.8)
71=0 72=0
From (2.8) we formally have:
1 T T v o
3 [t ga(t)dt = [ X 3 Ciiidsi (t1) s, (t1)dtr =
t t J1=072=0

00 T
Z / .72J1¢.71 3] d)Jz(tl)dtl -
1=072=0%

||M8

= Jim, lim, .120 Eo Ciai / B3 (1) 83, (t1)dtr =

D1 D2

- pll—r%o pll—%%o 'ZO ,ZO Choj Liji=jp} =
J1=U J2=
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min{p;,p2}

= lim lim Z Cjzh - Z CJI]I (29)

P1—00 P —00
Jj1=0 Jj1=0

Let’s explain 2nd string in (2.9) (the 4th string follows from orthonormality
of functions ¢;(s) at the interval [¢,T7).

We have:
T o
[ S Cit)ontdt - 3 / Cji (1) s, (t1)dta| <
t 51=0 71=07%
T o0
<[ Y Cit)ei(t)|dh =
t lh=pi+l
T| o t
:/ >, a(t /¢1( b, (s)dsej, (t1)|dt; <
t |J1=p1+1 +
T| o &
< C’/ > /@bl(s)qﬁjl(s)dsgbjl (t1)|dt1; C = const. (2.10)
t |Ji=pi+13%

Let’s suppose, that function 15(7) is continuously differentiated at the interval
[t, T] and the function 17 (7) is two times continuously differentiated at the interval
[t,T]; {¢j(z)}52 — is a full orthonormal system of Legendre polynomials in the

space Lo([t, T7).

Then ,
> [ n(s)i(s)dsey (t) =
hi=p1+ly
z(t1)
1 °° — t T +1

=51 S i) [ (o ) PP, 21

Jl—P1+1 |
where z(t1) = (t1 — ) 755, {P;(s)}329 — is a full orthonormal system of Leg-

endre polynomials in the space Lo([—1, 1]).

From (2.11) and the well-known formula

APy dBj-1, \ _ o R

it follows: .
Z /'Lpl(s)d)jl(s)dsd)h(tl) =

Ji=p1+1%
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_ > {(le+1(z(t1)) — P _1(2(t1))) Y1 (t1) — T2_ tx

-1 T+1

< Pus) = B ¥ (5 v+ Ty ) dw Pa(0)

<

2 (Balz(t)) P (2(4)) —ﬂl—l(Z(tl))f’jl(Z(tl)))‘ﬂL

> {vit) (35 (Pasele() = Pa(et)-

Jji=p1+1 21 +3

_27'171_1 (Fi(=(t2)) - 1311—2(2(?51)))) - T2— 9

2(t1)
< | (55575 (Proa®) = Bulo) = 5 (Palt) = Pray) )

t T+1

< () dyl P,

where Cy — is a constant; ¢}, ¥ — are derivatives of function ;(s) according
to variable Tty + L.

(2.12)

From (2.12) and well-known estimate for Legendre polynomials:

K
NSk € (=1,1); n € N, (2.13)

(constant K doesn’t depend on y and n) it follows:

| Pu(y) I<

t

3 [ne)sae)dss ) <
<Colim S (Pl Py(e(1) — sl Py (o(0) \+
o 1 1 G gy )
Ch 3 I T I
RPNy ((1—<z<t1>>2>2+_/1 T (1= ()]
< Co | Jim, (Pt (2(42)) Pa(z(t1)) = P (2(t1)) Py (2 <t1> )|+
+Cl § 12( L l+C2 L 1) <
ji=p+1J1 (1_(Z(t1))2)2 (1_('z(t1))2)4
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1 1 1
<ot (o) Gt
+C i 12( ! r+ Co ! 1)§
Jji=p1+1 J1 (1 — (Z(tl))2)§ (1 - (z(tl))2)z

1 o) 1 1 0 1 1
s G ((pl - j1=%+1 E) (1— (2(t1))2)? * j1=%+1 ita— (z(tl))2)i)
K 1 1
< p—l ( - + ) , (2.14)

(1= (=(t))2)F (1= (2(t1)))

(
where Cy, Cy, . ..,Cy, K — are constants, t; € (¢,7) and

< [= == (2.15)

From (2.10) and (2.14) it follows:

T

| 3 Cii(t) gy, (tr)dtr — 5 / Cj, (t1) 85, (1) dta | <
t 71=0 J1=0%
K (7 dy ; dy
<(/ r+ [ l)ﬁa
L\ (I—-¢2)7 2 (1—y9?)t
when p; — 0o, where K, K; — are constants.
So, we obtain:
1 T T o
§/¢1(t1)¢2(t1)dt1 = [ ¥ Ci(t)gi,(t1)dt =
t t 21=0
o T T
Z / tl gb]l tl dtl - Z / Z C3231¢J2(t1)¢31 (tl)dtl -
1=0% 71=0¢ j2=0
o0 o T
Z Z / .72J1¢Jz t Qs.h (tl)dtl - 20 CJlJl (216)
1=07>=0¢ Ji

In (2.16) we used the fact, that Fourier-Legendre series

i Cj2j1 ¢j2 (tl)

J2=0
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of smooth function Cj, (¢1) converges uniformly to this function at the any interval
[t+e,T—¢] for alle > 0 and converges to Cj, (t+0) and C}, (T'—0) when ¢t; = ¢, T.
That is why we may to write down

T

/ Z C]2J1¢32(t1)¢]1 (tl)dtl - Z /03231¢32 t1)¢31 (tl)dtl

t J2= J2=01%

Relation (2.3) is proven for case of Legendre polynomials.

Let’s suppose, that function 12(7) is continuously differentiated at the interval
[t, T] and the function ¥ (7) is two times continuously differentiated at the interval
[t, T]; {¢; () }32o — is a full orthonormal system of trigonometric functions in the
space La([t, TD

Using (2.10) we have:

_iio CJl (t1)¢11 (tl dtl Z /le tl ¢31 (tl)dtl

J1=0%

T—1t T -1t

00 151 ; _ ) _
D> (/zj)l(s)sin%r‘h(s t)ds sir1—27m1(t1 t)—i—

—|— - COS————— S dS sin——
j1=%+1]1 J T —t 1(5) T — ¢

> (
2m j1=p1+1.7

t . :
2 -t 2 t1 —t
—/sin—ﬁ‘h(s ) 1(s)ds sin—ﬂjl( =Y _

1
J Tt
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t1 . .
2mj1(s — t 2rg1(th — 1
—/COS# i/(S)dS COSTF—t)) dtl <

t

1 T 1

< 02/ (6 + Z ) dt; < CQ/ ( —) dt; — Co(T —t)e (2.17)
Ji=p1+1 7t p1

when p; — oo, where C, Cy — are constants, ¢ — is any small posilive number.

27Tj1 (tl —t)

Here we used the fact, that the functional series Z i Lsin T

=l
verges at the any interval [t 4+ €1, T — 1] for all 1 > 0 due to Drichlet-Abel test
and converges to zero at the points ¢t and T'. Moreover, this series (with accuracy
to linear transformation) is Fourier series of the smooth function K (¢;) = ¢; — ¢,

t1 € [t, T]. So, we may write down:

uniformly con-

© 1] 2m91(t1 — t
> —Sin—ﬂ—]l(1 )

h=p+1J1 T—1

‘ <e, (2.18)

when p; > N(e) (N(e) doesn’t depend on ¢; and exists for all € > 0).
From (2.17) it follows

/ > Calt)gs ()it = 3 [ ity dn, (2.19)

J1=0%

Let’s consider another approach of proving the equality (2.19) for trigonomet-
ric case.

It is clear, that

T 0
> Cj(t)g;(t)dh| =
t hi=p1+1
T t1
= [ X dalt)u(t) / ¥1(6)@;, (6)dbdt: =
t j1i=pm+1
2 |7 o (% C2mi(s—t) . . 2mji(t —t)
=5 t/%(tl)ﬂ:%ﬂ (t/ ¢1(s)smT—_tds SmT——t+
t1 . .
i aheos 1 it cos 0 t>) | =
17 © 1 . 2mji(t; —t)
= t/ (¢1(t)¢2(t1)j1:%+1j—lsm—T_t
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T —1t 00 1 / / o (4 _
T or a(t1) :% -_12<¢1(t1)—¢1(t)cos%_

ji=p1+1J

51

—/sin—Zml(s —1) 1(s)ds sin—27r]1(t1 — t)—

/ T—-t T—t

t1 . .
2 —t 2 t1 —
~ feosZ1 =) Coswlht))) i <

t Tt Tt

T .
0 1 2 t1 —t C
Ci /¢2(t1) > .—SiHMdh + 2

t Ji=p1+1 n Tt

00 T 1 —
> .l/¢2(t1)Siﬂw

ji=pi+1J1 %

Cy

el dty| + —= (2.20)

where constants C7, C5 doesn’t depend on p.

The last step follows from a uniform convergense of the series

00 1 2m91(t1 — t
> —si11—7T]1(1 )

ji=pi+1 J1 T—1

From (2.20) we obtain:

T

Z ¢2(t1)¢31(t1)/@bl(@)qul(@)d@dtl <

t Jj1=p1+1

> 2(@ )~ [ eos ™ g )

ji=p+1J1 t

\N
A

< (s

K
S — = 07
p
if p — oo, where constant K doesn’t depend on p.

So, we obtain:

T t

Z ¢2(t1)¢31 (tl)/@bl(e)qul(@)d@dtl <

t Ji=p1+1

(2.21)

= |

where constant K doesn’t depend on p.

Further consideration of this case is similar with proving of relation (2.3) for
the case of Legendre polynomials.

Thus, we proved the following theorem.
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Theorem 3. Assume, that the following conditions are met:

1. The function o(7) is continuously differentiated at the interval [t,T] and
the function 11 (7) is two times continuously differentiated at the interval [t, T).

2. {9j(z)}329 — is a full orthonormal system of Legendre polynomials or
system of trigonometric functions in the space Lo([t,T]).

Then, the multiple Stratonovich stochastic integral of the second multiplicity

J* [ Tt—/ (> tz/ Y1(t1) dft dft( ? (t1,92 = 1,...,m)

i1s expanded into the converging in the mean-square sense multiple series

D1 P2
J*[@D(?)]Tt—plll)zr_r)l hZOJZZOC’mlC] 32,

where the meaning of notations introduced in the formulations of theorems 1 and
2 1s remained.

Let’s make one remark about multiple and repeated series. For multiple series
when k£ = 2 we use the following notation:

(o] def D1 D2
. Z Xjije = D1 p2—>00 Z Z Yjrjos (2'22)
J1,J2=0 J1=0372=0
but for repeated one we write down:
def D1 D2
Z Z Qjyjp = p}l_I)%opll_I%o Z Z Qs - (2'23)
J1=0j2=0 J1=0j2=0

It is clear, that (2.22) and (2.23) are different things in mathematical sense.
Sometimes series (2.22) is equal to series (2.23) (there is well-known theorem
about reducing the limit to the repeated one). However, usually series (2.22) not
equal to series (2.23).

Let’s consider one simple example, when series (2.22) is equal to series (2.23).
Let’s put ¢1(s), ¥2(s) = 1in (2.4) and consider repeated Fourier series (2.7) under
this assumption. Also let’s put p; = ps = p in (2.22).

We have:
p p
Z Z Cjzjld)]i (t1)¢j2 (tZ) Z Z CJ231¢J1 (tl)gbh (tg)
71=0j2=0 =0j2=
J1=0 ja=p+1
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Let’s suppose, that {¢;(z)}72, — is a full orthonormal system of Legendre
polynomials in the space Lo([t,T]) and p > 1.

Then due to orthonormality of Legendre polynomials we obtain:

T t,
Chiji = /¢j2 (t2)/¢jl (t1)dt1dts =
t t

271+ 14/250 + 1(T — ¢t 1 y
= Y2 \/42 ( )/sz ?/)/le(yl)dyldy:

\/2j2+1(T /1P
J2

V2i+1

_ V2 +3(T /1
V2p+1 7
T—1

:2\/(2p—|—1)(2p+3)( =piz=p+l)

if jl 75 0 and
T to
Cijy = / A / b, (t1)dtrdty =

:\/MT —t/l

y+1y0

if j1 = 0, where {P;(z)}72, — is a full orthonormal system of Legendre polyno-
mials in the space Lo([—1, 1]).

So, we obtain:

C’ (T — 1)
Cii @4, (t1) 94, (t2)| < — 0,
when p — oo, where C' — is a constant.
Therefore in this case we have:
p q
IHQO 'ZO ZO Cszl ¢J1 (tl)d)h (t2) Z ZO Cj2j1 ¢j1 (tl)d)jz (t2)' (225)
J1 J2 1=0 jo=

Hovewer, if we put ¢ (s), ¥2(s) not identically equal to 1 in (2.4) or take k > 2
(k — is multiplicity of multiple Fourier series), then we can see, that equality like
(2.25) may be not correct.
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Let’s consider another approach of proving the equality (2.3) in the general
case. If we demonstrate, that

e 1

P 00j2j1¢j1 (t1)¢5.(t1) = S¥r(t)a(tr), (2.26)
J1,)2=

where the multiple series converges uniformly according to variable ¢; at the any

interval [t +¢&,T — €] for all € > 0, then integrating the equality (2.26) and using

the orthonormality of functions ¢;(7) we get the equality (2.3).

In order to prove (2.26) we should refer to the facts taken from the theory of
multiple Fourier series, summarized in accordance with Princeheim.

For each 6 > 0 let’s call the exact upper edge of difference |f(t') — f(t")]
in the set of all points t’', t" which belong to the domain D, as the module of
continuity of function f(t) (t = (t1,...,tx)) in the k-dimentional domain D
(k > 1), moreover distance satisfies the formula p(t’,t") < 4.

We will declare, that the function of k (k > 1) variables f(t) (t = (t1,...,t))
belongs to the Holder class with the parameter 1 (f(t) € CY(D)) in domain D if
the module of continuity of function f(t) (t = (¢1,...,tx)) in the domain D has
the order O(9).

In 1967, L.V. Zhizhiashvili proved, that the rectangular sums of multiple
trigonometric Fourier series in the hypercube [¢, T]* of the function of k variables
converge uniformly in the hypercube to this function, if it belongs to C*([t, T|*);
a > 0 (definition of Holder class with the index & > 0 may be found in the
well-known mathematical analysis manuals).

It is also well known, that for rightness of the similar statement for Fourier-
Haar series, at least for a two-dimensional case, it is enough to have only continuity
of function of two variables in the square [t, T]?.

The author thinks, that for double Fourier-Legendre series the similar formu-
lation will be true, if the function of two variables belongs to C*([¢, T]?). If this
condition is not enough, then at least the result will be correct if the function is
constant in [t, T]? (it corresponds to ¥;(7) = 1; i = 1,2, 3 in the following argu-
ments of this section and section 2.2). In this case we may also to use theorem
3.

Let’s analyze the auxiliary function:

Pa(t1)1(t2), t1 > to
Y1 (t1)a(te), t1 < to

and demonstrate, that it belongs to C1([t, T]?).

K,(tl,tg) = { , t1,10 € [t, T]
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Let’s analyze the increment: AK' = K'(t1,t2) — K'(t},t3), where

\/(tl - tf)2 + (t2 - t§)2 <9, (tla t2)7 (t’lka t;) € [tv T]2°

Using the Lagrange formula for ¢4 (¢7), 12(¢;) at the interval
[min{tq, 7}, max{t1,t]}]
and for ¢y (3), ¥2(t5) at the interval
[min{ty, 5}, max{ts, t5}]
we will come to the representation

r_ [a(t)n(te), tr >t [a(t)tn(te), 11 > 8
T {¢1(t1)¢2(t2)’ b <t {¢1(t1)¢2(t2), 1] < 6 +00).

Hereafter, it is clear, that the difference staying in the right part of the last
equality is different from zero and equals to

£ (1 (t1)a(t2) — 1 (t2)a(ts)) + O(6) (2.27)

on the set: M = {(¢1,t2) : min{ty, t1 + e} <ty < max{t,t1 +¢€}; t1 € [t,T]},
where € = (7 — t1) — (t5 — t2) = O(9).

Since we have |ty —t1| = O(d) on the set M, then using the Lagrange formula

to ¥a(ta), ¥1(t2) at the interval [min{t¢,¢2}, max{t;,¢2}] and substituting the
result into (2.27), we will get, that K'(t1,t2) € C'([t, T]?).

Let’s expand the function K'(t1,%5) in the square [t,T]? into the multiple
Fourier series, summarized using the method of rectangular sums, i.e.

K'(t1,t3) =

TT
= hm ,Z 5 / | K (1, 12) 5, (1) (2)dtadty - 5, (1), (t2) =
t

=07j2=0%

T
= nl,%gﬁ)w Z Z (/ Yo (t2) ), (t2 </ P1(t1)9j, (tl)dt1>dt2+
¢

0]2 0

+ [ W(t2) 85, (@Q/ ba(t1) s, (tl)dtl) dt2> B3 (1) ¢, (t2) =

N1

~ n1,17%zn—l>oo 'ZO ZO (CJZJl + 0]1.72) ¢31 (t1)¢]2 (t2) (228)
J2
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Obtaining (2.28) we replaced the order of integration in the second repeated
Riemann integral.

It is easy to see, that putting ¢; = ¢ into (2.28), separating the limit in the
right part in two limits and renaming j; by jo, 72 by 71, n1 by ns and ng by ny in
the second limit, we will obtain

Pilt)a(t) =2, lim > 3 Cppdy, (1)65(80).

J1=0352=0

The required equality is obtained.

Let’s demonstrate expansions of multiple Stratonovich stochastic integrals of
second multiplicity using Legendre polynomials, trigonometric functions, Haar
functions and Rademacher-Walsh functions.

Using Legendre polynomials:

*T

[ e = V=i,

t

: T —t)3%( 4
/(t—r)df(“) __T=97 2) (cé '+
t

AT i) (12 1 i1) (s i1) (i
t/ [ @ ag(s) = [go +Z e )ng_l)}].

For system of trigonometric functions:

*T
f at — =i,
t

t/t/df el __( _t)lgoh +%§%{ 2r 1 r)l ér)

+f(<2r 1o —C(gil o 1)}]

Using the system of Haar functions:

*T
f ar = =i
t
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*T 3 n
; T —t)2 in) o 2

/@_mmﬂzi—?l( + 33 G Y
t n=0j=

*T" %8

[ [ difait =

t t

T —1t( (i) iy x 20 i) ~(i1 i1) (02
= (67 + X X Gl - )+
n=0j=

2m 2™ .
+ Z Z Z an.?zﬁhh nzj)z 7(1211J)1)7

niy,Ne= 0]1 1]2_1

STPTAT L U B e AL AL
cu2(izt ) - (Y- ()

anjz,m]i =

B ny+ns . ]2_1 1 ]1—1 1 j1_12
=92 2 (<<mln{ ona + 2n2+1’ ony + 2n1+1} o N1 )
( {n—ljrﬁ} ﬁ—wﬁ
— [ max , - X

AN ong o1
X l{max{i;n_—;, U p<min{ 2+ o, Aem A H T
B . [ 72 j1—1_|_ 1 _]1_1 _
min 2TL2, 2”1 2n1+]_ 27’L1
j2 —1 1 jl -1 jl —1 2
— (maX{ 2’”2 + 2”2-{-1 9 2”1 } - 2”1 X
Xl{maX{J22”21+zn2+1a 27T }<mm{2"2’ 121"11+2"1+1}}+
. [J2 5 J1
+ ((mln{ 2n2 ) 2n1 } - 2711) B

J2—1 I pn—-1 1 71 \?
_<maX{ o2 + ona+1’ oni + 2n1+1} - 2”1) )X

where

X e {35+ seter, S+ et f<min zm}}

B min ]2 —1 n 1 ]1 i .71 .
oM ona+1’ 9my 2m
ja—1 -1 _ 1 g\
—(max{ ons 7 om + 2n1+1} o 2n1> )X
% 1{maX{J§"21a ]21"11+2n1+1 }<m1n{ 272 +2”2+1’ 2"1 }}>
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i T :
¢ = J go(r)d 0, ¢l = fd)m( )afD;m =0, 1,...;5 =1, 2,..., 2" — are
1ndependent as a whole accordlng to lower indexes orif i # 1 (i, [ = 1,...,m)
standard Gaussian’s random variables; 71, 19 =1,...,m.

For the system of Rademacher-Walsh functions:

*T
/dfﬁu) — mcéu),
t

Ty C(g“) + Z le---mk %i)mk)7

T 2
1<m <...<mp<oo
1<k<oo
*T *s
i j T—1 1) ~(i2
//dfT(u)dfs(zz) — : (Cé )C(g )+
t t

t T GGG = GG

1<m<...<my <oo
1<k<o0

Y G G, G )

1<ni1<...<ng, <oo
1<mi <...<my, <00

1<k1,k2 <0
where
~ 2m1—1 9mk —1
le---mk = Z (_1)81 cet Z (_1)8kx
81_0 Sk=0

XLt { by v }m{}}
o (i 511 sy + 1 51 sk )2
min g 2 omy — [ max om1 """ oy ,

Cnl...nk2 ,ml...mkl -

2m1—1 2Mk1 —1 2n1 —1 2"k —1
= X ()" X ()M X (-D Y (<)%
51:0 Sklzo q1=0 Qk2=0

X 1 s Sk s sp, +1 X
. +1 k
{max{ AT 3oy mil }<m1n{ ST ”27’1‘—’61}}

X1 q 1yy X
a1 ko s fa+l ks
{max{ 27T 7 JThy }<m1n{ 27T 7

X

1 a1 kg 51 Sky
{max{max{ AT 2+ Ty } max{ ST 9+ STy <
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. . g+l 9, +1 . [ s1+1 Sy 1 X
<m1n{m1n{ o ,...,2ﬁ—k2 ,ming Sy ,...,2,,1%1

(( . { : {Q1+1 qk2—|—1} .{S1+1 Skl-I-l}}
X | [ min{ min ., 2% min —

om TNk,

—ma 51 Sy

X\ Qmit e o

— | m max ﬂ Ak max It Sk _
ax S ey [ Smi? 0 e
2
S1 Sk,

_max{%, ey oMy }) >+

+2 -1 q1 Tko, . s141 Spy 11 . - [ g+l Qo t1
{max{max{w—l,...,%},mln{ UG ,...,27n—kl <min{ min 27T ,...,27,,—1‘;2 y 1

( i {sl—l—l skl—l—l} {51 Sk, })
X [ min yeie,———— ¢ —Max{ —,..., X
2my QMg 2my QMg
. . [q1+ 1 Gk, + 1
X(mm{mm{ g 7T oy [ 17—
B @ ) sl sy 1)),
MaX| MAX| o - -5 o (- gm0 gme ;
T T

& = ToodED, (8 e = T (TAED; 0 < my << omy;
k, my,..., mp = 1, 2,... — are independent as a whole according to lower
indexes or if p # g (p, g = 1,...,m) standard Gaussian random variables;
il, 7:2:1,...,'171.

Apparently, due to its complexity (in comparison with expansions accord-
ing to Legendre polynomials and trigonometric functions), the given expansions
performed using Haar and Rademacher-Walsh systems represent more theoretic
interest than practical one.

Let’s provide some additional remarks in the context of analyzed problem.
Note, that the following statement is reasonable.

Assume, that &, m, pm, pn;m, m=0, 1, 2,... — are sequences of random
values, moreover

l.i.m. = l.i.m. = l.i.m. =
nT60 En,m C: 111 gn,m Moy et fn,m Pns

where ¢ — 1s a random value. Then

lim lim M{(&.» — ¢)?} = lim lim M{(&... — ¢)*} = 0.

n—o00 Mm—0o0 m—00 N—00
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We prove this fact as in deterministic case using the inequality: M{(z—y)?} <
2M{(z — 2)?} + 2M{(z — y)?} instead of the inequality: |z —y| < |z — 2|+ |2 —y|.

Assume, that

Z Z CJ2,71<] C J*[’(p ]

sz 0

Let’s take for u,, and p, the following formulas

Z Z C]2J1 ) and Z Z Cjzh ) .7(1)

Jo=

correspondingly.

Actually, since

M{(Eum — )P} = > 3 Cii M{(Em— )} = 3 3 O

42=0j1=n+1 71=0 jo=m+1

Z sz1 —= Z J231’ Z sz1 = Z J2J1’

J1,J2=0 J2=0 J1,j2=0

Z i = / K*(t1, ty)dtydty < oo,
.717.72 =0 [tT]2

then

LLIL G = Hmy LI Gnm = Po-

Then, using the statement given before, we will obtain

J [ ]Tt - Z Z 0]2]14-] 32 7 [ ]Tt - Z Z 0.72.71 Jz )7
=0 72=0 =0j1=
where the series converges in the mean-square sense, i.e. for example for the first
case )
11_>I£lo nltlm M{<J [ ]Tt - Z Z CJZ]IC] 72 ) } =
J1=0j2=0
= 0.

The possibility to generalize theorem 3 to the case of multiple Stratonovich
stochastic integrals of 3rd multiplicity seems quite natural. But this problem as
we will demonstrate in the next section turned out to be rather difficult. However,
in the sections 2.3 — 2.5 this problem will be solved using the another approach.
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2.2 About the expansion of multiple Stratonovich stochas-
tic integrals of 3rd multiplicity. Some relations for the
case of weight functions of general form

Investigating in this section the problem connected with a possibility to generalize
theorem 3 for the case of multiple Stratonovich stochastic integrals of 3rd mul-
tiplicity using the approach based on series like (2.26), the author didn’t obtain
general results. However in the sections 2.3 — 2.5 this problem will be solved using
the Parseval equality and formulas like (2.3). In particular, we will show in the
sections 2.3 — 2.5, that in the case ¥1(7),..., Yua(7) = 1;41,...,04 =0, 1,...,m
and the system of Legendre polynomials or the system of trigonometric function,
generalization of theorem 3 for Stratonovich stochastic integrals of 3rd and 4th
multiplicity is correct.

In addition in this chapter we will show, that for functions (1), ¥9(7),
3(7) of polynomial type or even for some more general smooth functions (two
times continuously differentiated functions), generalization of theorem 3 (cases
of Legendre polynomials and trigonometric functions) for Stratonovich stochastic
integrals of 3rd multiplicity is also correct.

So, let’s try to develop the approach based on series like (2.26) for multiple
Stratonovich stochastic integrals of 3rd multiplicity.

Let’s write down the relation connecting Stratonovich and Ito stochastic in-
tegrals of 3rd multiplicity:
1 T ts _
T O, = J[®]r, + 51{i1=z‘2} /¢3(t3) /¢2(t2)¢1(t2)dt2dft(;3)+
t

t

] T t i
+§1{¢2:i3}/¢3(t3)¢2(t3)/¢1(t1)dft(11)dt3, (2.29)
i i

which is correct with probability 1 and 1 (7), ¥a(7), 13(7) — are continuously
differentiated functions at the interval [t, T7].

From here we see, that there are the following particular cases:
11, %2, 13 are pairwise different;
’il = ’iz 7é 'ig;
i1 # g = 13;
i1 = 13 F 19;
11 = 19 = 13.

St W

Here we propose, that 21,79,i3=1,..., m.
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It is clear, that in the first case multiple Stratonovich and Ito stochastic
integrals are simply the same. It also relates to the any multiplicity k, therefore
we may use theorem 1 for these integrals.

Let’s analyze the second particular case.
From theorem 1 if 41 = iy #£ i3 follows, that

3) . b1 P2 Pp3 (21) ()
J[’(ﬁ ]T,t: Lim, Z Z ZCJ332.71<J1 J2  SJ3 _1{J1 Jz}CJ )

P1,p2,p3—0 =0 j»=0 js

def o (1) (i) ~(is)

- Z Cj3j2j1< jll jzl js 1{.71 .72}(; .

J1,J2,53=0
If we could rewrite the last equality in the form
00 . . .
3
J[¢( )]T,t = Z Cj3j2j1 J(fl) j(;l) .7(:3) - Z CJ3J1]1 ()
J1,J2,j3=0 J1,53=0

and could demonstrate, that in the mean-square sense

°° i3 17 s ia
> Canall =5 [ Valts) [ daltr) () dtrdt, (2.30)
j1>j3:0 t t
then we will obtain
00 3 .
TWWre= 3 Ciu I ¢ (i1 = s # i3), (2.31)
j17j25j3:0 =1

where the series converges in the mean-square sense.

The author doesn’t have a proof of equality (2.30) in the general case (leaping
ahead we can note, that this equality is true in some practically important cases:
theorems 4 — 6). We will only demonstrate here, that

t3

T .
> 3 Ol = 5 [t [ a(t)vat)dndt, (23
t t

J3=0j1=0

where the series ZO converges in the mean-square sense, and the series ZO con-
J3 J
verges in the common sense.
In accordance with theorem 19 (see also the Ito formula), the last equality

may be rewritten in the following form

T T .
> Y Gl = % [ r(ta)a(ts) [ bs(ta)des dtr.
t t1

J3=0j1=0
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Let’s show, that

{§¢3(t3)¢1(t1)¢2(tl), t < ts
K2(t1,t3) = ()7 ty >ty =
st (t)ea(t), b=ty
- i i Cj3j2j1¢j1(t1)¢j2(t1)¢j3(t3)7 (233)
J3=072,j1=0

where t1,t3 € [t, T] and the convergence of series according to ¢; and t3 is uniform
at the any closed intervals laying within the intervals of continuity of expanded
function.

Let’s analyze the auxiliary function
Y3(ts)a(ta)n(tr), t1 <ta<t3

K5(t,t2,t3) = {¢3(t3)¢1(t2)¢2(t1), to <ty <ts, ti,ta,t3 €[t,T].
0, otherwise

Let’s fix t1,t2 and expand the function Kj(t1,t2,ts3) using the variable t3 at
the interval [¢, T] into the Fourier series:

. T
Ky(ty, o, t3) = 'ZO<¢1(t1)¢2(t2)/¢3(t3)¢j3(t3)dt3]—{t1<t2}+
J3= to

T
o (t)a(tz) [ Wlts) by (t3)dtal =iy +
2

T
+¢1(t2)¢2(t1)/¢3(t3)¢j3(t3)dt31{t2<t1}) G, (t3) (L3 # t1, t2). (2.34)

It is easy to see, that the function staying in the parentheses looks as follows

% ()Y (L), ti <ty
Kalts,t2) = {¢1(tz)q’;3(t1)7 ty<t’

U,(5) = a(s) [ ws(ts)y, (ts)dts.

Therefore, this function belongs to the Holder class C*([t, T]?) (see the previ-
ous section). Let’s expand it in the square [t, T]? into the multiple Fourier series,
summarized according to Princeheim and substitute the result into (2.34):

Ké(tb t27 t3) —
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o0 b1 D2

- Z lim Z Z ( J3Jad1 + 03331]2) ¢]1 (t1)¢32(t2)¢33(t3)

jopuroe ) =
Thinking ¢; = t5 in this equality, which is correct if t3 # t1, ta, we get (see
the previous section):
1
éKé(th t17 t3) =
o o0
= Z Z Cj3j2j1 ¢j1 (tl)d)b (t1)¢j3 (t3) (t3 7é tl)'
J3=072,j1=0

Let’s analyze the auxiliary function

()3(ts)Pa(ta)n(tr), t1 <ta <t
Y3 (ts)1(ta)e(te), ta <t < t3
_ ¢1(t3)¢3(t2)¢2(t1), t3 <t1 <ty
K (t17t27t3) - ¢2(t3)¢3(t2)¢1(t1), tl S t3 § t2 ) t17t27t3 € [t7 T]
Y1(t3)a(to)s(th), tz3 <ta <t
L a(ts)r(ta)s(te), to <tz <t

Let’s expand this function in the cube [¢, T]? into the multiple Fourier series,
summarized according to Princeheim

ni na

Ky(tq,ta,t3) = n n2,n3_>oo _Z > Z ngln%(tl) (2.35)

=0 j2=0 js=
where

3
0.7(31.7)2.7.1 - / K4(t17 ta, t3) H ¢jl (tl)dtldt2dt3.
[t,T]? I=1

The function Ky(t1,1te,t3) is selected in such manner, that after using the
property of additivity of Riemann integrals and usage of integration order re-
placement in these integrals we could get the equality:

1
03(31)'2]'1 = Cj3j2j1 + Cj3j1j2 + Cj2j1j3 + Cj2j3j1 + Cj1j2j3 + Cj1j3j2' (236)

Substituting (2.36) into (2.35), proposing in the obtained equality, that ¢; =
to = t3 and separating the limit in the right part of obtained equality into 6 limits
we get:

S E)(0) = X Ciadi ()840 (1),

jl ,j2 aj3:0
Since
Kj,(t1,t1) =

DN | =

i Cj3j2j1 ¢j1 (t1)¢j2 (tl) -

jl)]2:0

Electronic Journal. http://www.math.spbu.ru/diffjournal A.71



Differential Equations and Control Processes, N 1, 2017

= 5 r(t)alt) [ (o) ()0

and because of the well-known statement about reducing the limit to the repeated

one we come to (2.33). The equality (2.33) is proven

Let’s analyze

——

00 2
{( P1(t1)2(t1) /¢3 ty)df;)” Z ¢ > Ocjsjzj1¢j1 (1) 5, (tl))
Jij2=

(i)
(t1)¢j2(t1)>dft33> }Z
Jj3=0 J1,J2=0

- M{(j([(z(tl,ts) — Y ¢i,(t) | i_ Clsioin i

(t1);, (t1)>2dt3-

Jj3=0 J1,J2=

T o0
t —

The right part of the last equality converges to zero if n — oo because of

uniform convergence of the series according to t3 (t3 # t1, t1 is fixed) at the
any closed intervals laying within the intervals of continuity of expanded function

Ky (t1,t3).
So, in the mean-square sense
o0 1
Z G Y Chpain®i (t) 5 (1) = FVi(t)a(tr) [ ws(ts)df;
t1

Js3= J1,J2=0

Considering Parseval equality we have

T 0 . o
M{</ S S Ciaguini (b)), (1) dtr—

t Js=0 J1,J2=0

T n . 0 0
- t/ go CJ(;B) j1§=0 Cisjojn 1 (81) &5, (tl)dt1> } <
T 5

/ 2 < > Cijpin @i (t1)¢j2(t1)> dt; =
t J3=n+1\j1,52=0
T
L/( ¢1 t1 ¢2 tl /¢3 t3 dt3—
t

> <31§ Cljogs @1 (£1) B3 (t1)>2> dt1,

j3=0 j2=0

7

S,
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where L — is a constant.

Because of continuity (here ¢;(7) are assumed to be continuous) and nonde-
creasing of members of functional sequence

n 00 2
wnlt) = 3 (3 Chundi(t)da(tr)
J3=0 }j1,j2=0

and because of the property of continuity of the limit function

u(tr) = (0 )uE(0) [ U (ts)ity

according to Dini test we have a uniform convergence wuy(¢1) to u(t1) at the interval
[t, T] (tl 75 t3, t3 is ﬁxed).

That is why, performing the passage to the limit under the sign of integration
in the last equation we obtain in the mean-square sense

S G [ Y Chpinti(t)ég(t)dh =
j3:0 t j15j2:0

| T T .
= §/¢1(t1)¢2(t1) /¢3(t3)dft(;3)dt1-
t t1

Replacing the sign of integration in the left part of this equality and the sign
of the right series (that is possible due to uniform convergence of the last one
according to t; at the any interval [t + ¢,T — €] for all € > 0) and taking into
account orthonormality of functions ¢;(7), we come to (2.32).

Let’s analyze the third particular case.
From theorem 1 if 41 # 19 = i3 follows, that
J[¢(3)]T,t — Z Cj3j2j1 (C](“)CJ(ZI)CJ( 3) . 1{j2:j3}C](11)> )
J1,J2,J3=0
Again, if we could write down
J[¢(3)]T,t = Z Cj3j2j1 .7(11) J(zl) .7(33) - Z Cj3j3j1 _7(11)
J1,J2,J3=0 J1,J3=0
and could demonstrate, that in the mean-square sense

t3

s iy 1 ’ i
Y. ChiaiGt” = 5 [ alta)valts) [ n(tr)dES dts (2.37)
t t

jl 7j3:0
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then, because of connection between Ito and Stratonovich stochastic integrals we
could get:
*7,7.(3) o ’ (t) ¢ : :
JW e = 2 Chugoiy I1 G (02 # 12 = 13),
J1,J2,j3=0 =1
where the series converges in the mean-square sense.

Let’s only demonstrate here, that in the mean-square sense

ty
Z Z 0]3.73.71 /¢3 (t3)a(ts) /¢1(t1)dft(fl)dt3, (2.38)
J1=0j3=0
where the series %0 converges in the mean-square sense, and the series ZO con-
J js

verges in the common sense.

Let’s demonstrate, that

sUs(t3)va(ts)en(tr), t1 < ts

Ks(t,t3) = 0, t > 1y =
Libs(t)ihr (t)ha(t1), 1 = t3
= i i Cisjoin i (t1) B (£3) 85 (£3), (2.39)
71=0 j2,53=0

where t1,t3 € [t,T] and the series converges uniformly according to ¢; and t3
at the any closed intervals laying within the intervals of continuity of expanded
function.

Let’s analyze the auxiliary function

P3(ts)a(ta)1(t), t1 <ty <t3
K3(ty,te, t3) = < 3(t)wa(ts)r(t1), t1 <t3 <ty , t1,ta,t5 € [t, T
0, otherwise

Let’s fix t9,t3 and expand the function Kj(t1,%2,t3) using the variable 1 at
the interval [¢, T] into the Fourier series.

to
Ké(tl,tg,tg,) Z <¢2(t2)¢3(t3)/¢1(t1)¢11 (tl)dtll{t2<t3}+

Jj1=0

to

b (t2)a(ts) [ Wi (t2) s, (t1) dtiL g, +
t
t3

+¢3(t2)¢2(t3)/¢1(t1)¢j1 (tl)dtll{t3<t2}> ¢j, (t1) (t1 # ta, t3). (2.40)

t
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It is easy to see, that the function staying in the parentheses looks as follows

{Zﬁg ; E ; Ziig i (8) = (s )/swl(tl)qul(tl)dtl.

Therefore, this function is related belongs to the Holder class C'([t, T]?) (see
the previous section). Let’s expand it in the square [¢, T)? into the multiple Fourier
series, summarized according to Princeheim and substitute the result into (2.40):

Ké(tla t27 t3) -

o) b2 P3

= > hfgoo > > (Chsir + Ciajaiy) G5 (1) 85, (£2) b, (£3).
Ji=0P2 P30 5o —0 =0
Taking to = t3 in this equality, which is correct if ¢; # to, t3, we get (see the
previous section):

1
§K:l’,(t17 t37 t3) -

= Z Z Cj3j2j1 ¢j1 (t1)¢j2 (t3)¢j3 (t3) (tl 7é t3)'
J1=0j2,j3=0
The equality (2.39) is proven. The following proving of relation (2.38) is
similar to the case which was investigated earlier.

In the fourth particular case the considered Ito and Stratonovich stochastic
integrals with probability 1 will be the same, but as it follows from the theorem
1 the series

o
Z CJ3 J H CJ )
J35J2,J1=0
generally speaking, may not converges to Stratonovich stochastic integral
J*[Tﬁ(?’)]]”t when il = ig 7é i2.
In this case let’s use the theorem 1 and formula (2.29) if i; = i3 # 2.

Nevertheless, close connection of formulas (2.30) and (2.32), as well as for-
mulas (2.37) and (2.38) is non-random. In particular, in the following sections
we will demonstrate, that for the case 11(7), ¥2(7), ¥3(7) = 1 and the system
of Legendre polynomials or the system of trigonometric functions the formulas
(2.30) and (2.37) passes to formulas (2.32) and (2.38) correspondently.

Besides, let’s demonstrate, that within the frames of the mentioned case the
generalization of theorem 3 for multiple Stratonovich stochastic integrals of 3rd
multiplicity is correct.
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2.3 Expansions of multiple Stratonovich stochastic inte-
grals of 3rd multiplicity, based on theorem 1. Cases
of Legendre polynomials and trigonometric functions

2.3.1 The case ¢1(7‘), ¢2(7’), ¢3(T) = 1; il,iz,’i3 = 1, NN 1

Assume, that 1(7), ¥a(7), ¥3(7) = 1 and {¢;(x)}32, — is a full orthonormal
system of Legendre polynomials in the space Lo([t, T1).

In this section we will prove the following expansion for multiple Stratonovich
stochastic integral of 3rd multiplicity:

*T" %13 *1o

[ [ [ aratRa = v 55 3 0l
t, Oy, "l PLpaps—hoo Ly = o Jajadi > Gjs
def ) (ia) A
£ Y GGG, (2.41)
J1,J2,53=0

where the series converges in the mean-square sense, its coefficients has the fol-
lowing form:

T S S1
Cj3j2j1 = /¢j3(3)/¢j2(81)/¢j1(82)d82d81d8
t t t

and il,ig,ig = 1,...,m.
If we prove the following formulas:

b1

1 b3 C. def C )_
Ad.m. Z > Ciiii Z Jaji =

= .
PLP3™00 5120 j3=0 J1,J3=0

1 3 ) ]
= (T - >2(c03 +7<13), (2:42)
L pP1 D3 C. C )
prps 0 '2013220 Jajsir Mzg_o Jajsir =
1 3 1 i1
= @) (40’ - —25d”), (243
P Ps3 (i2)

Lim. Z Z 091.73]1 Z 091.73]1 = 07 (2'44)

= ;
PLP3™90 4120 j3=0 .71,]3—0

then in accordance With theorem 1, formulas (2.42) — (2.44), standard relations be-
tween multiple Stratonovich and Ito stochastic integrals, as well as in accordance
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with formulas (they also follows from theorem 1):
1/T/Tclsclf(i'°’) = 1(T — t)% (CO(iS) + Lﬁ(%)) w. p. 1
244 ' 4 V3 ’
lf]ﬁmWT= — 0 (¢ = S2d™) Wbt

S . .

244 V3

we will have
17 2 (i1) p(i2) (ia)
[ [ [diDaEas = S Chun G o -
t ot ot J1,J2,33=0

N | —

1 T 1 ' T 1 '
-}y t/ t/ dsdf ™ — 1,1 t/ t/ df ™ dr

It means, that the expansion (2.41) will be proven.

At first, note that the following relations result from formulas (2.32), (2.38)

17 o1 s (i) 1 G
Ciojiin G == [ (T —t)df = ~(T —¢ 5((“3)+—C(’3’), 2.45
Bz@ﬁg i G 2[( ) {T=07 (@Y + 507, (249)

Z Z CJ3J3J1

Jj1=0 j3=0

_ o Ly 1y
= 5@ =1 (= 5 - o)
IR PSRN A YR B SN
= 2= 0} (& = Z). (2.46)

The series Z in the left part of the formula (2.45) and the series Z in the
J3= =
left part of the formula (2.46) converges in the mean-square sense. The number

series ZO in the left part of the formula (2.45) and the number series > in the
i

J3=0
left part of the formula (2.46) converges in the common sense.
Let’s examine (2.45). It follows from (2.45), that
0 1 3
Y. Cojujy = 7(T —1)%, (2:47)
71=0 4
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ic.. _L( t)% (2.48)
Jj1=0 i 4\/§ .
Z Cj3j1j1 =0, 73> 2. (2.49)

J1=0

Let’s check formulas (2.47) — (2.49) by direct calculation. Let’s examine (2.47).
We have

N

T —1t
0000:7( 5 ) ;

8

T S1
Copji = [ 60(5) [ dj.(s1) [ b (s2)dsadsids =
t t

t
1 T s 2
5/9250 (/ ¢j1(81)d81> ds; j1 > 1. (2.50)
t t
Here ¢;(s) looks as follows:
27+1 T+t 2 ,
bi@) =\ 2 B ((s= ) ) izo @

where Pj(z) — is a Legendre polynomial.
Let’s substitute (2.51) into (2.50) and calculate Cpj,j,; j > 1:

2

([t

2]1+1 /T

2

(s)
(2]1+1\/T tr (71 ,
/ / 21 31+1(?J) le—1(y)) dy| ds=
t \-1
r 2
= 5 / i1(2(5)) = Piea(2(5)))” ds, (2:52)
t
where z(s) = (s — %) Ti_t, and we used following well-known properties of Leg-
endre polynomials:
1 ! / .
Pi(y) = 25 +1 (Pii(y) — Pia(v); 7> 1,

Pi(-1) = (~1)f; j > 1.

Also, we denote Cil—lzj(y) dof le(y)
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From (2.52) using the property of orthogonality of Legendre polynomials we

get the following relation
z 1

Cojiji = P W)+ P () dy =
16 2]1 + 1 /1 J

_(T—t)%< L1 )
82+ 1) \25,+3 251/

where we used the relation

Then \
00 (T — 1)z
> Cojjy = —
71=0
(T —t)2 (oo 1 © 1 )
47 + . =
8 ]12—:1 2.71 +1 (2.71 +3) Z:l 452 — 1
1

(T—wt)%Jr T —t)> (1

_(T—t)% 1 1\ (T-1)
6 = 8 <§_§+§>_ 4

The relation (2.47) is proven.
Let’s check correctness of (2.48). Represent C};,;, in the form:

N

T

s 2
Chijujn = % [ é1(s) ( / ¢j1(51)d31) ds =
t

t

3 2
T —1)2(251 + 1)V3 :
- =9 (1é1 /P1 (/ (1 dyl) dy; j1 2 1.

Since functions

y 2
(/ Pj1(yl)dy1) ;> 1
-1

are even, then, correspondently functions

2
(/ (n d'!/l) dy; 1>1
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are uneven.
It means, that Cy;,;, = 0; j1 > 1.
Besides /3 - \
3(T —t)2 9 (T —1t)2
Ciopo= ————— + 1)dy = —~=—.
100 16 _/1 y(y ) y 1 \/§
Then

S Cuyp = Croot 35 Oy = L0
leO 1]1]1 100 j1:1 1]1]1 4\/3

[MI°Y)

The relation (2.48) is proven. Let’s check correctness of formula (2.49). We
have

Z Cj3j1j1 = Z _/¢J3 (/ ¢J1 S1 dSl) dS 73 > 2. (2.53)
71=0 71=02

It is easy to see, that the integral fg/)jl(sl)dsl is a Fourier coefficient for the
b

function
1, s1<s

0, otherwise ' 1 ° €Tl

K(sl,s):{

The Parseval equality in this case looks as follows:

2 T s
(/ b, (s1 dsl) = /K2(81,8)d8 = /d31 =5 —t. (2.54)
=0 / /

=

Taking into account the nondecreasing of functional sequence

n

wlo) = % / ¢j1<sl>dsl)2,

Jj1=0

continuity of its members, as well as continuity of limit function u(s) = s —¢
at the interval [t,T] we have according to Dini test the uniform convergence of
functional sequence uy,(s) to the limit function u(s) = s —t at the interval [¢, T'.

Then from (2.53) and (2.54) using the uniform convergence of functional se-
quence uy,(s) to the limit function u(s) at the interval [¢, 7] we have

2
J3J1]1 = /¢33 (/ ¢J1 81 d81> ds =

j1 ]1_0

T
== [ ¢,(s)(s —t)ds = 0; j3 > 2. (2.55)
t

l\DI»—l
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Obtaining (2.55) we used the well-known feature of Legendre polynomials:

1
[ Pily)ytdy =0; j > k. (2.56)
-1

The relation (2.49) is proven.
Let’s prove the equality (2.42). Using (2.48) we get

D1

D3
Z Z CJ3J1J1

0]3 0

(T )% pL P

D1 .
= Z COjlle((] 2 4\/— 4.13 + Z Z CJ3J1J1

0j3—2
( ) 21 25142

al 7:3 T l3 i3
= Z COjlle((] ) \/* Cl + Z Z Cj3j1j1<7(3 ) (257)

J1=0 j3=2,j3—even

(T —1)2 (251 + )v2js + 1 /1 P;.(y) (/y Py (yl)dyl)zdy

Cj3j1j1 = ].6
1 =1

and the degree of polynomial

( /P, <y1>dy1)

equals to 271 + 2, then using (2.56) we get Cj,;,;, = 0 for js > 2j; + 2. It explains
the circumstance, that we put 27; + 2 instead of ps in right part of the formula
(2.57).

Moreover, the function

( /y P, (yl)dyl)

is even, it means, that the function

[

is uneven for uneven j3. It means, that Cj,;,;, = 0 for uneven j3. That is why we
summarize using even j3 in the right part of the formula (2.57).
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Then we have

j2l 2j1+2 (is) 2p1+2 (is)

3 —_— . . - 3 —
Z Z Cj3j1j1 j3 Z Z CJ311J1 j3
71=0 j3=2,j3—even j3:2,j3—evenj J3 =2

2p1+2 P

- Z Z 0.73.71.71 : (2-58)

J3=2,j3—even j; =
We replaced 337_2 by zero in the right part of the formula (2.58), since Cj,;,5, =
0 for 0 < j; < 32,
Let’s put (2.58) into (2.57):
b (-1}
Z Z CJsth Z COJ1J1C0%3 \/— Cll3
=0js=

2p1+2

+ Z Z CJsth : (259)

J3=2,j3—even j;=

It is easy to see, that the right part of the formula (2.59) doesn’t depend on
p3.
If we prove, that

lim M 21 zp3 C; 1(T t)? (g<i3)+—1 C(“)) 2 0, (2.60)
m — (T —1)2 — _
p1—00 gl ey VEVIW 4 0 \/g 1 )

then the relaion (2.42) will be proven.
Using (2.59) and (2.47) we may rewrite the left part of (2.60) in the following

form:
. p1 (T ) % (i) 2p1+2 y4i 2
lim M ( .Z_O 00j1j1 ) CO Z Z CJ3J1]1 )

pr=>e0 J3—2,Js even j;=

pfl - 7( t)% 2 2]9152 Z 2
= lim Coi. i + lim C; =

711 Jsjii
P \ji=0 4 PI=00 =2 jr—even \j;=0

2p1+2 P1 2
= hm z (Z ngjljl) . (261)

p1—00 Jj3=2,j3—even \j1=0

If we prove, that

2p1+2 p1 2
hm Z (Z Cj3j1j1> = 0, (262)

P1=00 =9 js—even \j1=0
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then, the relation (2.42) will be proven.
We have

2p+2 2
Z Z CJ3J1J1) =

J3=2,j3—even \j1=0
2

2p1+2 T 2
S (/ 6i.(5) (/ b3 (s1) dsl) ds) -

4 Jjz3=2,j3—even \ J1=

LK (/ 64(5) (<s—t> = (fonta d)) 43)2:

Jz=2,j3—even \ }
2

1 2m+2 T 00 8 2
- Zj3=2,j§—even (t/ ¢j3 (8) j1=%+1 (t/ ¢j1 (Sl)dsl) ds) <
2p1+2 T 00 s 2 2
i pz (/ | ¢j3(8) Y (/ ¢j1(81)d81> dS) . (2.63)
J3=2,j3—even \¢ Ji=p1+1 \}

Obtaining (2.63) we used relations (2.54) and (2.55).

Then we have

s 2 B . z(s)
(/ ¢j1(81)d81> _ (T t)Ef]l + 1) (/ P]l(y)dy) —

_ z(s) , / 2
Ty ( [ (Phav) = Patw) dy) -
= foj 1) (Pt () = Pt (2(9)’
< 5y (P (G0 + P21 (), (260
where
T+1 2
z(s) = (s— 5 )T—t'

For the Legendre polynomials the following well-known estimation is correct:
K
vn+1(1 - yQ)i

where the constant K doesn’t depend on y and n.

; y€(—1,1); n€N, (2.65)

| Paly) I<
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The estimation (2.65) may be rewritten for the function ¢, (s) in the following
form:

[ Gals) | < | 2L K : <
n +1 VT -t 2\
E (1= (=5 %))
Ky 1 o Ki=KV2; se(t,T). (2.66)

B (CEESE)

Let’s estimate the right part (2.64) using the estimation (2.65):

(tfs ¢j1(81)d51>2 < 2(2le_+t1) (jffZ i IJ(12> (1- (zl(s))Q) )

I

(T —t)K? 1 _
< 7 A= (&) se(t,T), (2.67)
where z(s) = (s — 1) 74,

Substituting the estimation (2.67) into the relation (2.63) and using in (2.63)
the estimation (2.66) for | ¢;,(s) | we get:

2p1+2 D1 2
Z Z Cj3j1j1) <

j3=2,j3—even \j1=0

2
_(T- HKAK? 21’52 f ds $ 1|
16 jo=2ameven |1 (1 _ ((« _ Tty 2 \2\T jimpis1 J7
1 ((S 2 )T—t)
2
T —1)*K*K¥(pr+1) [ | 1)
64 —1 (1 — y2)4 1=p1+1 N
Since .
d
[ 5 <o (2.69)
5 1=yt
and
© 1 Pdr 1
- < | ==, 2.70
j1:%+1 ]% 131/1’. Y41 ( )
then from (2.68) we find:
i2 (o 2O —t)3(p+1
Z (Z Cj3j1j1> ( )2(171 T ) — 0 with p; — oo, (271)
J3=2,j3—even \j1=0 b1
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where the constant C' doesn’t depend on p; and T — ¢.
From (2.71) follows (2.62), and from (2.62) follows (2.42).
Let’s examine proving of the equaity (2.43). From (2.46) we get

1 3
Z CJ3J30 4(T - t)i (2-72)
Jz3=
S Cp = (T )}, (2.73)
20 J3J3J1 4\/3 .
Y Ciyjsin =0, 71> 2. (2.74)

J3=0
Let’s check formulas (2.72) — (2.74) by direct calculation.
Let’s examine (2.72). We have

xO xO
Y- Cjyjo = Cooo + > Cjyjs0;

J3=0 Js=1

1
Cisjs0 = )+ P _i(y) dy =
3J3 16 2]3+1 /1 s

(T—t)f 1 1 .
= . ( + — );]321.
8(2j3+1) \253+3  2j3—1
Then \
00 T —t)>
chgjgoz%ﬂL
J3=0
T—t): (& 1 0
LI )(z % )
8 jam1 2]3+ 2]3+3) T1475 -1
_(T—t% T —t)2 1 i 1\
6 314 BER= 453 —-1)
_(T—t)%+ ( 1+1)_(T t)2
6 8 2 3 2/ 4

The relation (2.72) is proven. Let’s check the equality (2.73). We have

T s s1
stj3j1 = /¢j3(5)/¢j3(81)/¢j1(82)d82d81d8 =
t t t
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T T T
= /¢]1(82)d52/¢j3(81)d81/¢)33(8)d3 —
t S92 S1

5 2
T —1)2(2j5+1)v/251+ 1 .
_ (T=t) J316 )V2j1 / (/ (1 dyl) dy; j3 > 1. (2.75)

Since functions

. 2
(/ Pj3(yl)dyl) ;321

Y
are even, then functions

1 2
Pi(y) (/ Pjg(yl)dyl) dy; jz3>1
Y

are uneven.
It means, that Cj,j,1 = 0; j3 > 1.

Moreover
3 1 3
2 T — t)2
Coo1 = 2d — _(7
001 = /1y Yy = 4\/3
Then ,
00 00 (T — t)i
Ciis1 = Coor + Y Cjjy1 = ———=—.
j3z——:0 J3J3 i J3J3 4\/5

The relation (2.73) is proven.
The equality (2.74) may be proven similarly to (2.49). We have

2
jz—:o J3Jsih —]Z /d’gl 32 (/ ¢]3 S1 d81) dsy =
1 7 2
= 5/%‘1(82 (/ b, (s1 dsl) dsy =
t .73 =0 S9
1 7T
= 5/%(82)(7’ — s2)dsy = 0; j1 > 2, (2.76)
t
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where we used the Parseval equality in the following form

2 7 T
(/ ¢J3 S1 dsl) = /K2(81,82)d81 = /d81 =T — S9, (277)
J3=0 \sz t Sa
1, s9 < 81

0, otherwise ' °17 %2 €T

K(s1,82) = {

and the fact, that the series in the left part (2.77) converges uniformly according
to Dini test. The relation (2.74) is proven.
Using the obtained results we have:

b1 P3

Z z CJ3J3J1 =

Jj1=0 j3=0

D3 (i) (T ) (i1) P3 D
= Z Cj3j30CO - \/* Cl + Z Z 0.73]3J1

J3=0 J3=07j1=2
P3 : (T t) P3 2j3+2 ’
=Y Ciol™ - +Y Y G (2.78)
73=0 4\/_ 73=0j1=2,j;1 —even

Since

Cj3j3j1 =

\ 2
T —1)2(2 2 /
:( )(]3+ W/le (/P]3y1dy1) dy’]3>1
Y

v

equals to 2j3 + 2, then using (2.56) we get Cj,;,;, = 0 for ji > 243+ 2. It explains
the circumstance, that we put 273+ 2 instead of py in the right part of the formula
(2.78).

Moreover, the function

and the degree of polynomial

(/ 13j3 (yl)dyl)

is even, it means, that the function

)
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is uneven for uneven j;. It means, that Cj,j,;, = 0 for uneven j;. It explains
summation of only even j; in the right part (2.78).

Then we have

D3 2j3+2 2p3+2

Z Z Cj3j3j1CJ§fl) - Z Z CJ3]3J1C(“) -

j3=0 j1=2,j; —even Jj1=2,j1—even ja= 11—

2p3+2 D3

— Z Z CJ3J3.71 : (2-79)

J1=2,51—even j3=0

We reptaced ”1 2 by zero in the right part of (2.79), since Cj,j,;, = O for

Let S substltute (2.79) into (2.78):

P p3 (i1) (T ) (i)
Z Z 0]3.73.71 Z CJ3330§0 - \/— Cl
=043=0 Jz=0
2p3+2 D3
+ Z Z 0333331 - (2‘80)

J1=2,j1 —even j3=0

It is easy to see, that the right part of the formula (2.80) doesn’t depend on
p1-
If we prove, that

i) 1 (h))
P3—00 05220 CO \/§CI

lim M{(i %3: CJSJ331 _i(T_t)%<

then (2.43) will be proven.

Using (2.80) and (2.72), (2.73) we may rewrite the left part of the formula
(2.81) in the following form:

lim M {( % Cisiso — M)
=0

pP3—00

) Ws+2  py 2
CO + Z Z CJ3J3J1

J1=2,j1—even jz=0

3\ 2 2
T —t)2 2p3+2
= lim (Z 033130 u) + lim Z Z CJ3J3J1> =

.ﬁ
P00 Jj3=0 4 J1=2,j1 —even

_ 2p3+2 D3 2
= lim Z <Z Cj3j3j1> .

P3—00 j1=2,j1—even \j3=0
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If we prove, that
2p5+2 P 2
L (Eo cjmﬁ) —0, (282
then the relation (2.43) will be proven.
From (2.75) we get

2p3+2

Z Z CJ3J3J1) =

J1=2,j1—even

2ps+2 T 2 2
- pi (/qul(@ 0(/% (s1) dsl) d32) _

4 Jj1=2,j1—even |\ } So

= i 2p§2 (/ ¢, (s2) ((T —a) - Y (/ ¢j3(51)d81) ) d32)

2

J1=2,j1—even \ J3=p3+1 \$2
2 2
1 2p3+2 T oo
=7 X [ bi(s2) ¥ /% (s1)ds1| dsz| <
J1=2,j1—even \ } J3=p3+1 \s2

2ps+2 T 2 2
< i pf (/ | ¢5i (s2) | (/ Pjs (51 dsl) d82) : (2.83)
J3—p3+1

J1=2,j1—even \ } So

In order to get (2.83) we used the Parseval equality (2.77) and relation (2.76).

Then we have
T 2
(/ ¢j3(81)d81) =

~ gy (P (152) — Poct (o0
< gy (i ((62) + Py (<(00)
() L
233+ 1) \Js+2 ° Js ) (1= (2(s9))?)
(T ;j?lr(2 - (21(32))2)5; se(t,T), (2.84)
where z(s2) = (s2 — 5%) 7%
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In order to get (2.84) we used the estimation (2.65).

Substituting the estimation (2.84) into relation (2.83) and using in (2.83) the
estimation (2.66) for | ¢;, (s2) | we get:

2p3+2

2
Z Z CJ3J331) <

J1=2,j1—even

2
_(T- i)K‘*Klz 21’3Z+2 ’ ds § S %
6 J1=2,j1—even | (1 . ((S . w) L)2>4 Ja=pa+ +1J3

Mc.o

(T -t)PK*K}(ps + 1)
N 64

) (7_p3+1j§) oW

— 0 with p3 — oo, (2.86)

Using (2.69) and (2.70) from (2.85) we find:

)2 C(T —t)3(p3 + 1)
3

2p3+2 D3
> (Z Ciajajs

J1=2,j1—even \j3=0
where the constant C' doesn’t depend on p3 and T —¢.

From (2.86) follows (2.82) and from (2.82) follows (2.43). Relation (2.43) is
proven.

Let’s prove the equality (2.44).

Since ¥1(7), ¥a(7), ¥3(7) = 1, then the following relation for the Fourier
coefficients is correct (see section 1.2):

Cj1j1j3 + Cj1j3j1 + Cj3j1]1 - 203210j3a
where C; =0 for 7 > 1 and Cy = /T —t. Then w.p.1
i C. . cli2) i <C2C’ —C’---—C’---) (i2) (2.87)
A J1J3iidgs T L 9 h J1J173 733191 | Sz :
J1,J3=0 Jujs=
Therefore, considering (2.42) and (2.43), w.p.1 we can write down the following:
00 i 1 i
Z Cj1j3jlc,7§; = §CSCO(Z ) Z Cmus Z CJB]IJIC n) =

J1,53=0 J1,53=0 J1,J3=0

N N R W G (S R (S A
= 5T =0} - 3T -} (7 - )
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1 =03 (67 + 5=¢”) =0, (2.88)

The relation (2.44) is proven. So, we have proven the following expansion

for multiple Stratonovich stochastic integrals of 3rd multiplicity for the case of
Legendre polynomials:

*T *tg *to

///dft(1i1)dft(2i2)dft(;3) — Z Cijlec(h)C(iz)C(iB) (2.89)
t t t

. = Ji ¥J2 dJ3 )
.717.727.7320

where the series converges in the mean-square sense,

T S S1
Chinis = | $ia(5) [ $ia(51) [ 8 (s2)dsadsds
t t t
and ’il,ig,ig = 1,...,m.

It is easy to see, that the formula (2.89) may be proven for the case i; = iy = i3
using the Ito formula (also see section 6.3):

*T xt3 xto

///dft df. ) dft) = (t/Tdf )

= CoonlS ¢SV,
where the equality is fulfilled with probability 1.

(Cogt)" =

@Ib—\

Let’s analyze expansions of specific multiple Stratonovich and Ito stochastic
integrals using obtained results and the system of Legendre polynomials.
Assume, that

T to
L = [(t = ). /(t—t)lldft W
t

I

*T *lo .
L = [ =) [ (=) af Y
t t
where t1,...,0. = 1,...,m; ly,..., [z =0, 1,....

The direct calculation according to theorem 1 provides:

L 1
I =~ (RS + ) +

L1 (1~ ) -
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3 1 7,3 19 ’LQ 12

~(7 - )} [ (¢ + xfcl -6+

1 (i) | 1 i) (i )
+-1g,-, ( V=" 2 + G

1 ) _ 1 s (i1) ))
+—1y4,—i, ( - —= +G +

4 { } CO \/§C1 \/*(2 Tt

1 i2 1 7:2 12 i1i2’i3
+61{i1:z’3} (C(g - —\/ggz( )+ QT,t) + ZD(T,t )] :

I = VT — ¢,

1122 Zl 12 1 21 19 7:1 7:2
Ioory = [Co +E e (- )c}_%}],

(1112) Tr—t *(i192) (T - t)2

I = — I _ 12 ll)

107, 5 Loor, 1 [ \/gCo Gt
(RIS sl 1 £ B
20\ (20 +1)(26+5)(2i + 3) (2 — 1)(2i + 3)

D(mzlz) _
N i=1 jZ:IO k=i Niji K1, ’“*"—J’+1Ci(“)gygl2)@?3)+

2i>k+i—j>—2; k+i—j — even

0.] l—]. i1 7:2 'l
+ PO Niijk+1,i+1,M+1Ci( )CJ( G-
i=1,7=0 k=1 2

2k>k+i—j>—2; k+i—j — even

X (i1) »(i2) »(i3)
— > N K. k+i—j<- C C —
i=1,j=0 k=i+2 WET+LE-, vk
2i4+2>k+i—j>0; k+i—j — even

x il (i1) 4(i2) ~(i3)
- 2 X Nige Ky 1 sz GG G —
1=1,j=0 k=1 T2
2k—2>k+i—5>0; k+i—j — even
X i2) ~(i3)
— > Nije K1 i1, ’°+”Cz C G —

i=1,j=0,k=i—2,k>1
2i—2>k+i—j>0; k+i—j — even
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0 1—3 i1) (i) ~(4
- PN NZJkKk+1z ’“*i‘jCi( )CJ( ) 123)_"
i=1,j=0 k=1 2

2k+2>k+i—3>0; k+i—j — even

X (i1) »(i2) »(i3)
+ i:1j§0k:i Niij"—l”f—laH%z—lci GGt
2i2k+i—j2,2; k-l’-z'—j — even
x (i) ~(i2) y(ia)
T i=1%:0 k2::1 Niijk—u—L%_ﬁi Cj G

2k>k+i—j>2; k+i—j — even

G(i3) _ o- <l N K. (is)
Te =~ 2 . Z sk +1k+1"+1Ck

+ Z ijkKk+1,j+1,§+1C]§l3)_

k=1, k — even
25—2 (ia)
13
- Z NijK ~1Lk+1,55c

k=j—2, k>1, k — even
iy (is)
3
- Z ijkKk+1,j—1,§ ko

k=1, k — even
2j+2

- Z NK+1k1’°lg)_

k=j+2, k — even
s (i5)
3
- X NjppfGy s Gt

k=1, k — even
2j (is)
13
+ > NipK 160G

k=j, k — even

i—1

+ > ijkKk—l,j—l,;—“—lCIgZS)} )

k=1, k — even

(. 3 2i+-2 (i2)
52{ 2 NyiKi G-

7=0, j — even
2

—2 > NijiKz'—l,i—l,i—%CJ(ZZ)-l_

j=2, j —even

21—2
‘|‘ Z Nz]zK —14—1,i—1— gC](lz}

7=0, 7 — even

Electronic Journal. http://www.math.spbu.ru/diffjournal A.93



Differential Equations and Control Processes, N 1, 2017

where
1
Nigi, = ,
7" J(2k+1)(2j+1)(275+1)
% I 2n+2m — 4k + 1 (2k — 1! <
K Arptr—k on 4+ 2m — 2k + 1 g =

On the other hand, in accordance with (2.89) we may use more compact
expression:

* ilig’i 1 2211 21 121
foéoT,f):—T (I(g DL 4 I8 o
LI (1 ) -

~(7 - )} [ (6 + vael - Jeet?) + 1ok

or
1921 1 201 2
) =~ (e )
) ) -
T 1 (i3) (i2) \/_ i2) (i2) 1 (%11213)
—(T —1)> GC '@ (¢ + V3¢ _7C2 T2 Dy~ +
. 1 5 5
+1{¢1:i2}§f1(;3,2 ~ Lii=ie}; ((T — )15 + 11(;2) )
where

1, = =5 = 0F (& +—5d?),

NT .
CJ@ = [ ¢;(s)dfD; {¢;(z) 220 — is a full orthonormal systems of Legendre poly-
t
nomials in the space Lo([t, T1]).

Let’s prove some generalizations of expansion (2.89) for the situation, when
Yi(r) = (t — T) [, =0, 1, 2,... are fixed natural numbers; 1 = 1, 2, 3.

2.3.2 The case 9(7),¢s(7) = (t = 7)\, ¢s(7) = (t —7)" iy =ix # 4

In this section we will prove the following expansion for multiple Stratonovich
stochastic integral of 3rd multiplicity:

*T *8 *81
[t =s)8 [(t—s1) [ (t— 52)'df D a0 =
t t t
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= X Cj3j2j1 J(fl) 1(22) J(§3) (il =iy #13; i1,%2,03=1,..., m)? (2'90)
J1,J2,J3=0

where the series converges in the mean-square sense; [,l3 =0, 1, 2,... and

S1

Clajojs = /¢J3 (t—s) l3/ t—s1) e 81)/(t — 89) ¢, (s2)dsodsids.  (2.91)
t

t

If we prove the formula:

17 ; _
3 Cloiii (1) = =3 [(t=9)" [(t = 51)"dsydf(), (2.92)
J1,J3=0 t t
where the series converges in the mean-square sense and the coefficients Cj,;, ;, has
the form (2.91), then using theorem 1 and standard relations between multiple
Stratonovich and Ito stochastic integrals we get the expansion (2.90).

Using theorem 1 we may write down:

1 s 1 2014+13+1
5/t—8l3/t—81 Qldsldf( 3) — 5 Z nggj . . a
t J3=0
where
T s
/ )t —s) 13/ t—s1) 2ld51ds.
t t
Then
b3 D1 (i) 1 21+1s+1
ZO Z CJ3J1]1 - 5 Z CJ3C] =
J1=
2l+l3+1 1 - 23)
= Z Z CJ3J1]1 - 56’ C + Z Z C.7331J1
J3=0 ja=2l+I3+2 j1=0
Therefore

»

D1

P3
lim M { ( Z Z Cmm
J

l\Dlr—l

—
D1,p3—00 3= 0]1 0 +

T 2
/ t—s) 13/ t— 51)2ld51df8(i3)) }
t

] 20+13+1 Y41 1~ 2
i jggo (jlgo Cisii = 305 ) i

b3 Y41 . 2
+ lim M{ > ZCJ3J'1J'1C](ZS)> } (2.93)

P1:ps=00 j3=21+13+2 j1=0
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Let’s prove, that

1. \2
p}l_I)IlOO (le_ CJ3J1J1 o 5 j3) = 0. (294)
We have
4! 1 - 2
(jFO Chajiir — 503-3) =
] 2
( Z/¢J3 t—S </¢J1 t—Sl d81> ds—
J1=0% +
s 2
__/¢J3 t_ 8 ls/ t— 81 2ld81d8) =
1 t 2
4(/¢J3 ( 0(/¢]1 81 t—Sl)d81> _
J1=
s 2
— /(t — 81)2ld31> ds)
t
% (/ ¢]3 (/(t - 81)21d81—
o0 S t s 2
- X (/¢g1(51)(t—81 d81> /t—sl dsl) ) =
Ji=p1+1 f
1 T 00 s 2 2
! (/ Di(s)(t = 5)° 3 (/ iy (s1)(t — 81)’d81) ds) : (2.95)
t Ji=p1+1 \}

In order to get (2.95) we used the Parseval equality, which in this case may
look as follows:

Jj1=0

2 T
(/ ¢, (s1)(t — s1) dsl) = /Kz(s, s1)ds, (2.96)
t

where

t—s1)!, s1<s
K — ( 1 9 1 . e t T .
(5,51) {0, otherwise s €6 T

Taking into account the nondecreasing of functional sequence

Un(s) = (/ B (51)(t — s1) d31)2,

J1=0
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continuity of its members and continuity of limit function
S
s) = /(t — 51)%ds;
t

at the interval [t, T] in accordance with Dini test we have uniform convergence of
functional sequences u,(s) to the limit function u(s) at the interval [¢, T7.

From (2.95) using the inequality of Cauchy-Bunyakovsky we get:

4! 1~ 2

Z Cj3j1j1 - §Cj3) <
1=0

1 T T/ o s 2\ 2
< 1/925?3(3)@— 8)2l3d3/( 2 (/ i (s1)(t — Sl)ldsl> ) ds <
t t \Js1=p1+1 \}
T
< 3T -0 t/ B, (s)ds(T 1) = (T — 1)+ (2.97)

when p; > N(e), where N(¢) is found for all € > 0.
From (2.97) it follows (2.94).

Further
P 3 p1 2(j1+l+1)+13 (is)
3
Z Z CJ311J1 Z z Oj3j1j1Cj3 : (2'98)
J1=0 j3=21+13+2 71=0 j3=2l+I3+2

We put 2(j51+1+1)+I3 instead of p3, since Cj,j,;, = 0 for 53 > 2(j1+1+1)+15.
This conclusion follows from the relation:

s 2
t

1
= 5/¢js(S)Qz(j1+l+1)+13(3)d37
t

where Qg(j,+1+1)+1,(5) is a polynomial of the degree 2(j; +1+ 1) + 3.
It is easy to see, that

p1 2(j1+H+1)+3 ) 2(pr+H+1)+3 py

Z Z Cj3j1j1C§;3) = Z Z CJ3J1J1 : (299)

71=0 j3=2l+I3+2 j3=2l+I3+2 j1=0

P
Note, that we introduced some coefficients C},j, ;, in the sum Zl , which equals

71=0
to zero. From (2.98) and (2.99) we get:
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o ps i)’ Apr+i+1)+s pr 2
M (Z > Cj3j1j1<j33 ) =M > Z CJ3]1J1

J1=0 j3=21+I3+2 J3=2l+13+2 j1=

2(p1+H+1)+13 [/ py 2
= 2 (Z Cj3j1j1> =

j3=2l+lg+2 71=0

/d’h —s)" (t/s 5, (s1)(t — 81)ld81)2ds)

2

.73—2l+l3+2

(p1+l+1 )+ 1o
J1 Ot

2

2
(/¢]1 81 t— 81) dSl) dS) =
1 21 +1+1)+ls

> (/ B3 (5) (¢ — )" ( / (t - 51)%dsi -

1 2(pr+l+1)+s

> (/@3( )(t - s)"

4 j3:2l+l3+2 Jl_O

Ja=2l+l13+2
00 s 2 2
- X (/ ¢, (s1)(t — Sl)ld31> ) ds)
j1i=p1+1 t

1 2(py1+I+1)+l13 00 2

-7 > (t/ iy (s)(t —s) Y (t/ ¢j1(31)(t—81)ld51> ds) . (2.100)

Ja=2l+13+2 Ji=p1+1

In order to get (2.100) we used the Parseval equality of type (2.96) and the
following relation:

T
/¢j3(8)Q2l+1+l3(3)d8 = 0; ]3 >2l4+1+ l3,
t

where Qg4+1+1,(s) — is a polynomial of degree 2] 4+ 1 + I3.
] 2
(/ i, (s1)(t — Sl)ldb‘l) =
2

z(s)
(T t)2l+1 2] +1
- 92112 /PJl J(1+y)dy| =

Further we have

B (T _ t)2l+1
= gy 7y (L 7)) (B (2(5) = By ((6) -

1 [ (Bals) = Pa(0) (1) ) <
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2041 s — 2l 5
< s i (S20) B (o)~ s o)+

z(s) 2
+1 (/ (Pyaly) = Prea(®) (1+)'™ dy) ) <

-1

(T— t)2l+1 (22l+1 (P2 1( ( )) P2 1( (8))) 4+
— 22l+1(2j1 + 1) n+ -
2(s) 2(s) )
+1 /(1+y 22 dy / Pj 1(y) — Pj-1(y)) dy) <
2l+1

22l+1 2]1+1 ( 2l+1 J1+1 z(s)) + ‘Pj21 1 (2 (3)))+

(s

)2+ ,
- 2 2J1+1 <2 Jl+1 + P (2 (3)))+

12 z(s)

_1 /1 1+1 1 1( ))dy)

where

T—i—t) 2
T

z(s)z(s— 5 —

Let’s estimate the right part of (2.101) using (2.65):

Joere-arn) <55 (55 5)-

221 +1) \in+2 5

2 2o gy
((1 e TG —yzﬁ) )

T_t2l+1K2 2 l2
<( )2 (( o+ 7T);:;E(t,T),
1_ 2

where

—t

(2.101)

Electronic Journal. http://www.math.spbu.ru/diffjournal A.99



Differential Equations and Control Processes, N 1, 2017

From (2.100) and (2.102) we get:

D1 pP3 (13) 2
M (z 3 cmc) <
j1=0 js=20+13+2

2(p1+l+1)+1s

1 T
<7 > (/ [ 6ils) | (= 5)"
J3=2l+13+2 t
00 H 2 2
X > (/ ;i (51)(t — Sl)ldb’l) ds)
Ji=p1+1 \}
1 2(pi++D)+H; (T
<=0 S | [ i(s) | %
j3=20+l+2 \%
00 8 2 2
< Yy (/ b (51)(t - sl>ldsl) ds)
Ji=p1+1 \}
T _ $)A+2s+1 frd 2 2(piHA1)+ T 2d
< ( ) 1 Z S §_|_
16 Js=2l+15+2 (1 — (z(s))2)4
2
Pr 7 d o 1
o 7T1 : T 2 7] S
TG (1 — (z(s)) )4 ji=p+1J1
2
- (T . t)4l+2l3+3K4K12 . 2p1 +1 /1 2 j
- 64 3 (1-— % 7 i
2 1
< (T — )02 = Lt — 0 when p; — oo, (2.103)

pt
where the constant C doesn’t depend on p; and T —¢, and 2(s) = ((s — 5) 7.
From (2.93), (2.94) and (2.103) follows (2.92), and from (2.92) follows the

expansion (2.90).
2.3.3 The case 3(7),1%2(7) = (t — 7)}, 1(7) = (t — 7)1 i3 = dg # i3

In this section we will prove the following expansion for multiple Stratonovich
stochastic integral of 3rd multiplicity:

*T *$ *S1
[E=s) [(t—s1) [ (= s2)" DD =
t t t
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= Z Cj3j2j1 J(fl) J(Z2) 3(23) (7,3 = ’iz 75 il; il, ?:2, 23 = 1, ceey m), (2104)
J1,J2,J3=0

where the series converges in the mean-square sense; [,1; =0, 1, 2,... and

S1

T s
Cj3j2j1 = /¢j3(8) l/ t— 81 Qsh 81) /(t— 82)ll¢j1 (82)d82d81d8. (2.105)
t t

t

If we prove the formula:

00 1 T s
> Cigin(y =5 [(t—s) [(t = s1)"dElds, (2.106)
jl;jBZO 2 t t

where the series converges in the mean-square sense and the coefficients Cj,;,;, has
the form (2.105), then using theorem 1 and standard relations between multiple
Ito and Stratonovich stochastic integrals we get the expansion (2.104).

Using theorems 1 and 19 we may write down:

17 ; |
5 [t =) [(t — s1)"dfds =

t t

17 .

5/ (t —s1) / — 5)%dsdf) =
t S1

1 20+1,+1
- 5 Z C.hgy - P 7
Jj1=0
where

T T

/ )(t —s1)" /(t — 5)%dsds; .

t S1

Then
b1 Ps3 . ) 1 20+1+1
Z Z 0133331 - 5 Z OJIC]
=043=0 J1=0
20+11+1 D3 1 . “)
= Z z Cj3j3j1 - 50 C + Z Z CJ3J311
Jj1=0 j3=0 J1=2l+11+2 j3=0
Therefore
1 D3 1 T 2l S l 2
li M — — _ 1 f
i M (8 8 Cunn? = Jem o fimspartias
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. 214+0h+1 [/ ps3 1. 2
- pll—r>noo j1z=:0 <j3z=0 Cj3j3j1 - §Cj1> +
2
+p1,}}3r£1>oo M{ —2§l1+2 Jsz CJ3]3J1 ) } . (2.107)
Let’s prove, that
1 - 2
pli—r>noo (332—: CJ3J3J1 o écjl) = 0. (2.108)

We have

D3 1 - 2
(Z Cjaj3j1 - 50 ) =

Jjs=0
(Z /¢J1 (52)(t — s2) 1d82/¢33 (51)(t — s1) d81/¢]3 — 5)lds—
Jj3=01%
T

- %/%(81)(75 —s)" [(t - 8)2ld8d81) =

S1

1 b3 T 2
/¢J1 (s2)(t — s2) (/ ¢j3(81)(t_ Sl)ldsl) dso—

.73—

—% [ i (s0)(t —s)™ [(t - s)2ldsdsl) -

S1

_1 T.S RV RS _ ) 2_
4(/%1( 1) (t — s1) (;-32—:0 [ 6iss)(t )

T 2
— /(t — 5)%ds dsl) =
T

= i ( [ ¢ (s0)(t = s1)" ( [(t—s)"ds—

S1

2 T 2
(/ ¢33 ) - /(t — S)Zlds) dsl) =
J3—p3+1 S1 $1
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2

—i(/ B (1)t — s X (/ ¢j3<s><t—s>lds) d) (2109

J3=p3+1 \s;

In order to get (2.109) we used the Parseval equality, which in this case may
look as follows:

20 ( [ $1(s)(t - s)lds) — [ K%(s, s1)ds, (2.110)

where

t—s), s1<s
K(s,s1) = {9 - £ T).

Taking into account nondecreasing of functional sequence

continuity of its members and continuity of limit function

T

u(s1) = /(t — 5)%ds

S1

at the interval [t, T], according to Dini test we have uniform convergence of the
functional sequence u,(s1) to the limit function u(s) at the interval [¢, 7).

From (2.109) using the inequality of Cauchy-Bunyakovsky we get:

P3 1~ 2
2. Cljsin = 5%) <
=
1 7T T( T 2\ ?
1/ (s1)( )%dsl/ '_Z (/ by (s)(t — s)lds) ds; <
t t \Js=ps+l \s;
1, i 1
2 2 _ 20 +1_2
< ST -1 1t/q§jl(51)d81(T—t) = (T —1)""e (2.111)
when ps > N(e), where N(¢) is found for all € > 0.
From (2.111) follows (2.108).
We have
D3 D1 ps 20sH+1)+h (i)
Z Z C]3J3]1 Z Z Cj3j3j1 T (2112)
93=0 51 =21+11+2 13=0 j1=2l+1;+2
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We put 2(js + 1+ 1) + ; instead of py, since Cj,j,5, = 0 when j; > 2(js + 1+
1) + 1. It follows from the relation:

T T 2
Cisisi = %/@1(32)@ — s9)" (/ bj, (51)(t — 81)ld81) dsy =
t 52

1 T
= §/¢j1(SZ)QZ(J'3+I+1)+11(52)d327
t

where Qa(j,+1+1)+1, (5) — is a polynomial of degree 2(j3 4+ 1+ 1) + I;.
It is easy to see, that

ps 2(j3+I+1)+1 2(p3+i+1)+l; ps

Y Cuul= Y zcm . (2.113)

Note, that we included some coefficients Cj,j,;, in the sum ZO which equals
Js
to zero.

From (2.112) and (2.113) we get:
D3 D1 (i) 2 2(p3+i+1)+l ps 2
M Z Z Cj3j3j1Cj1 =M Z Z CJ3J3J1
J3=0 j1=21+1,+2 J1=2l+0+2 j3=

2(ps+l+1)+l1 / ps 2
- Z (Z Cj3j3j1) =

J1=2l+0;+2 \j3=0
2ps+HAD)+h (1 ps T l 2 2
= > |3x / Bis2)(t = 2" | [ Suls)(t = s1)'dst | dsy
N=20+0+ J3=U ¢ S2
1 2sH+1)+h [ T B T l 2 2
=7 2 /¢j1(82)(t— s2)" D /¢j3(81)(t— s1)'ds1 | dss
]1:2l+l1+2 t J3:0 S92

1 2(ps+l+1)+1; T

=7 X (/ G (52)(t — s2)" (/(75 — s51)"ds1—

4 J1=21+1;+2 S9

- io: (/¢j3(81)(t—81)ld81) )dsQ) =

J3=p3+1 \$y

1 2(s++1)+0

=7 X (/ Gj, (52)(t — 52)" %

4 —otn+2
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Ja=p3+1 \s,

X i (/ ¢j3(81)(t — sl)ldsl) dSQ) . (2.114)

In order to get (2.114) we used the Parseval equality of type (2.110) and the
following relation:

T
/¢j1(8)Q2l+1+ll(S)d8 =0; 1 >20+1+1,
t

where Qg4+1+1,(s) — is a polynomial of degree 21 + 1 + [;.

(/ js(s1) (¢ — 81)ld81) —

:ut¢WH@m+n(}

Further we have

2042
2 (s2)

P (y) (1 + y)ldy) =

(T o t)2l+1
- 22l+2(2j3 +1

—1 / J3+1 33—1( ) (1 +y)l_1 dy)Z <

)01+4@»RETMA@»—f%H@@a»—

(T—t)2l+12 <<2(82—t)> l( Pyt (2(52)) = Piy_1 (2(52)))* +

<
= 22+2(255 + 1)\ T —¢

+l2 ( / (Pjs-i-l(y) - Pj3—1(y)) (1 + y)l_l dy) ) <
&(

82)
< (T . t)2l+1
1
+12 /(1+y)21 2dy / ]3—|—1(y) Pj3_1(y))2dy> <

2(s2) z(s2)

2+
< 22(1?:1(22 +1) (22”1 (Ph1 (2(52)) + Pji_y (2(s2))) +

2072 Sy — 21-1 1 , ,
+2?—l 1 (1 B ((T_:)> ) / (Pros1(y) + Pii_i(y)) dy) <
2(

82)

) <2ZZ+1 (Pt (2(s2) + Py i (2(s2))) +
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_\204+1
< S (2 (P (o) + P (a(o2)) +

| (Pra®) + Pio(®)) dy), (2.115)

where z(s2) = (s2 — 5) 7.

Let’s estimate right part of (2.115) using of (2.65):

T 2
l (T _ t)2l+1 KZ K2
(s! s (51)(t — 1) dsl) < 2%+ 1) <j3 o ) X

2
X 1 + 1
((1—<z<sz>>2)2 25—1/ )

_ 2l+1K2 2 2

< ;).2 -+ 2; ”1 se(t,T), (2.116)
J3 (1 — (2(s2)) )2 -

L

<

where z(sg) = (s2 — Tft) 72
116

From (2.114) and (2.

D3 D1 (ir) 2
M (Z Z Cj3j3j1 J1 ) <
ja=0 j1=20+11+2

2(ps+I+1)+1;

> (/ | b5, (s2) | (¢ — 52)"

1
< _
4 J1=2l+11+2

i (/ ¢j3 (81)(t — sl)ldsl) dSQ)

X
J3=p3+1 \$,
1 2ps+Hi+1)+lL [T
<@ =S [ g(00) | %
J1=21+11+2 T
00 T 2 ?
X Z /¢j3 (81)(t — sl)ldsl d82
J3=p3+1 \s»

+

<

oo

(T — t)H+2h+ L 2 2(pa+§1)+l1 (( T 2dss
(1= (2(s2))%)
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2 T o 1 i
> | <
2l -1 p 52)) ) ja=ps+1 Jg

N

2
- (T _ t)4l+2l1+3K4K2 2p3 + 1 / 2dy 127 /1
- 64 P3 (1—y )% 20—17 1_ 2)i
1
< (T — )2 8o =2 L - 2ps + — 0 when p3 — oo, (2.117)
P3
where the constant C doesn’t depend on p3 and T'—t¢, and z(sg) = (32 — %) Ti_t

From (2.107), (2.108) and (2.117) follows (2.106) and from (2.106) follows the
expansion (2.104).

2.3.4 The case ¢1(T),¢2(T),¢3(T> = (t — T)l; 'il,’ig,’ig = 1, -

In this section we will prove following expansion for multiple Stratonovich stochas-
tic integral of 3rd multiplicity:

*T *8 *81

[=9) [(t=s) [ (¢~ s2)ldEDafl de ) =
t t

t

- (ir) -i2) f(i) (; -
= Z Cj3j2j1 g1 Sja Sjs (21,22,’&3 = 1,...,m), (2.118)
j17j27j3=0
where the series converges in the mean-square sense; [ =0, 1, 2,... and

S1

T s
stjzjl - /¢j3 (S) l/ t—s1 QSJZ 51)/(t — 82)l¢j1 (S2)d82d81d8. (2119)
t t

t

If we prove the formula:

Z lej3j1CJ(:2) =0, (2-120)

J1,j3=0

where the series coverges in the mean-square sense and the coefficients C}, ;,;, have
the form (2.119), then using theorem 1, relations (2.92), (2.106) when I, =3 =1
and standard relations between multiple Stratonovich and Ito stochastic integrals
we have expansion (2.118).

Since ¥1(s), ¥2(s), ¥3(s) = (t — s)! the following relation for Fourier coeffi-
cients takes place

2
Cj1j1j3 + Cj1j3j1 + Cj3j1]1 - 20310j3a
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where Cj,;,;, has the form (2.119) and

.71 /¢J1 t - S
then w.p.1
S Ol = S (2020, — €y — C ) € 2121
Z J1J3.71Cj3 — Z 92 Vi J1J1J3 J3101 J3 " ( : )
J1,J3=0 J1,J3=0

Taking into account (2.92) and (2.106) when I3 = [; = [ and theorem 19 (see
also the Ito formula) we have with probability 1

o0 B 1 l
_Z Cj1j3j1 J(: : = 5 Z Z C]3C] - Z C]1J1J3 () _

J1,J3=0 71=0 J3— J1,J3=0
0 .
> CiinCh? =
J1,73=0
1102T ) dfliz) — 1T ' 'ds,df ()
_§j§0 jlt/(t_s it/t—s) t/(t_81 S1

1 2 i l ) 1 i ]
== 2 [ (t — ) dfli2) 4 3141 gp(iz)
2]'1Z=OC31 /( 8) S + 2(21 n 1) /( S) s
1 /T (i2) /T (i2)
_ (T t)2l+1 (t S)ldfslz + (t S)3l+1dfslz ) —
2(20 + 1) t /
1d o7 ! e (T — )21 7 :
i . _ fliz) _ _ )l gfliz) —
zjlzzocﬁt/(t s) df; 2021 + 1) t/(t s) df;
1 T T ( )
= — C? — [(t—s)%ds| [(t —s)ldf™ =0
3| X0 / (t—s) ) / (t—s)
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Here, the Parseval equality looks as follows:

00 l T (T . t)2l+1
> Ch=3Y Ch=[(t—s)ds T

Jj1=0 Jj1=0 t

and

T
/t—s )df) = z Oy ()
t

Jj3=0

The expansion (2.118) is proven.

It is easy to see, that using Ito formula (see sect. 9.3) when i; = iy = i3 we
get:

*T *8 *81

[@=s) [(t=s1) [ (t— 50)'df D)D) =
t t t
T

=5l

t

l (i1) A1) A1)
= 2 CipinG Gy Gy W pe L (2.122)
J1,J2,J3=0

(t — s)ldft@ )>3 é (Z Ci.G) )3

J1=0

The last step in the formula (2.122) was made on the basis of formula (1.38)
derivation.

2.3.5 Expansion of multiple Stratonovich stochastic integrals of 3rd
multiplicity. Case of weight functions of polynomial form

Let’s combine in one statement the results obtained in the previous sections.

Theorem 4. Assume, that {¢;(z)}32y — is a full orthonormal system of
Legendre polynomials in the space Lo([t,T]). Then, for multiple Stratonovich
stochastic integral of 3rd multiplicity

T «t3 «t2

Iltgz;l?;i) _ / (t — t3)l3/ (t — t2)l2/ (t— tl)lldft(lil)dft(2i2)dft(;3)
t t t
(i1,19,13 = 1,...,m) the following converging in the mean-square sense expansion

pHiniais) _ s i f: §3: C. (i2) f(i3) def
l1l2l3T7t - 1110 .73.72.71 jg j3 -

D1,DP2,P3—0 ,7_0]2 0]3 0
df w .1 .2 .
<Y GGG (2.123)
J1,J2,J3=0
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is reasonable for each of the following cases:

1.1'1757:2, ig;’éig, il#igandll, lQ, l3:0, 1, 2,...;

2. il :7:2752'3 andllle;«élg andll, l2, l3:0, 1, 2,...;
3. ’il 752'222.3 andll#b:lg cmdll, l2, l3:0, 1, 2,...;
4. il,’ig,?:3:1,...,m; l1:l2:l3:l andle, 1, 2,...,
where

81

T s
Claojr = / (t — 5)5¢(s) / (t — s1)2¢,(s1) /(t — 59)116j, (52)ds2ds1ds.
¢ ¢ ¢

Let’s note, that for expansion of multiple Stratonovich stochastic integrals of
2nd and 3rd multiplicity theorems 3 and 4 will be very useful.

2.3.6 Expansion of multiple Stratonovich stochastic integrals of 3rd
multiplicity. Case of continuously differentiated weight func-
tions

Let’s consider one generalization of the theorem 4.

Theorem 5. Assume, that {$;(x)}52y — is a full orthonormal system of
Legendre polynomials in the space Lo([t, T]) and ¥1(s), ¥a(s), ¥3(s) — are con-
tinwously differentiated functions at this interval.

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

T xt3 «t2
TN e = [ slts) [ alta) [ wn(tr)dE a2 af
t t t

(i1,19,i3 = 1,...,m) the following converging in the mean-square sense expansion
P AN
PROre=Lim Y Chpi¢ GG (2.124)
J1:J2,J3=0

is reasonable for each of the following cases:

1. ’il 7é ’iz, 'ig 7é 'i3, il 7é ’i3,

2. 7:1 :7;2752'3 and ’Lpl( ) (S)

3. 41 # 12 =13 and ¥a(s) = P3(s);

4. ’il,’ig,ig = 1, .., and ¢1( ) ¢2(S) = ¢3(S),’

S1

Clajoji = /¢3(5)¢j3(3)/8¢2(81)¢j2(81) /¢1(82)¢j1(82)d82d31d3.

t
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Proof. The 1st case directly follows from the theorem 1. Let’s consider the
2nd case. We will prove the following relation:

P P s
lpl—>ror<1> jlzz Z: Jajiit ,73 2 /1/)3 / 81 dSldf( 3)

t

T s 51
Cjaj1j1 = /¢3(8)¢j3(8)/¢(81)¢j1(81)/¢(82)¢jl(82)d82d81d8.
t t t

Using theorem 1 we may write down:
17 ; |
5 t/ ¥3(s) t/ W (s1)ds df() =
where series converges in the mean-square sense and
T s
Cj, = /¢j3(3)¢3 /¢2 (s1)ds1ds.
t t

We have:

¢ L=\ )
Z 'Z—O Cj3j1j1 - §Cj3 ng =

j3=0
p p 1. 2
= > (3 G - 5033) _
J3=0 \j1=0
p (12 T s 2
=2 (2 > [ dil(s)¥s(s) (/ ¢j1(sl)¢(sl)dsl> ds—
J3=0 71=0% /

Jj1=0

_ i zp: (/ b (8)13(5) (i (/S ¢j1(81)¢(81)d81> _

2

12 (T ?
-1 (/%( Vs (s (/gz)ﬁ (s1)e(s1) dsl> ds) . (2.125)

t J1—P+1
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In order to get (2.125) we used the Parseval equality in the form:

2 T S
(/ ¢Jl 51 51 dSl) = /K2(S,S1)d81 = /¢2(81)d81,
t t

J1=0

where

s), s1<s
K(S781) = {g(o)the;vvlse ; 8,81 € [t7T]

Let’s write down the following:

(t/s@/’(sl)cbjl(ﬁ)dsl)z _

- T (78)1% o (S5 ) dy) -

4 2 2

T—-1
= 155 1) (B =(6) = Baa(e(e) ve) -
z(s)
T -1t T -1 T+1

= [(Pisa(y) — Pooa () ¥ + d 2.126

T L (B =Pt (T ) e

where z(s) = (s — L) 2. 4/ — is a derivative of the function t(s) according

Tt

to variable £ 5 Ity +

Further proving is similar with the proving of 2nd case from the theorem 4.
Finally from (2.125) and (2.126) we obtain:
~ - 2
Cj3> ](:3)) } <

P 1 1 2
<Kp2(/ %4—/1 i)

—1

N | —

p
M{ Z Z CJ3J131 -

j3=0

K
< — — 0,when p — o0,

p
where K, K1 — are constants. The 2nd case is proven.

Let’s consider the 3rd case. In this case we will prove the following relation:

8

/T¢2 / 51)df(V ds;
t

[\Dlr—\

p b
Z_ Z_ WEXEVE! =

l.i.m.
pP—0
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T s s1
Cj3j3j1 = /¢(8)¢J3 /'Qb S1 ¢]3 S1 /¢1(82)¢jl (SQ)dSQdSldS.
t t

Using theorem 19 (see also the Ito formula) w.p.1 we write down:

/‘b / 1)dfd /¢1 (51) /¢ )dsdf{™). (2.127)

Using the theorem 1 we may write down:

/1,/)1 (51) /zp dsdf @) :% i: w. p. 1, (2.128)

where series converges in the mean-square sense and

T
é'jl = /qul( Y(s1) /1,b )dsds;.
¢

Moreover:

S

T s1
J3]3J1 /d) ¢33 /¢(81)¢j3 (51)/¢1(82)¢j1(82)d82d81d8 =
t t

t

T

T T
/ (52)¢5(52) /¢ (s1)¢ju(s1) /¢(8)¢j3(8)d3d31ds2 =
t So

2
— %/¢1(82)¢j1 (82) (/¢(81)¢j3(81)d81) d82. (2129)
t S2
Using (2.127) — (2.129) we have:
2
éh) y(fl)) } =

p
M{ Z Z CJ3J3J1 -

j1=0

N | —

1. 2
3120 Z CJ3J3J1 - 5 jl) =
p T 2
i Zz (/ b, (1)1 (s1) (JSZO (SZ INE )¢(s)dsl) —

S1

— /¢2(s)ds) dsl) =
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2

é (/%‘1(81)%(81) i (/¢j3(5)¢(5)d3) dsl) : (2.130)

Js=p+1 \s;

q;u—x

In order to get (2.130) we used the Parseval equality in the form:

P (/ b, (s ) = /Kz(s,sl)ds = /wz(s)ds,

S1

where

5), s> s
K(s,s1) = {Z)p(o)therwisel ; 5,51 € [t, T).

Further proving is similar with the proving of 3rd case from the theorem 4.

Finally from (2.130) we obtain:

p . . 2
M{ 'Z—() Z CJ3J3J1_ Cj1> .7(11)) }<

p 1 1 2
<K2/ %4—/ i
21

N

N | —

K4
< — — 0,when p — o0,

p
where K, K1 — are constants. The 3rd case is proven.

Let’s consider the 4th case. In this case we will prove the following relation:

Li.m. Z Z C]1J3.71 =0 (Y1(s), ¥a(s),¥3(s) = ¥(s)).

p—00 =0 j5=0

In this case w.p.1 we obtain:

13 P C (i2) _
im. Y CjyiG, =

—00 .
P .717.73=0

p .
. 2 (i2)
im. > (2@10;'3 — Clijijs — Cj3j1j1> s =

=1
P J1,j3=0
1L E 5 & (in) i2)
- 1171—>Ior<1> 5 Z le Z CJ3CJ3 llm z CJ1]1J3C -
]1:0 ]3:0 .717.73—0
. P (42)
_lpl_)ro% ' Z Cj3j1j1<.j3 -
J1,j3=0
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00 T s
IZ: t/ / t/dJ s1)d ds—

/S V2 (s1)ds,df %f s)ds /T W (s)dflz) —
t t t

[\le—‘
eo.\,\] H—\H [\3|P—‘

1 1T S1
—5  ¥(s1) /¢ )dsdf () —5/ 51/ s)dsdf (™) =
t
/¢2 ds/w /wsl/T s)dsdf(™) = 0,

t
where we used the Parseval equality in the form:

> 0= (/¢ (5)85(s) ) /¢

The 4th case and the theorem 5 are proven. O
Let’s consider the theorem.

Theorem 5°. Assume, that {$;(x)}52y — 4s a full orthonormal system of
trigonometric functions in the space Lao([t,T]) and ¥1(s), ¥2(s), ¥3(s) — are
continuously differentiated functions at this interval.

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

*13 xt2

J* [ Tt—/ 3 t3/ (0 tz/ 1t dft dft( )dft(§3)
(i1,19,i3 = 1,...,m) the following converging in the mean-square sense expansion

P N e
J*[¢(3)]T,t:1.i.m. Z Cj3j2j1 (i1) #(iz) ~(i3)

— .~ J1 - 3J2 33
p=oe .715.727.73:0

is reasonable for each of the following cases:

1.2 7é ’ig, 19 7é ig, 1 7é ’ig,

2. 11 =1 # i3 and Y1(s) = a(s);

3. ’il 75 7:2 = i3 and ¢2( ) (8)

4. 41,109,713 =1,...,m and ¥1(s) = Pa(s) = ¥s(s);

S1

Cj3j2j1 = /¢3(8)¢j3(3)/S¢2(31)¢j2(31) /¢1(82)¢j1(82)d82d81d8.

t
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Proof. Let’s consider the integral

[ sin2Z2 8= (9)dg

[0 Ti) -

S 0052”1 (0)d0
t

271']1

_ 27?]1 0 t) .11
| T-t1 CcoS™ - t + () f CoS—r @ZJ( )dé
B 2 7T.71 - 2mj1(s—t) 5 . 271 (0—1t) 11 ’

sin == (s) — {smTi_tip (0)de

where j; # 0 and {¢;(z)}52, — is a full orthonormal system of trigonometric
functions in the space Ly([t, T1).

Then . o
[ :.©)0(0)d8) < — (51 #0) (2.131)
t
Analogously we obtain:
r K
[ 65, (0)0(6)d6| < 5 (1 #0). (2.132)

Using (2.125), (2.130), (2.131), (2.132) we come to

N |

{ Z Z CJSJlJl o

2
. . K
Cj, J(;S) } < ?1 — 0,when p — o0,

P& L=\ i) ’ Ky
M .ZO .ZO Cj3j3j1 — §Cj1 jll S ? — O,When p — OQ,
1= 3=

where constant K; doesn’t depend on p.

The proving of the 4th case is similar to the case of Legendre polynomials.
The theorem is proven. O

2.3.7 Expansion of multiple Stratonovich stochastic integrals of 3rd
multiplicity. Case of two times continuously differentiated
weight functions

Let’s formulate the following theorem.

Theorem 6. Assume, that {¢;(x)}52y — is a full orthonormal system of
Legendre polynomials in the space La([t,T)), function o(s) — is continuously
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differentiated at the interval [t,T] and functions 11(s),¥3(s) — are two times
continuously differentiated at the interval [t,T).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

xt3 xt2

J Tt _/ V3 t3/ ¢2 t2 / ¢1 tl dft dft(;2)dft(;3)

(t1,19,i3 = 1,...,m) the following converging in the mean-square sense expansion
P N
J*[¢(3)]T7t - 11.)1_.>IOI10- Z Cj3j2j1 3(1“) 3(22) ;:3) (2'133)
j17j27j3=0

1s reasonable, where

S1

T s
Clisgnjr = /¢3(3)¢jg(5)/1/)2(81)9253'2(81) /¢1(82)¢j1(82)d32d31d5;
¢ ?

t

another denotations see in theorem 1.

Proof. From (1.28), when p; = p; = p3 = p and (2.29) it follows, that
theorem 6 is correct if with probability 1

S

p p (i)
i 32 3 Clas 5 =5 / s(s) [ Ya(s0)u(s1)dsrdf ™) (2.134)

t
p p ) 1 T 8 i)
b 3 3 Caiidy” =5 [ bs(s)ta(s) [ n(s1)dflds; (2.135)
J1=0j3=0 t t

p Y4
Lim. jz_ z_j i Coz) — . (2.136)
=l P

Let’s prove (2.134). Using theorem 1 when k£ = 1 we may write down:

s

T
1 p
§t/ / 81 1!21(81)d81df = 5 1_)rglo Z: w. p. 1,

where series converges in the mean-square sense and

G = [ d1(5)s(s) [ o) (s1)dsds.
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We have:

P2 (i3) 1 & = (i3) :
M\ X 2 CiianGy — 5 2 CiGy =

.1 =0 713 =0

j3=0

2
$ La ) o)
=M Z Z CJ3.71.71 - 50.7'3 ng =

p [P 1 2
Z Z CJSJlJl - 2013) =

_73 =0 1—0

) (Z /¢3 ¢33 /¢2 51 ¢J1 31)/1¢1(82)¢j1(82)d82d81d8—
J3=

J1=0%

L [ua(s)enls) | w1<sl>w2<sl>dslds) -

( [ s(5)65(5) / (éo Dal51)65(51) [ 1 (52) (52)dsa

J3=0
1 2
—§¢1 (81)¢2(81))d81d8) . (2137)
Let’s prove, that for any s; € (¢,7") the following relation is correct:
i 1
20 Va(s1)5,(51) / Pi(s2)dj (s2)ds2 = o (s1)a(s0). (2.138)
J1

Let’s analyze the function

K*(t1,t2) = K(t1,t2) + %1{t1=t2}¢1(t1)¢2(t1)7 (2.139)

where t1,ty € [t,T] and K (t1,t5) has the form:

K ¢1(t1)¢2(t2), 1 <19 T
. -
(t1,%2) {0, otherwise Pt tp €[4T

Let’s expand the function K*(t1,ts) using the variable ¢;, when ¢, is fixed,
into the Fourier-Legendre series at the interval (¢,7) :

K*(t1,12) = _i;oﬁbz(tz) /2¢1(t1)¢j1 (t1)dty - @5, (t) (0 # 8, 7). (2.140)
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The equality (2.140) is executed pointwise in each point of the interval (¢,T)
according to the variable ¢1, when t5 € [¢,T] is fixed due to sectionally smoothness
of the function K*(¢1,t5) according to the variable ¢; € [¢t,T] (to — is fixed).

Note also, that due to well-known features of the Fourier-Legendre series, the
series (2.140) converges when ¢t =¢,7.

Obtaining (2.140) we also used the fact, that the right part of (2.140) converges
when ¢, = t9 (point of finite discontinuity of function K (t1,%9)) to the value

% (K (ts — 0,4) + K(ts + 0, £5)) = %¢1(t2)¢2(t2) = K*(ta, ta).

Let’s put ¢; = t3 in (2.140), then we have (2.138).
From (2.137) and (2.138) we obtain:

g0
_ jé(t/T@bs(s)%(S) j(j1§+1¢2(51)¢j1(31)21%(82)0511(52)“2) *
xdslds>2. (2.141)

Consider the estimation (2.14) for two times continuously differentiated func-

tion 1)1 (s):

81

io: ¢jl(81)/¢1(82)¢jl(82)d82 <

C 1 1 -
<3 (et tgem) neen e

where z(s1) = (81 — %) 7 the constant C' doesn’t depend on p.

From (2.141) and (2.142) we obtain:

P2 (i3) 1 & = (i3) :
M Z Z Cj3j1j1 j3 5 Z Cj3€j3 <

j1=0 j3=0
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C C
:—?;p_—3—>0whenp—> 00,
p p

where the constants C, Cs, C3 doesn’t depend on p.
Relation (2.134) is proven. Let’s prove (2.135).

Using theorem 19 (see also the Ito formula) w.p.1 we write down:

1 T ]

5 [ s(s)a(s) [ r(s1)dfld / b1 (s1) / s (s)h(s)dsdf™ . (2.143)
t t

Using theorem 1 when & = 1 we may write down:

1 T T . 1. P
§t/¢1(5)S/¢3(51)¢2(51)d51df5(“) = 51]&1_.}0%. jgo Cj1CJ(1 ) w. p. 1,

where series converges in the mean-square sense and

T T
C;, = [ 11(s)85,(5) [ ws(s1)tba(s1)dsads. (2.144)
t S
We have:
p P ; 1 2
M{ Z ZCJ3J311 311 52 ) }:
1=0 j3=0
p p 2
= M{(Z > Cigjojy — ZC}}) i ) } =
71=0 \J3=0
P 2
Z (Z CJ3J331 - C;) ; (2-145)
=0 \ys 2
T S S1
J3J3J1 / ¢J3 / (31)¢j3($1) /¢1(82)¢jl (82)d82d81d8 =
t t
T T T
= /¢1(82)¢jl(82)/¢2(81)¢j3(81) /¢3(8)¢j3(3)dsd81d52. (2.146)
t S2 51

From (2.144) — (2.146) we obtain:

{ ZZOmsh “—%X:: )}_

1=0j3=0
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p T T T
= 3 ([ ¥r(s0a(s2) / (2 vals)sn(sn [ )9 (5)ds~
=Vt J3
1 2
—§¢3(81)¢2(81)>d81d82) . (2.147)
Let’s prove, that for any s; € (¢,7T) the following relation is correct:
T
ZO ba(s1) @i, (51) /¢3(8)¢j3(8)d8 = %%(31)%(51)- (2.148)
J3
Let’s denote
Ki(t1,) = Kt 13) + 510 ptialta)s(), (2.149)

where t1,12 € [t, T] and K3 (tl, t2) has the form:

t)s(ts), t <t
Ki(t1,t2) = {gbz(ogii’v(vze LS %2y by e [t, 7).

Let’s expand the function K7j(t1,ts) using the variable t5, when ¢; is fixed,
into the Fourier-Legendre series at the interval (¢,7) :

Ki(tits) = 3 alty) / Ws(ta) s, (ta)dta - ds,(ta) (ta £ ¢, 7). (2.150)

J3=0

The equality (2.150) is executed pointwise in each point of the interval (¢,7T)
according to the variable to, when ¢, € [¢,T] is fixed due to sectionally smoothness
of the function K7 (¢1,t2) according to the variable t2 € [¢t,T] (t1 — is fixed).

Obtaining (2.150) we also used the fact, that the right part of (2.150) converges
when t; = t9 (point of finite discontinuity of function Kj(t1,t2)) to the value

% (Ki(t1,t1 —0) + Ki(t1,t1+0)) = %¢2(t1)¢3(t1) = K (t1,t1).

Let’s put t; = t5 in (2.150), then we have (2.148).
From (2.147) and (2.148) we obtain:

{ T3 Gl -1 C )} -

j1=0 j3=0 J1—

T

= Xp:()(jlﬁl(sz)ﬁbjl(sz) /( > ¢2(81)¢]3(81)/T¢3(s)¢j3(s)ds>><

Jjz3=p+1
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2
Xd81d82> . (2151)

Analogously with (2.14) we obtain for two times continuously differentiated
function 13(s) the following estimation:

; ;i;+1 ¢j3(51)/¢3(8)¢j3(s)ds <
C 1 1
) ((1 - (z(31))2)% T (1— (2(s1 ))zﬁ) ; s1€ (8, T), (2.152)

{ Z Z 0333331 Z ) }<

j1=0 j3=0 .71—

C C
:—3p——3—>0whenp—> 00,
p

where the constants C7, Cy, Cs doesn’t depend on p.
Relation (2.135) is proven. Let’s prove (2.136).

We have:
2 2
{(Z Z 0.71.73.71 ) } Z Z Cmm) 1 (2.153)
0js= J3=0 \j1=0
T S S1
Ciajuir = [ s(5)¢5, (s / Va(s1)js(51) [ 11 (s2) 5, (s2)dsadsids =
t t
T $1 T
/ 81 (]533 81 /¢1(82)¢j1 (82)d82/¢3(8)¢j1 (S)deSl. (2154)
t t S1
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Let’s substitute (2.154) into (2.153):

Slks i)
MY X ChjapnGy =
J1=0j3=0
p T

Z</¢2(sl)¢J3 (s1) 2/1/11 ), (6 d@/ng $)j (s )dsdsl>. (2.155)

J3=0 J1=0

Let’s denote

> P1(t1), t1 < to
K = ’ : T.
(1, t2) {O, otherwise ’ bty €[t T

Let’s expand the function K (t1,t2) using the variable 1, when ¢ is fixed, into
the Fourier-Legendre series at the interval (¢, 7)) :

R(t,t) = 3 /¢1 (t1)j, (t1)dtr - @5, (1) (81 # t2)- (2.156)

J1=0%

Using (2.156) we obtain:

éo/l@bl(e)% (9)d9/¢3(3)¢j1(8)d8 =

=—[¥s(s) X 85(s) [¥1(6)8;,(6)dbds. (2.157)
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Let’s substitute (2.157) into (2.155):

M{ >y Ci i y(f)) } -y (/¢2(81)¢jg(81)><

j1=0 j3=0 Jja=0 \}

X/@bg(s) i ;i (s) 7¢1(9)¢j1(9)d9dsd31>2:

Ji=p+1

— i ( lim Z ¢2(U1)¢J3(u1)

j3=0 N—oo |
T 0 uy 9
X/%@)§3¢M$/MWMM®M@A@):
u Ji=p+1 t
p N-1
= 3 (lim 3 ) (ui)x
jg=0 V=00 1
S / ws(s)j, (s)ds / ¥1(0);, ( )d@M,), (2.158)
Ji=pt1ly

where t = up < uy < ... <uy =7T; Au; = w41 —uy; uf is a point of minimum of

the function (1—(2(s))?)~* (0 < a < 1) at the interval [u;_1, u]; [ nax Au; —
<I<N-—
0 when N — 00; 1 =0, 1,..., N — 1. The last step in (2.158) is correct due to

uniform convergence of Fourier-Legendre series of the sectionally smooth function
K (s, uf) at the any interval [uj +¢e,T—¢] Ve > 0 (K (s, uj) is continuous function
at the interval [uf, T7).

Let’s write down the following:

| ¢1(5)8i, (s)ds =
- +() B
_vi- ;/W PJI(@/)¢<T2ty+T;Lt>dy=
T—1t
= 5t (B (+(e) = Pca(a(@)) ) -
o) _
o () - P () dy), (259)

-1

where z € (t,T); 1 > p+1; 2(z) = (sc — %) 7= 1’ — is a derivative of the

(t,
function ¢ (s) according to variable Tty 4+ TH.
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Note, that in (2.159) we used the following well-known properties of the Leg-
endre polynomials:
1 ! !

Pi@) = 51 (B

de dﬁf !
@ (2) = Pi(z).

From (2.65) and (2.159) we obtain:

(s)¢;,(s)ds ! r + Cl> ; (2.160)

¢ (
(1= (2(x))?)3
€ (t,T), where the constants C, C; doesn’t depend on jj.
Similarly to (2.160) and due to Pj(1) =1; j =0, 1, 2,...we obtain:

’ C 1
;E/¢3(S)¢j1(8)d8 < ; <(1 — (z(a:))2)i + C’1> : (2.161)
e (t,T).
From (2.160) and (2.161) we have:
z T K 1
/¢1(8)¢jl(s)d8!¢3(s)¢]l s)ds| < — ((1_( ) +K1>, (2.162)

€ (t,T), where the constants K, K; doesn’t depend on j.
Let’s estimate right part of (2.158) using (2.162):

{(z 3 Cpind ) }<
0j3=

<p3(lm S o) & o

N—=oo 1= ji=p+1J
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7 =\ (1=-97) S -y
L Ly
2p— — — 0 when p — oo, (2.163)
p p

where the constants L, Li, Lo doesn’t depend on p.
We used the inequality

] P dx 1
.Z 2 s /_2:_
ji=p+1J1 D

and estimation (2.65) in (2.163). The relation (2.136) is proven. Theorem 6 is
proven. 0

Let’s consider the trigonometric version of the theorem 6.

Theorem 6’. Assume, that {¢;(z)}32, — is a full orthonormal system of
trigonometric functions in the space Ly([t, T)), function 1q(s) — is continuously
differentiated at the interval [t,T] and functions 11(s),v3(s) — are two times
continuously differentiated at the interval [t,T).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

xt3 xt2

J* [ Tt—/ 3 ts/ () t2/ 1 (t1) dft“ dft dft(3i3)
(i1,19,i3 = 1,...,m) the following converging in the mean-square sense expansion

P N e g
‘]*[1/1(3)]T,t:1-i-m' > Gl (i1) »(i2) ~(i3)

J1 J2 J3
o0 .
b J1:42,43=0

1s reasonable, where

S1

T S
Cj3j2j1 - /¢3(8)¢j3(8)/¢2(81)¢jz(81) /¢1(82)¢j1(82)d82d81d8;
t t

t

another denotations see in theorem 1.
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Proof. Let’s consider the inequality (2.21):

/ Z Ya(s1) ), (51) /¢1 (52)¢j,(s2)dsadsi| < Kl

t Js1=p+l1

(2.164)

where constant K7 doesn’t depend on p and s is fixed.

Analogously we obtain:

L/ S tha(s1)(s1) / b3 (s) i, (s)dsdsy| < = (2.165)

2 J3=p+1

where constant K7 doesn’t depend on p and sy is fixed.
Using (2.164) and (2.141) we obtain:

I.\DIP—‘

j1=0 j3=0

b p
M Z Z Oj3j1j1

)2}
T S 0o S1

= Z_ (/ (5)5,(s) / Y a(s1) ¢31(81)/¢1(S2)¢jl(82)d82><

t J1=p+l1 t

2
delds> <

S1

S talen)tn () | r(a2)6 (s)dsade

1 t

2
ds) =

2
Aul>

*
Uy S1

/ Z ¢2(31)¢31(81)/¢1(82)¢jl(82)d82d81

t s1i=p+l1

=0

D N-1 K, 2
SKZ(hm Z—Aul> <
js=0 \N =0 ;=5 P
Ky, 2 L
<SS YT-1P<E =0, (2.166)
J3=0 p
if p — 00, where constants K, Ky, Ks, L doesn’t depend on p; t = ug < uq <
<uny =T; Aup = iy —ug; uf € [u—1,w); max Aw; — 0when N — oo;
1=0,1,...,N—1 P

Analogously using (2.165) and (2.151) we obtain:

j1=0 j3=0 .71—

{ S % Gt -5 3 0 )}—
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p /T T T
= 3 ([ortetnen | 5 wnlsn)dn(on [ volein(s)ax
J1=0%% $2 Js=p+1
Xd81d82>2 < £ — 07
p

if p — oo, where constant L doesn’t depend on p.
Moreover, from (2.131), (2.132) we have:

[ 61(5)85,(5)ds [ a(5)65 (3)ds

<& (i #0), (2167)
J1

where the constant K doesn’t depend on ;.
Using (2.158) and (2.167) we obtain:

{ Z Z CJ1.73J1 ) }: i ( lim J\fz_:l'gb?(u;)qb%(u;)X

j1=0 j3=0 ja=0 \N—=00 1—q

> / 3(s)j,(s)ds / ¢1(9)¢j1(9)d9Aul>2§

AUZ) <

ja=0 \N =00 =0 ji=p+1

*

gmi(hm Nzl 3 L/ng 8 (s d8/¢1 (8)6;,(8)d6

p N-1 o 1 2
§K22<hm T 3 —Aul> <

j3=0 \V=00  |—0 j,=p+1 J1
<5 X (T-t)"<— =0,
J3=0 p

if p — oo, where constants K, Ky, L doesn’t depend on p; another denotations
see in (2.166).

Theorem 6’ is proven. O

2.4 Expansions of multiple Stratonovich stochastic inte-
grals of 3rd multiplicity, based on theorem 1. Trigono-
metric case

In this section we will prove the following theorem.
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Theorem 7. Assume, that {$;(x)}52 — is a full orthonormal system of
trigonometric functions in the space Lo([t,T1]).

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

T stz xt2

[ [ ] atidag ag
t t t
11,22,23 = 1,..., M e fotlowing converging in the mean-square sense erpansion
(61,42, 33 = 1,...,m) the following ging in th . pansi
il e xle ) ; i P P2 D3 .
dEVafVdE = Lim, Y Y Y Gl ¢
/ / t/ i ! ta D1,P2,p3— X J_0]2_0J3—0 J3.7.7 J2 J3
B D GGG 2168
J1:J2,3=0

1s reasonable, where

T s $1
Clsjuir = / )/¢j2(81)/¢j1(82)d82d31ds.
¢ ¢ ¢

Proof. If we prove the following formulas:

L g: f’: C ) def Z C. 1 f/T > 160
Pﬁ]gér—r}éo =020 J3J1J1 P J3J1J1 2 /) ( . )

T T

p1 Pp3 00 1
; d f

pll,'z%ér—r}éo Z 2 CJSJBJI = X CJSJBJl =3 / / afh (2.170)

J1=075=0 J1,J3=0 4
13 pP1 Pp3 C. def C. ) —0 9171
PP 0 ]1203320 Jijsi 11,323—0 Jijai =U. (2.171)

then from theorem 1, formulas (2.169) — (2.171) and standard relations between
multiple Stratonovich and Ito stochastic integrals the expansion (2.168) will fol-
low.

We have:
ps pi (T — t)% (is)
Z Z 0331131 = T + Z CO 2]1;2]1C0 + Z CO ,2j1—1,251— 1C0
=0j1= Ji=1 Jji=1
p1 (i3) b3 M
+ > Cojp00Caj, + Do Do 0213,231,23142
J3=1 Jjs=171=1
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pP3s D1
+ Z Z 02J372J1 1,251 — 1C2g3 + Z 02]3 100(233_14'
J3=1j=1 ja=1
b3 D1 p3s D1
+ Z Z C2J3—1 2.713.71(2 -1 + Z Z 6233—1 2511, 2]1—1<2]3_1, (2172)
J3=1lj=1 ja=1j1=1

where the summation is stopped when 251, 271 — 1 > p; or 253, 273 — 1 > p3 and

(T —t): 3(T —t)2 V2(T —t)2
— _ = 7 = 2].
Co,21.21 FECTER Co,21-1,21-1 TR Ca1,0,0 FPCT (2.173)
V2(T — )3
Cor—12121=0,C9—100 = —%, Cor—121-1,21-1 = 0; (2.174)
(Var-—ni r =2l
_var-nt o o
t6m22 0 T = 3
Cor o121 = , Coro1—121-1 = 3 —‘/Z(szzt)g, r=1- (2.175)
0, r# 2l
L0, 7 #£ L, r+# 2l
After substituting (2.173) — (2.175) into (2.172) we get:
P33 D1 3 1 1 Y2 .
C j1j1 =T —=t):2 |-+ .—>C(13)—
\/5 D3
2.176

Using theorem 1 and the system of trigonometric functions we find

T s 1
//dsld §/s—t
t % t
_\/_

N | —

= (=0 (¢”

From (2.176) and (2.177) it follows

> ). (2.177)

D1

D3
lim M { ( > Z 0]3.71.71

l\DI»—l

,P3—
D1,p3—0 j3=0ji =

Zrt/sdsldf )2}

2
_ 1 1 &1 1
= lim (Tt)3((6+27r22 —2—1) +

P1,p3— 0
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(5 S 3)) =

So, the relation (2.169) is executed for the case of trigonometric system of
functions.

Let’s prove the relation (2.170). We have

P p3 (T _ t) p3 p3 (i1)
> > Cmggl = T S Cojy2in 0™ + Y Cajyo12js—1.0C

J1=043=0 J3=1 Js=1
b1 P3 D1 b3

'L
+ 3 Y Cojygjeria1Gil g+ 3 Cojyrajpo12ii—1Cot g+

Ji=1j3=1 J1=1j3=1
b1 D3

+ Z 000231 1C2g1—1 + Z Z C2Js,233,231C2

h=1 n1=1j3=1
P1 Pp3

+ 3 % Chjy12jy- 125Gyt + Z Co 021,51 (2.178)

J1=1j3=1 n=1
where the summation is stopped, when 273, 293 — 1 > p3 or 271, 271 — 1 > p; and

(T —t)? 3(T —t)? V2(T —t)?
O NP Gl e T G2 = YA PR 9
21,21,0 FECTTRE Ca-121-10 g2z 0 L002 A2y (2.179)
V2(T —t)?
Co-1,21-12r-1 = 0, Co0,2r—1 = Q, Co.21.2r-1 = 0; (2.180)
Amr
( _\/i(T;g)% r—=9]
_\/Q(T—t)% r—= 9] 1o
622 0 T T 3
Coto1.2r = , Cor—121-1,2r = { \/%Tiz}t)g, _7 - (2181)
0, r#2l
(0, 7 # L, r#2l
After substituting (2.179) — (2.181) into (2.178) we get:
P11 D3 3 1 1 P31 .
Cioi ¢ — (T —1)3 2+ — ‘_) (i),
120 3320 i -1 ((6 2m* j32=1 7))
\/i P1
2.182

Using the Ito formula, theorem 1 and the system of trigonometric functions

we find
1 Ls 1 r T ,
5 [ [ dfds = 5 ((T —t) [dfi) + [(t- s)dfs(“)) —
t t t

t
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221 4
i) o159
T p=1T

1

— (T — 3( +(i1)
2T —1) <C0
From (2.182) and (2.183) it follows

2
1 D3 1 T s ]
' _ = (ir) _
pl,ggoo M {(Z Z CJ3]3J1 9 /t/dfsl dS) } =

J1=0j3=0
1 1 2 1 1\°
= lim (T—-ty||-+-—=> 5—-] +
P1,p3—0 6 272 ja=1 73 4

1 2 poq
e (? Z?)) -

So, the relation (2.170) is also correct for the case of trigonometric system of
functions.

Let’s prove the equality (2.171).

Since (1), ¥o(7), ¥3(7) = 1, then the following relation for the Fourier
coefficients is correct:

2
Oj1j1j3 + Cj1j3j1 + Cj3j131 - C Oj37

2 N
then w.p.1
Z Cj1j3j1 ](22) = Z (203216' — Cj1j1j3 — Cj3j1j1> J(;Z) (2.184)
J1,53=0 J1,53=0

Taking into account (2.169) and (2.170) w.p.1 let’s write down the following:

= (i) _ 1 3 1(02) (i2)
Z Cj1j3j1 Js §OOCO - Z C(3131J3 Z CJ3J1J1 -
J1,J3=0 J1,J3=0 11,33—0
1 3 (iy 3 \/i S |
= 5= - 2@ i+ S |-
L 1[ i) _ V221 (i)]
— (T — )z |l — Y25 2l | o
RUEDH SRR et
= 0.

From (2.169) — (2.171) and theorem 1 we get the expansion (2.168). Theorem
7 is proven. O.
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The expansion (2.168) may be also obtained by direct calculation according

to theorem 1:

T t3 to . 00 . . .
///d dft dft(gh) = Z Cj3j2j1 J(f3) 9(22) J(Zl)_
t t t

jl 7j27J3=0

3 V2 =1
1{i1=12}< (T - t)2 [C( ) Y2 2(:«3—)1] +
T r=1
i Loty T C(i3)>
272 =iz 6)°"°
1 soay V221 4
igmio (0 = O =22 55+
T =17
1 s (201 2 (i1)
—— (T —t)2 — — — !
+27r2( ) (27"2 6>§0 >+
1 s (201 7w\ i
i (T =03 (X 5 - €> ¢, (2.185)
where N .
A s ) (i) i
Z stjzjl J(IB) J(;2) J(;l) = (T - t)2 (6<(§l )C(gl )C(glg)+
J1,J2,§3=0
C:zr 1 0 C )}-f'

s 2 [ e

1 il iz Z3 lz
T cote Qe st Ye e Sl RN Ee e sles }]+
w2
]. 0 ]- il ig Z1
+27r2 2_: [72 — l2{ é?‘) 2(1 )Co Co 21
7‘7,‘[:'211
+ C2 Cz CoZ3 - Co“ CQ Cz } —C2r 1 0 2 )1]

+T=Z1 Ll—m“{ Czr 1 0 Czr 1 2r C Czr 1 27« Co“

+C2r 1 27-)C0(i1)}+
(i2)

Sn2r {34-27'12:'21013—'_(2 o <Z3_6C2r12r10 +

‘|‘3C2r 1 27’ 1 0Zl — 2C2 27’ Cw +C2 2r C(g“)}] +
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1 o0
e Yo KU e il SAPET
4\/—,”{2[ [C2 12 152 CQ 12 C21

r,m=1
iz) ~(is)
+C27’12m 2m—1 — C2r12m1+
1
] [RCAAlc e e e e
_C2 (m+r) 1C2 Cz +C2 (m+7) C2r 1 2m_ H_|_
T S [ G e el e N
m=11=m+1Lm(l —m) [ 2(1 2(1 16212162
_CZ(Z&)—m)—IC2 C2 —|—C2 C2 2m 1] +

1 il i2 Z.3
I(1—m) [_Cé(l)—m) 2m 621 +C2 1C2m 1 2l _

_Cé 1C2 21 1 C2 CZm 1 2l 1H}>

_|_

Since % % = %2 and according to theorem 1:

T
, 1
(6= = 2 oF - Y2 5 Legl |,
t
then, from (2.185) we get the required expansion:

T t3 to

Z C33J231C(l3 2 33 ///dft dft(jz)dft(jl)-l-

.717.727.73—

T
—|—1{i1=z‘2}§t/t/dfs(’3)d7—l—

*t3 *t2

[ [ atiaes? s,
t t

\'a%

+1{12 z3}2//d8df =

2.5 Expansion of multiple Stratonovich stochastic integrals
of 4th multiplicity, based on theorem 1. Polynomial
and trigonometric cases

In this section we will develop the approach to expansion of multiple Stratonovich
stochatic integrals, based on theorem 1, to integrals of 4th multiplicity.
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Theorem 8. Assume, that {$;(x)}52y — is a full orthonormal system of
Legendre polynomials or trigonometric functions in the space Lo([t, T1).

Then, for multiple Stratonovich stochastic integral of 4th multiplicity

(iyinisis) xT xts xt3 xto
*(211273%4 _
L ondoda AT —/ / / / dwt dwt dwt dwt
t ottt
(41,19, 13,4 = 0,1,...,m) the following converging in the mean-square sense ex-

Pansion

A= S Caanl GGG (2180
J1,02,)3,)4=

1s reasonable, where

T s 51 82
Ciajajni = /¢j4(8)/¢j3(51)/¢j2(52)/¢j1(53)d33d52d51d5§
t t t t

, T .
C}l”) = [¢;(s)dwl) — are independent standard Gaussian random variables
t
for various i, or 3 (if 44 # 0); wﬁ) = fT(i) — are independent standard Wiener

processes; 1 =1,...,m andw&o) =7, =0 =0and =13y, =1,...,m
Proof. From (1.29) it follows:

lim i C: . (i1) f(i2) ~(i3) ~(ia) _ [(i1i2i3i4)
p—oo . . . JaJ332J1551 Sj2 Sz Sja T T( Mz Tt
.717.727.737.74:0

+1{i1:i27£0}A52324)

+ 1{i1=i3¢0}Ag2i4) + 1{i1:i47é0}Agi2i3)+
+1{i2=7337é0}144(1i1i4) + 1{i2:i4¢0}Agi1i3) + 1{2.322.4#0}Aéi1i2)_
— L =iV L {ig=ig 0y B1 — 13, =ip 20y Lfin=is 20y B2 —
— 145, =i, 20} L{iy=is20} B35 (2.187)

where
ty t3 to

T

11121324

I AadsAa)T / / / / th1 th th th ;
tttt

p

(igta) (i) (1),
AP =Lime 3 Chsiiin Gy Gy
Ja,J3,51=0
A(i2i4) —lim i C ... (7’2) (i‘l)'
9 = e A J49372935)2  SJs ?
,747.737.72:0
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. . p ) ;
AP =lim. Y ChpiCh s
3 = LLo. 2 J4J3J2J45)2  SJ3 )
p —
]47.737.72_0
. . p ) ]
(i1da) _ 1 (i) (i),
A =Lim. 3 Gy GG
p —
]4;]35.71_0
. . p ) ;
(i193) __ 7 i) As),
A —1.1_.)10%. _ Z Ciijsiain Ji Sjs 9
p —
]47]33.71_0
. . p ) ]
(ii2) _ 1 (i) lia).
AP =tim %
J3a]27-71:0

B; = lim Z Cliyjujiji, B2 = lim Z Clsjujsias

00 00
P J1,§4a=0 P Ja,33=0

Bs —pli)m Z Cliajsiais-
.747.73—0
Using integration order replacement in Riemann integrals, theorem 1 for £ = 2
(see (1.27)), relation (2.3), Parseval equality and theorem 19 (see also the Ito
formula) we obtain:
A§i3i4)

T
d.m. _ i %t/ i ( /%3 (s1) (/¢]1 (s2) dSz) d81d8C] C4

p 17T ?
= lpl_g}) Z §t/¢j4(8)/¢j3(31 (/ ¢]1 32 ds?) dSldSC-J .74

t J1=0

. LA
—Lim. > = [4:(s) / d)j3(31)<(81—t)—
p=reo j4,j3=02t t
00 51 2
- > ¢Jl(82)d82) )dsldsg“] i
Ji=p+1 \}
. P o1 ’ (i3i4)
=tim 55000 ] 6ulenen = gl - A =
1 S
- _ ( 1)
2 t/Sl t +
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177 N T
= [ [ [ dsadw{Paw? + “1iisizy [(s1 = )dsi = AP wop1, (2.188)
t ’

A§i3i4)zl.i.m_ i o . (V) (i),

pP—00 o Tre0 JaJ3>)3 SJ4 )
1 T s 00 S1 2
= 3] 00 [ule) S ([on(eis) dede.
Let’s consider A%24). N
Aélzu) —
P 5 2 s
= lpl Z ( /¢J4 (/ ¢j3(81)d81) /¢j2(81)d81d8_
J4543,J2=

T
/¢J4 /Qbh 81 (/ ¢J3 32 d32) ds;ds—

5 /¢J4 /925]2 (s3) (/ (s1) dsl) d53d5> (2) (4 0 _

3

1_)ror(1) ( /gb (s —1t) /¢j2(81)d81d8—
J4;Jz =0 t

- / 63.(5) [ 6o — )~

/¢J4 /d)h 33 S —t+1t— 83)d83d8> (2 2) .7(24)

A(’L2Z4) + A(lzu) + A(Z2’L4) _

— A Z2l4 + A l2l4 + A ng4 p]-’ (2189)
where
AGED Z1im S ) lia),
2 o 131—'>rono Z Jaj25j2 Sja

J4Jz - /¢J4 (/ ¢33 S1 dsl) /d)h 81 d81d8
J3—p+1
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(i2) +(ia),
GiCis G

C/ b, (1) dsl) dssds.

M=

Agz ) = Lim.
p=0 j43 .2:0

1412 - /¢J4 /¢]2 33

(i 1@3)

)

IIM8

Let’s consider A
Aéi1i3) _

Z /¢y1 (s3) /%4 (s2) /QSJS (s1) /92534 )dsdsidsadss ¥

Ja,J3,51=0 %

Z /‘75)1 (s3) /¢g4 /¢g3 (s1) /¢J4 (s2)dsadsidsdssx

Ja,J3,51=0 %

1 T T 2 . .
_§/¢]1 (83)/¢j3 (82) (/ ¢j4(81)d81) dSstg) J(fl) .7(37:3) —
t

—5 [ i) [ 83,(52)(T = s2)dsadss ) (¢
_Afli1i3) + Agiﬂé) + Agﬂé) —

_ A(z1l3) _I_A(h%) _'_A(’llfi) .p.1, (2190)

where
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(iris) _ ) ~(i3) .
A41 U= lp1—>m j Z_ Jsj1 .733 ’
3,J1
17 0 A
d§3J1 - §/¢J'1(83) > /¢]4 /¢]3 deSg,
t Ja=p+1 S3
(ivi3) _ 7 - P ) o(is)
A51 U= lpl_g}; Z J3J1 .733 )
1 T T 2
€ojy = §t/¢j1(83),§3/¢j3(8 oy (/ ?;,(s1) d31> dsdss;
(iris) _ | ; S (1) ~(is)
Aﬁl o= lp1—>ro% j3,]¥:0 jp;jl jll j33 1
1 T T 2
jp3j1 - §/¢j1(83)§z¢j3(82)34—p+1 (S{ ). (51 d81) dsodsy =

2
1 T
= §/¢j3(82 o (/ ¢J4 S1 dsl) /¢J1 83 d83d82
t Ja=p

S2

Let’s consider A(””) We have:

Agi2i3) n Aémg) _

p . .
=1im > (Chsiais + Chuiaia) G G =
P 123,42 =0
P T S1 S1
=lim 2 / 6i.(5) / bi,(51) / b, (s2) / $1,(s3)dssdsadsds
XCJ J3
p
= Lim 34,352 ~ t/ di. (51) / &i, (52) / &i, (s3)dssds, / ¢i, (s)dsdsy x
XCJ 33

—lim Y (/ di, (s1) / Bi, (52) / é;, (s3)dss / ¢;, (s)dsdsads; —

]47]37.72

T 51 - 5 |
_/¢j3(81)/¢j2(32) (/ ¢j4(s)ds) d32d31> (2) J(:g) _
t t $1
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_ 11',1_%%' .i Z¢j3(81)7¢j2(82)<( — 51) Pa 0 (/ ?;,(s3) d83) 2)

S1

Xdsads1 (Y = 205" wop.1.
Therefore
(i2i3) 1213 _ plinis) A (i2iz) A (i2is) (i2i3)
Let’s consider A(““) :
Aflili4) —
P T S s S
=lim 2 / $i.(5) / b (s3) / b, (s2) / bj,(s1)ds1dsadssds
(i1) ~(ia) _
X J1 ij o
. P 1 T s p s 2
“im 3 o[l | @1(83)%2:0 (/ b3 (o0 ) dsadsx
XCJ =
1 T S .
=Lim. > PR t/ ia / 65, (s3) (s — s3)dssdsCi (Y — A =
1T .
§t/t/ s — s3)dw! )d () 4
1 T S
+§1{i1:i47§0}pll>r£loj /¢J4 /¢J4 83 S — 53)d83d5 _ A(Z1Z4) —
1=0%

1 T S9 81
=2 [ [ [ dwidsidw!i)+
2t t t
1 o I
+§1{i1:i47é0} (Z / d)M /¢]4 83 d83d$—
Ja=07%

oo T y ..
= 5 [640o) [ss - t>¢j4<53>d83ds) N
t t

1T . . y
=2/ [ [awdsiawly) - A wop.1. (2.192)
t tt
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Let’s consider A(“Zz) N

Aglh) —

» T T

= 11'71—'>ror<1> > / S3 /qﬁh 82)/¢j3 S1 /qus dsdsidsadssx

J3,72,J1=0 % 89

(i1) »(i2)

X ]11 j22

2
=1 i.m. 5 /q5]1 (s3) /th (s2) (/ INE) s) dsodsz X
p .71,.72 =0 J3=0 \sy

% (1 )CJ(;z)

- b1y (i) A (iria)
= L jl,gz-z::ﬂ [ éilss / D (52)(T — s2)dsads G (7 — A =
—1; P 1 ’ d d A(iliz) _
L 55— ) [ 0 s G - A -

1 T
5/ — S9) /dw i dw(”)—l—
t
o T

+5 1{11 =iy #0} Z/ _52 /¢J2 53 d53d32 A“Zz =

2=0 %

51 S2

7//dW dW z2 ds1 + 11{z1—zﬁé0}/ - 32 dSZ — A(mQ) .p.-1. (2193)
t tt

[\le—\

Let’s consider By, By, Bs :

— 00 j
p j1.ja=

2
B; = lim Z 02/¢J4 /¢J4 $1 (/d)h $9 d82> dsids =

p—00

— lim | 2/¢J4 /qﬁj4 (s1)(s1 —t)dsids — hm Z a]u4

.74—
T
1
=1 t/(Sl —t)ds; — hm jz_ amu (2.194)
p 1 T 83 2 S3
Bi=lim (2 [ (s ( / b3.6)05) [ty
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T 51 S2 2
_%/¢j3(31)/¢j3(52) (/ ¢j4(83)d83> dsods;—
t t

S1

1 T 2
_5/(/53'3(81)/(1533 (/ ¢, (s2) d52) dsdsl) =
t t

' p 1T 53 p
= lim > = [ d(ss)(ss — ) [ dis(s)dsidss — lim 3 ¥~
J3=0 <% t J3=0
p T S$1
, 1
_plgglo j§0§[¢j3(31)t/( ), (s2)dsads + Jim 332_: al j.—
_ p 17T 51 P
—plg& Z_ §/¢j3(81)/¢]3( s)(s1 —t+t— s)dsds; + Jim > =
J3=0 <% t * ja=0
. p p . p . p
= plg& Z jsjs +pll)r£lo Z C§3j3 - plg& Z b§3j3; (2'195)
J3=0 J3=0 743=0
' p
By + By = lim 3. . (Cisiagais T Clasjasass) =
J4,J3=

= lim Z /gbj3 /gz’)J4 S1 /gb]4 S /q§]3 s3)dssdsadsids =

—00 .
P Ja,33=0%

—lim Y / di.(s1) / bi. (52) / b, (s3)dssds; / ¢, (s)dsds; =

—00 .
b .747.73 =0 t

= lim Z (/ b, (51 /g/)J4 S3 /g/)J3 S9 dsz/gbjs )dsdssdsy—

= )
P00 4,43=0

—/¢j4(81)/1¢j4(83) (/ ¢j3(8)d8) d83d81> =
i; / — 81) 71¢j4 (83)d83d81—

— Z /¢J4 81 /¢J4 83 d83d81 -|—2 hm Z J4J4

Ja=0%

= 21}5& Z Juin-
Ja=
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Therefore

p p
By =2 hm Z J3J3 ph_>m Z aJ3J3 p= Iglo 'ZO C?s]é Z VEVES (2'196)
J3=

J3— Jj3=0

After substituting the relations (2.188)-(2.196) into (2.187) we obtain:

p N
; (i1) »(i2) ~(i3) »(ia)
Lim. > Chajass i G G G =
J1,J2,53,34=0
L 1 T s . '
= I e+ 5 Li=in0) [ [ dsadw!iDdw(i)+
t ot
T s2 81 1 T ' .
+- 1{12_13¢o}///dw i) dsldw 1) 4 51{i3=i4;é0}///dwg“)dwglj)dﬁ
t ot A
1 T S1
+Zl{i1=i2¢0}1{is=i4¢0}//d52d31 + R =
t 1
= I+ Rwop.d, (2.197)

where

(iviziais) * T sty stz xl2

*(212213%4 _

I dadsA) Tt = / / / / th th th th
t t t

(’il, ’ig, 7:3, ’i4 = 0, 1, <y m);

R = _1{i1:i27’:0}A( )+ 1{11 13#0}( A(Zzu) _|_ A(Zzu) +A(Z2'L4)>

—1—1{21_24#0} (A 7,27,3 . Ag,zz:;) + A((il2l3)) 1{12—23750}A le4

+1{z‘2=i47£0} < A (4113) + Agi1i3) + Agﬂ's ) . 1{13 147&0}A Z1Zz

+1{zl—12¢0}1{23—147ﬁ0} hm Z a’]3]3
J3—

p p
].{zl 23750}1{12 =iy #0} <hm Z CLJ ja + hm Z C?3j3 _pll)%lo Z 6?3.7.3) _
J3=0 j3—0 73=0
—L{i =isz0) Lir=is 20} X
p p
(Qpll>m Z J3Js _pll)m Z a]3]3 _phm Z c§3J3 + hm 2 b?sjs) ) (2'198)

Jj3=0 J3=0 J3=0 3320
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From (2.197) and (2.198) it follows, that theorem 8 will be correct if

(i) 2 _ < _
Akm = 0; lim Z a§3j3 - pll%lo Z b§3j3
Js=0 J3=0
. p . p p
= X i = fim 2 S =0 (2.199)
J3= J3=

where k=1, 2,...,6; 4,7 =0, 1,.

Let’s consider the case of Legendre polynomials. Let’s prove, that Aﬁ"”’“ =0
w. p. 1. From (2.277) it follows:

2 /
() J3—
{( 2 aJ4J3 ]3 Ji4) } Z Z_ ( J3J3aJ'J'+

J3,4a=0 35=07s
+ <a§?3j) + 2%33'%533 + ( ajr h) ) + 3 Z (a, ,>2 —

= (Jﬁ a§?3j3) + zp: j§1< @y it +aM3) +2 X_: < -é)Q (43 =14 # 0); (2.200)

73=073=0
2
) (is) _
( Z a]4]3 Ja -
.737.74—

3=

p

= ] z 0( J4J3) (Z3 7é 247 13 7£ 0 14 7’5 0) (2.201)
J3:Ja=
( p . .
o t)jzo (af,0)" if i = 0,4 # 0
2 4=
( ) p e :
{ JX: 5,55 J3 124 ) } =4 (T - t)jZO (agjj3)2 if i4=0,i3£0- (2.202)
3; 4=0 3=
(T — 1)? (ay)” if i3 =is =0

Let’s consider the 1st case (i3 = 4 # 0):

(T =02/(2+1)(255+1) y

aj4j3_ 39
1 Yy 00 Y1 2
x [ Py@) [ Py) > 2i+1) | [ P(w)dys| dyrdy =
-1 -1 J1i=p+1 -1
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(T—*V2ja+ D2js+1)

32
1 0 1 1
P; — (P — P ? [ Py, (y)dydy, =
<[ Pul) X 5 Braw) = Bua)’ | Bi(w)dudy

(T —1)*V23+1 |
= Py, (y1) (Pj-1(y1) — Pj+1(y1)) X
32\/72]“1 /1 ’ 4= ‘

L 2

g j1=zp+1 251 + 1 (Pi+1(y1) = Pia(y1))” dyn
if 54 # 0 and
a? . = (T_t)2 2j3+1><
7473 39
1 . X 2
x [ P; 1-— — (P}, — P, d
—/1 5 (1) yl)j1=zp:+1 271 +1 (Pi+1(y1) = Pj1(w1))” dy
if 5, = 0.

From (2.13) and estimate | Pj,—_1(y) — Pj,4+1(v)| < 2;y € [-1,1] (| Pi(y) |< 1;
y € [—1,1]) we obtain:

1
& dy Cy .
abl . < Z — < — (74 0; 2.203
| .74.73| /]4 Jl_p+1 ]12 /1 (1 - y2)% — p /j4 ( # ) ( )
© 1 7 dy o
a0l <Co X 5 | — 53 < —; 2.204
0,3 Wil .712 /1 (1 . yz)% P ( )
£ 1y dy G

1 (2.205)

Y

IA

—

lafl <Co Y. = [ ——=
00 Jj1=p+1 ]12_1 (1 - yQ)% p

where Cy, C; — are constants, which doesn’t depend on p.
Taking into account (2.200) — (2.205) we write down:

2 2
(i4) _
{( > ams J3 Ji4> } = (aOO + Z aJ3J3> +

Jjz=1

.737.]4—
p Ji—1 2
+ 2 (ag,ﬂ —|—a,0> + 2 2 ( @y +a]']3) +
Jz=1 Jjy=173=1
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2
p 2 1 12 1 K,
p
+2 (jz, (%']é) +(aoo))<K0 (p p]3§_:1 ,—) +—+

3=1

Jz—1 1

HaE L () <

1 dx Kl Kg P 1
< Ko|-+- +—+-—> <
(p P} f) p P g::us

2 P
1 2 Ki K d
SKO(—+—) +1+3(1+/x)§
P 4P p p 1

p p

— 0,

when p — oo (i3 = i4 # 0).
The same result for cases (2.201), (2.202) also follows from the estimates
(2.203) — (2.205). Therefore

Al = 0 wop.1. (2.206)
Not difficult to see, that formulas
AY =0, Al =0, AV = 0 wop.1 (2.207)

may be proved similarly with the proving of the relation (2.206).
Moreover, from estimates (2.203) — (2.205) we obtain:

Jim 'Zo as ;. = 0. (2.208)
J3

Relations hm Z b . =0 and hm Z = 0 also may be proved analo-

—o JsJs 3333
gously with (2.208)
Let’s consider A(”“) ;
AGis) — Alria) L Alizin) L AGin) . AGai) g (2.209)

where

.. D

(i2i4) _ 7 - (14)

A? _1p1_>m Z g-Jp4J2 J2 J4 )
.727.7
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T s
J4J2 t/¢14 )/¢jz(31 WS (/ ¢.71 82 d82/¢11 82 dsz) ds1ds =

S1

= Z /¢g4 /¢g1 (s2) dSz/qﬁh (s1) /gbjl (s2)dsadsids. (2.210)

Ji=p+1%

The last step in (2.210) follows from the estimation:

1 ; Y K,
Gisir| < K ; rdzdy < ——
‘JJ| ]1—Zp+ ]12/1 5/1 1 —z?) P
Note, that
2
g§4j4 - 2 (/ ¢J4 /(7531 52 d52d3) ; (2.211)
Jl_p+1
T
954]'2 +g§2j4 - Z 1/¢J4 /¢31 52 d32d3/¢32 / (SQ)dSQdS (2.212)
Ji=p+1}
and

(T - VRis+ DR +1)

Q‘Zh = 16

00 1 1
- [ p P _ P
" ‘=Zp+1 2j, + 1 / js (1) (Pj-1(y1) — Pj1(y1)) %

X /PJ2 Pj—1(y) — Pj+1(y)) dydys; ja, g2 < p.

Due to orthonormality of Legendre polynomials, we obtain:

(T it D@t 1)
16

D D _
9jajo + Gjoja =

X

1
j—1 ?Jl P'1 1(y1)) dy1 X
5 i/ P (Pis(w) = Pia()

X [ Pi(y) (Pioa(y) = Pion(y)) dy =

2
(T—t)2(2p+1) 1 [ } = I =g =
T—Te: <_f1 Pﬁ(yl)dw) = e 2T =P (2.213)

0, otherwise
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y _ (T- t)*(2js + 1)
gj4j4 — 16 X

X Z 1 (/ PJ4 9 (le—l(yl) _le+1(y1))dy1) =

j=pt+1 251+ 12

2
T—t)*(2p+1 T—t)? oo
( )3§ - )2p+3 (f Pg(yl)dw) = 8(2p(+3)(%p+1) it Ja=p (2.214)

0, otherwise

From (2.200), (2.213), (2.214) it follows:

{( SR ANeRle) )} (zgm) " zjf (60, + o)’

J2,J4=0 J3=0 J4=073=0

PN (T — t)? 2
23 (ah) < (8<2p+3><2p+ 1)) o

YR R

82p+3)(2p+1

when p — oo (iz = 44 # 0).
Let’s consider the case 19 # 14, 19 # 0, 74 # 0.
Not difficult to see, that

T s
Bi = [ 65.(5) [ 65,(51) ( | $5,(s2)dss / ¢y (s2 ds2) ds,ds =
t t Ji=p+1

S1

T T
= //Kp s, 51)$;,(5)0j,(51)ds1ds
t t

is a coefficient of the double Fourier-Legendre series of the function

Ky(s,51) = Lnesy / $;,(6)d6 / $;,(0 (2.215)

ji=p+1ls

The Parseval equality in this case has the form

pP1—0
J4732—0

TT
lim gm2 // (s,1)) dslds =
t ot
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- //S( > /¢j1(9)d9/¢j1(9)d9) dsyds. (2.216)

Jji=p+13s

Let’s consider the integral

T 1

1 /—
[ 1(0)d8 = S\2i + VT =t [ Py (y)dy =
51 2(s1)

K
<= , (2.217)

where s € (¢, T).
From (2.217) we have:

n T

> [ (0)dd [ ¢;,(6)d6

Jji=p+13s

<

| 4 (6)d6

IA

<

T
| 4 (6)d
1 1 1

(1= 2%(s1))

n
)
J1=p+1
n

<C

, (2.218)

=
=

R (1—2%(s))
where s, 51 € (t, T).

Let’s execute the passage to the limit lim in inequality (2.218):

o T T
J1=p+ls 51
© 1 1 1
C — 1 1
= CFa R =2 - )
= Cfd_a; : i : TS
TR TR
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< ¢ : I : 1 (2.219)

P (1= 2%(s))* (1 = 2%(s1))*
where s, s € (¢, T).
Then

o T T 2

( AL asjl(e)de) <
J1=p+1ls S1

< % L (2.220)

P (1~ 22( ))? (1= 2%(s1))
where s, s; € (t, T).
From (2.219) it follows:

z/qsh d9/¢h de—z/qsh d@/ash )db

J1=0

<_
p

in the domain D, = {(s,s1) : s€ [t+¢,T —¢],s1 € [t+¢,s]} Ve > 0, where the
constant M doesn’t depend on s, s;.

Then we have a uniform convergence

Z /cbgl d9/¢h )df — Z /qsﬁ d9/¢,1 (2.221)

J71=03% J1=0

at the set D,, if p — .

Because of (2.221) and continuity of functions
» T T
X [ 6:(6)d0 [ 65, (0)do
we obtain continuity of the limit function
o T T
3 [4i6)do [ g5 (0)d8

at the set D..
Using this fact and (2.220) we obtain:

T s 2
//( z /¢Jl d9/¢]1 d@) dSldS =

Ji=p+13s
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T—c s 2
:el—i>I-II—10 / / (.hz /qsﬂl d9/¢]1 d@) dsids <

t+e t+e p+17s
T_
C? ° 7 ds; ds
< — lim / =

1 1
p E_H—OH—E tre (1 _ 22(81))2 (]_ _ 22(8))2

2Ts d
__// o ¢ T

(1 — 22
1y y Kl
== // I s < =L (2.222)
(1—97)? (1 —y?) p
where constant K7 doesn’t depend on p.
From (2.222) and (2.216) we obtain:

. D 2 o0 2
0< z (gJ4J2) < p}l—r%o . Z (954]'2) - Z (95412) <
J2,J4=0 J2,34=0 Jo,54=0
K
< — = 0, (2.223)

p
if p — oo. The case i3 # 14, 12 # 0, 14 # 0 is proven.

The same result for the cases

22:07247507
ig =0, i3 # 0;
10=0,724=0

also may be obtained. Then A(”“) = 0 and Agm“) =0w. p. L.

7/ 7/
Let’s consider A 1is)

Ag"”é) = AP AP AP W,

where

(ivis) _ - ) ~(ia)
Ag™ —lb;)rono. Z hJ3J1 Js
.737.71—
T

B = / (s3 / iy (s ( / ¢;,(0)d6 / (. d@) dsdss.
J4—p+1

t S3

2113

Analogously we obtain, that Ag = 0 w. p. 1. Here we consider the

function:

Ky(s,53) = Lisyes) > / $7,(6)do / 6;,(0

Ja=p+1 S3
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and the relation

R, / K, (s,53)05,(53) 9, (s)dsds3

t
for the case i1 # 13, 11 # 0, i3 # 0.

For the case i; = i3 # 0 we use (see (2.211), (2.212)):

TT
t

T 2
h.l;l.?l - % (/ ¢.71 )8/¢j4(81)d81d8) )
T T
W+ M= > / b (5) / biu(s2)dsads [ 61,(5) [ 5,(s2)dsads.
S t s

Ja=p+17

Let’s consider hm Z & . . We have:

jiZo sds
Cojs = Fisjs T Tigjs = G- (2.224)
We proved, that hm Z J3J3 = 0. Analogously we obtain, that
Jim jéo djpjy = 0
From (2.214) it follows
. . T —1t)?
0 i, 3% i < B 535+ Ty =

then

Relations (2.199) are proven for polynomial case. Theorem 8 is proven for the
case of Legendre polynomials.

Let’s consider the trigonometric case. In this case we have:

1 T S oo 2
.74.73 5/ )/¢j3(81 (/ ¢]1 S9 dSQ) dSldS =
t t J1=p+1
1
= 5/@'3(31 (/ ¢j, (s2) d82> /qb“ Ydsdsz;
t J1=p+1
in 2mi(s=t) e 2™ (s1—t)
[ 65(sn)dsn = L [sin®herds g gy (oo™t 41
 (89)dsy = S Sl e :
| i 2)ds2 T —¢ ?Cosmds 21y . 2mji (s1—1)
t Tt S
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271"4(81—75)
o B[
L (s)ds = ————— ;
" 2774 _Sin%j;ﬂ(i—t)
K, T
n(82)dso) < =5 (1 7 0); L/ ¢ (s)ds| < —= (ja # 0)
1 1
T
T — S1
ds —
S[%(S) T T =t
K, x 1 1. K,
Clp-_.— —- < — (1 0§ap'§—7 2.225
19503 J4 31§+1 Jt ~ pia (a7 0); lao;| p ( )

where Ky, K; — are constants.
Taking into account (2.200) — (2.202) and (2.225) we obtain: Al = 0 .

p- 1.
Using the same arguments we find, that:

A2 — o Al — o Al = 0 wp.1,

p p
. p _ . )
pll%lo 'ZO @jyjs = 0, plggo 'ZO b§3]3 0, hm Z 33J3
J3= J3= J3—

Let’s consider AY™) . In this case for iy = i4 # 0 we will use (2.209) - (2.212).
We have:

fd)- (s) (1 — cosLJl(s t)) ds
\/5 /T —¢ |3 7"
27Tj1 T _ . 271 (s—t)
{(]534(3) ( smi) ds

where 77 > p+ 1, 54 = 0, 1,...,p. Due to orthonormality of trigonometric

Y

T T
/¢j4(8)/¢j1 (32)d82d8 =
t ]

functions, we obtain:
T T ‘/;gz;t)or01fj4—0
[ 65.(5) [ 85 (s2)dsads = i>p+l (2.226)
t i 0, otherwise
From (2.226) and (2.210) — (2.212) we obtain:

(r-1?

) 0 P or0if jo=794=0
g§?4j2 + Gjojs = Z )
Ji=p+1

0, otherwise
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o [GEkor0if jy=0
gp . f— Z < 1
JaJ4 i
=P 0, otherwise
Therefore ) ) P '
‘gju'z + 9joja < 71 if J2=7Ja=0 (2 227)
gi i+ g% j» = 0, otherwise
Ky ¢ -
Bl <A =0 (2.228)

g5,;, = 0, otherwise
where K7 — is a constant, which doesn’t depend on p.

From (2.227), (2.228) and (2.200) it follows, that A = 0 and A{*™ =0
w. p. 1 for iy =44 # 0.

Analogously to polynomial case we obtain Az i) _ () and A;(fzi“) =0w. p. 1
for 49 # 14, 19 # 0, 14 # 0.

The similar arguments prove, that Aj (i) — () w, p. 1.
Taking into account (2.224) and relations
p
pll%lo Z Jajs — Z jsjs
J3=0 3=0
which follows from the estimates:
K K, K
bif |< sl < — 1 fool < — ldool < —,
pj’ p
we obtain:
p P
pll%lo Z C§3J'3 - - IH& Z 9jsjs
J3=0 J3=0
P K
: P . 1
0< pll%lo z 9jsjs < plgglo— =0
J3=0 p

Finally, we have

Relations (2.199) are proven for trigonometric case. Theorem 8 is proven for
trigonometric case. Theorem 8 is proven. O.
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2.6 Expansion of multiple Stratonovich stochastic integrals
of kth multiplicity, based on theorem 1. Polynomial
and trigonometric cases

The author thinks, that generalization of the theorem 8 for the case of any fixed
k (k — is multiplicity of multiple Stratonovich stochastic integral) is correct
(without the proof).

Let’s formulate (without the proof) the following theorem.

Theorem 9. Assume, that {$;(x)}52y — is a full orthonormal system of
Legendre polynomials or trigonometric functions in the space Lo([t, T1).

Then, for multiple Stratonovich stochastic integral of kth multiplicity

T xt3 xt2
W= [ dwiPaw . dwl? (2.229)
t t t
(il,’iz,...,ik :0,1,...,m)

the following converging in the mean-square sense exrpansion

i) P C i) i) (i) 9930
A1) Tt — L > ikedininGy GCjp -+ -G (2.230)

J1 J2 Jk
—00 . -
p J15e--Jx=0

1s reasonable, where
.7k J1 /d)]k tk /d)Jz t2 /¢J1 tl dtldtQ dtk,

T .
) = [ ¢;,(s)dwl™ — are independent standard Gaussian random variables
t

for various i; or 5 (if 4y # 0); w@ = fT(i) — are independent standard Wiener
processes; 1 =1,...,m andwﬁo) =7, =04 =0and \y=1if1y;,=1,...,m

Theorem 9 allows to approximate multiple Stratonovich stochastic integral
I()S“ /\’:Tt by the sum:

TR S i ()l i), (2.231)
J15e-Jk=

where 2
Plgglo M {(I()\:)\Z:)T,t - I()\:)\Z:)%t) } =0
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Integrals (2.229) — are integrals from the Taylor-Stratonovich expansion
(9.22). It means, that approximations (2.231) may be very useful for numeri-
cal integration of Ito stochastic differential equations via the truncated expansion
of the form (9.22).

2.7 Expansion of multiple Stratonovich stochastic integrals
of any fixed multiplicity k£, based on generalized re-
peated Fourier series

2.7.1 The case of integrals of 2nd multiplicity

Let’s analyze the approach to expansion of multiple stochastic integrals, which
differs from the approaches examined before [45], [35], [32|, taking multiple
Stratonovich stochastic integrals of 2nd multiplicity as an example.
Thus, let’s analyze the multiple Stratonovich stochastic integral of the follow-
ing type:
*1 xt2

TPy = [ walte) [ di(tr)dEdES; iy in=1,...,m,

t t
where ng) = t(i) when ¢ = 1,...,m; w,§°) =1t 41,...,0x = 0, 1,...,m; fT(i)
(¢ =1,...,m)— are independent standard Wiener processes; ¥;(7) (I = 1,..., k)
— are continously differentiated functions at the interval [¢, T';

Let’s analyze the function

1
K*(t1,t2) = K(t1,t2) + 51{t1=t2}¢1(t1)¢2(t1)7

where t1,ty € [t,T] and K (t1,t3) has the form:

Yi(t1)Ya(te), t1 <t2
K(ty,ty) = - |
(h1,%) {0, otherwise htp €[4T

Due to lemmas proven in chapter 1 and formula

to

T
J*[¢(2)]T,t = /7702(152) /¢1(t1)dW§fl)deZ)+
y

t

] T
+§ 145, =ip0) / Pa(te) 11 (to)dts
¢
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with probability 1, we have
N-1N-1

J*[@b(z)}Tt = ¥V1_g10 lZO lz K*(n,, Tl2)AW(Zl)AW(Z2) w.p.1, (2.232)

where the sense of formula (1.8) notations is kept.

Let’s expand the function K*(t1,ts) using the variable ¢, when 5 is fixed,
into the Fourier series at the interval (¢,7) :

K*(tts) = S Cj(t2)dy (1) (b #1,T), (2.233)

J1=0
where

T T
Cj, (t2) = /K*(t17t2)¢j1(t1)dt1 = /K(t1,t2)¢j1(t1)dt1 =
y y

= ¢2(t2)/2¢1(t1)¢j1(t1)dt1,

{#i(z)}329 — is a full orthonormal system of continuous functions in the space
Ly([t, T]).

The equality (2.233) is executed pointwise in each point of the interval (¢, 7T)
according to the variable t1, when ¢y € [¢, T is fixed due to sectionally smoothness
of the function K*(¢1,t3) according to the variable ¢; € [, T] (to — is fixed).

Note also, that due to well-known features of the Fourier series, the series
(2.233) converges when t1 = ¢,T (not necessarily to the function K*(¢y,ts)).

Obtaining (2.233) we also used the fact that the right part of (2.233) converges
when ¢; = t9 (point of finite discontinuity of function K (#1,%9)) to the value

(K(tr = 0,6) + K(t2 +0,82)) = “a(tabn(ts) = K (12, 12).

N | —

Function Cj, (t2) is a continuously differentiated one at the interval [¢, T7.

Let’s expand it into the Fourier series at the interval (¢,7'):

Cj,(t2) = i Cijndip(t2) (ta #1,T), (2.234)

J2=0

where

to

T
J2J1 /le to ¢Jz t2 dt? - /¢2 13 ¢J2 (tg) /¢1(t1)¢j1 (tl)dtldtZa
t

t
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and the equality (2.234) is executed pointwise at any point of the interval (¢, T');
the right part of (2.234) converges when ¢, = ¢, T (not necessarily to Cj, (t2)).

Let’s substitute (2.234) into (2.233):
K*(ti,t2) = 3 3 Cpjidi (t) 5 (t); (t,te) € (£, 17, (2.235)
J1=072=0
moreover the series in the right part of (2.235) converges at the boundary of square
[t, T)* (not necessarily to K*(t1,%s)).
Hereafter, using the scheme of proving of theorem 1 and (2.232) w.p.1 we get:

D1 D2
J* [ }Tt — Z Z OJng 177“1?27 (2236)
0j2 0
where
T to Tt
REP = [ [ Gy (ty, to)dwy dwi) + [ [ G (1, t2)dwty dwiiy )+
t t t t
T
+Liis=into) | Gups (b1, 11)dls;
t
def * P P2
Gplpz(tht?) = K (tht?) Z Z OJ2.71¢J1 (t1)¢J2(t2)
=0 j2=
P1, p2 < o0.

Using standard evaluations (9.3) and (9.4) for the moments of stochastic in-
tegrals, we obtain

to

M{ (R} < n(f [ (Gpupa (t1,12))™" dtrdta+

T t1 T
+ [ [ (Gpupa(tr,£2))™" Aoty + 1i,=i, 0 [ (Gipupa(t1,11))" dtl), (2.237)
t t t

where C,, < co — is a constant which depend onnand T'—t; n =1, 2,...

Note, that due to assumptions proposed earlier, the function

GP1P2 (t17 t2)

is continuous in the domains of integrating of integrals in the right part of (2.237)
and it is bounded at the boundary of square [t, T
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Let’s estimate the integral in the right part of (2.237):

to

< [ [ (G (t1, 1)) dtadty = (/ /) (11, 12)) 2 dtydty <
t

O

1 4

N—
<> > ax (Gpups (t1, 1)) A ATj + M Sp, <

i=0 j=0 tlatz)G[TuTzH]X[TaaTJ+1]

N-1 14
< ZO Zo (GP1P2 (Ti7 Tj))2n ATiATj+
i=0 j=

IA

d 1D2 1D2 2n 2n
2 |(Gomn(@", 7)) = (G (7, 73)

N-—
z 'AT]’-FMSFE S
Z
J:

Z ( . (Tz; TJ))2n ATiATj + €1§(T —t— 35)2 (1 + N) + MSFE, (2238)

where D, = {(t1,t2) : to € [t +2¢,T —¢€],t; € [t +¢,t9 —€]}; T'e = D\Dg;
D = {(ti,t2) : ta € [t,T),t1 € [t,t2]}; € — is any sufliciently small pos-
itive number; Sr_ is area of I'.; M > 0 — is a positive constant limiting
(Gpupy (1, 2))™" ; (t?’ P 2),t§-p P 2)) is a point of maximum of this function, when
(tl,tz) = [Ti,Ti+1]X[Tj,Tj+1]; T, — t+ 2¢ + 1A (Z = 0, 1,. . .,N); ™ = T — g;
A= (T—-t—-3e)/N; A <eg; e >0 —is any sufficiently small positive number.

Getting (2.238), we used well-known properties of integrals, the first and the
second Weierstrass theorems for the function of two variables, as well as the
continuity and as a result the uniform continuity of function (Gp,,, (t1,t2))>" in
the domain D, (Veq > 0 36(e1) > 0, which doesn’t depend on ¢y, t2, p1, p2 and if
V2A < §, then the following inequality takes place:

2n
(G887 = @) < ).

Considering (2.235) let’s write down:
: : 2
Jim lim (G, (1, 22)) " =0 when (t,%) € D,

and execute the repeated passage to the limit lim lim hm in inequality (2.238).
e—+0 P10 p2—

Then according to arbitrariness of €; we have

T to

lim lim [ [ (G (t1,£2))™" dtrdty = 0. (2.239)

pP1—00 pg—)OO
t
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Similarly to arguments given above we have:

Tt

. . 2
Jim 1im [ [ (G, (t1,2))™" dtadty = 0, (2.240)
t t
i 2
p}l_r}%opll_r)%o/ PLP2 tl, tl " dtl = 0. (2.241)

From (2.237), (2.239) — (2.241) we get

lim lim M{(REP)™} =0; ne N,

P1—>00 pa—00

The last equality and (2.236) provide a possibility to write down:

J* [ }Tt - Z Z CJ2]1 Jo )’ (2'242)

0]2 0

where convergence of the repeated series is regarded in the mean of degree 2n;
n € N.

It is easy to note, that if we expand the function K*(¢1,t2) into the Fourier
series at the interval (¢,7") at first according to the variable ¢9 (¢; is fixed), and
then expand the Fourier coefficient of the obtained series

P1(th) / Vo (t2) by, (t2)dts

into the Fourier series at the interval (¢,7") according to the variable ¢;, then
taking into account, that

[ r(t)85(01) [ a(ta) s, (b2)dtadts =

= Cj2j1 )

we will come to the following formula of expansion of multiple Stratonovich
stochastic integral of second multiplicity:

J[ ]Tt— Z Z CJ2J1 2)'

=0j1=

Note, that directly from (2.242) follows (5.6) — (5.8), (5.11) — (5.13), (5.43).
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2.7.2 The case of integrals of 3rd and 4th multiplicity

In the previous section we examined the following equality:

1
P1(t1) (1{t1<t2} + 51{t1=t2}> Z /1/11 1), (t1)dt1;, (1), (2.243)

J1=0

which is executed pointwise at the interval (¢,7), besides the series in the right
part of (2.243) converges when t; = ¢, T

Using (2.243) we get:

00 00 t3 to
_ZO ,ZO s(ts) [ a(ta) b, (t2) [W1(t1)ej, (t1)dtrdtax
J1=V J2= t t
ngjz (t2)¢j1 (tl) -
00 t2
= ,ZO Ys(ts)va(ts) [ ¥1(t)ey, (01)dty (1{t2<t3} + %1{t2=t3}> i, (t) =
n= t

1 1
= Y1(t1)2(t2)¥s(t3) (1{t1<t2} + 51{t1=t2}> (1{t2<t3} - 51{,52:,53}) . (2.244)

On the other side, the left part (2.244) may be represented by expanding the
function

3(t3) /3 pa(ta) ¢y, (b2) /2 Di(t) ¢, (f1)dtrdt

into the Fourier series at the interval (¢,7") in the following form:

Zo Zo z CJ3J2J1¢31 (t1)¢32 (t2)¢33 (t3) (2-245)
J2=0j3=
where
T t3 ty
.73.72.71 / t3 ¢33 t3 /¢2(t2)¢j2(t2)/¢1(t1)¢j1 (tl)dtldthtg.
t t t

So, we get the following equality:

P3PS 3, Gl B3 (12)65(12)6 1) =
= J2=

1 1
= 1 (t1)a(t2)v3(t3) (1{t1<t2} + 51{1&1:1&2}) (1{t2<t3} + 51{t2:t3}> =
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3 1
= II ¥u(t) (1{t1<t2}1{t2<t3} + 51{t1:t2}1{t2<t3}+

i=1
1 1 def e
o <oy ln=t) + ;Lin=t)lin=t)} | = K (0, t2,t3), (2.246)

which is executed pointwise in the open cube (¢,7)%, moreover series (2.245)
converges at the boundary of the cube [t, T]3.

Using (2.243) and (2.246) we get:

S5 5 it [ valtan (1) [ dalt)on () [61(02)6 (1)

3
x dt dtydts [ ¢;(t) =
=1

00 00 1
= > > Yu(ts) (1{t3<t4} + 51{t3=t4}> X

71=0 72=0
t3

ctby(ts) [ ) (t2) [ 1(10)65, (1) dtsdtagss (1), (1) =

t

1
= 4 (t4) (1{t3<t4} + 51{t3=t4}> X

<35 unta) [ dalta)dn (1) [ 62(0)6,, (1) dtdags, (120, (1) =

t

1 3 2 1
= P4(t4) (1{t3<t4} + 5]—{t3=t4}> 11:[1 vi(t) 11:[1 (1{tl<tl+1} + 5]—{tl=tl+1}) =

4 3 1
= ll:Il Yi(tr) 11:11 <1{tl<tl+1} + il{tl:tlﬂ}) . (2.247)

The left part of (2.247) may be lead by expanding the function

ta t3 t

Palta) [ a(ts)dis(ta) [ walt) s (t2) /2 1 (t1) b, (t) dtrdtadts

t

into the Fourier series at the interval (¢,7) to the following form:

0 00 00 X 4
> > > > Chgsing 1 85 (1), (2.248)
j1=0 jo=0 j3=0 j4=0 I=1

where C},j,j,5, is defined using the formula (1.6).
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As a result we get the following equality:

xO 0 0 0
Z Z Z Z Jajajagu H Qbyz (tl)
J1=0j2=053=0 js=0

3 1 def
= H ¢l(tl)l1:[ (1{t1<tl+1} + 1{tl tl+1}>

=1

©FK*(ty, by, ts, 1), (2.249)
which is executed pointwise in the open hypercube (¢, T)?* moreover the series in

the left part of (2.249) converges at the boundary of hypercube [t, T]*.

Due to lemma 1, remark 2 and formula of connection between multiple
Stratonovich and Ito stochastic integrals:

t3 to

T
@] = /¢3(t3)/¢2(t2)/1/1 (tl)dW§ )dwé )dw,g Qe
¢ ¢

t

1 T ¥ i
‘|‘§]—{i1=i2790} / P3(t3) / ¢2(t2)¢1(t2)dt2dw§33)+
t t

1 T ts .
+§1{i2:i37é0}/¢3(t3)¢2(t3) /Kb (tl)th( ) dts
t t
with probulity 1, we get:

N-1N-1N-1

J®re=lim. ¥ ¥ ¥ K*(m,, 7, ) AW AWP AW (2.250)
N—=00 1,20 1,=0 1,=0

where the equality is fulfilled with probability 1.
Hereafter, using the scheme of theorem 1 proving and (2.250) w.p.1 we get:

b2 D3

J[ ]Tt— Zl Z Z 0]3.72.71

PP 32) (@3)+Rp1p2p3 (2251)
1=U72=0j3=

where

N-1N-1N-1
RIZ@sz = Lim, Z Z Z Gp1p2p3 (Tlv Tly» Tl3)AW(“)AW(l2)AW(Z3)

=00 13=01,=0 I;=

Gprpaps (ts T, 13) & K* (b1, t, 13)—
D2 D3

- i S 3 O 63 (0051284, (13)

=072=0j3=
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Using formula (2.276) for muliple sum we get:

N—-1N-1N-1
Rp1p2p3 = Lim. Z Z Z Gp1p2p3 (Tln Tlys 7-13)AVV(“)AVV(ZZ)AVV(ZB) -

=0 13=0 1,=0 l,=

N—-113—-11,-1 ) ) )
= |.i.m. Ti s Tl Tl Aw ) Aw(2) Ay lis)
P1P2p3 17 “t2y L3 T T T
N=oo 1,20 1,=01,= ! 2 3
+G T Ty T ) AW “ AW lQ)AW(Z3)+
D1P2p3 Ly T3y Ty

T12

)
Tlyy Ty T1 )A ’Ll AW 12)AW(Z3)+
)

P1P2P3 3

l T l
p1p2p3 Tlyy Tlyy Tly Aw 1 AW 2)AW7('lf)+

(
(
(
Gpipops (Tls» Tl T1y) AWS_;L;) AW%) AWS;f) +

+Gp1p2p3 (Tl37 Tlys le)AWg;)AW%f)AW%j)> +

—-11l3-1 . . .
+Lim. Z Z ( P1P2P3 (le7 Ty Tl3)AW7(;1)AW7(;2)AW7(;3)+
N->oo I3=0 ly= 2 2 3

+Gp1p2p3 (7-127 Tl37 TlQ)AW(Zl)AWOQ) AW(Z3)+

T12

(a1 io 13
+GP1P2P3 (Tl37 Tly» Tl?)Aleg AWTZQ AWle > +

—113—-1 . . .
+Li.m. Z Z ( P1P2Ps3 (Tlu Uy Tl3)AW7('§1)AW7(;2)AW7(;3)+
N->oo I3=01,= 1 3 3

+Giprpaps (T3, T, 71) AW Aw ) A lio) 4

+Gp1p2p3 (Tl37 Tl37 Tl1)AWg;)AW7("lL§)AW7(;13)) +

N-1
+1.i.m. Z Gpipops (Tl 773,7'13)AW i) AW “ AW ’3 =

N—oo l3
= (41) g (i2) 7 (i3)
— [ [ [ Gruppa(tr, o, ta)dw () dwf™) i)+
t
t

GP1P2P3 (t17t37t2)dwt th th -|—

Gpipaps (t27t17t3)dwt th dwt —|—
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GP1P2P3 (t27 i3, tl)dW§Z3)dW,§ )dW,g )—|—

_|_

GP1P2P3 (t37 t27 tl)dW,gZS)dWE )dwg )—|—

+

+
ﬂ\ﬂ H‘\H ﬂ\ﬂ
eo-\c?_ @0—\5’_ eo-\o?_

GP1P2P3 (t37 t1, tZ)dW,g )dW,E )dW,E )_|_

T ty .
-|-1{z'1=z'27£0}//Gp1p2p3(t2,t2,t3)dt2dwgg)+
bt

T t3 .
+1{i1=i3¢0}//GP1P2P3(t27t37t2)dt2dw§;2)+
t t

T t3 .
+1{i2:i3;é0} / / Gplpng (t3,t2,t2)dt2dwgl)—l—
tt

T t3 '
t t

T t3 '
+1{i1=i3¢0}//Gp1P2p3 (t3’t1’t3)dw§12)dt3+
t t

T t3 .
+1{i1:i2750} //Gp1p2p3 (t37t37t1)dw1§i3)dt3-
t t

Now, using standard estimations for moments of stochastic integrals we will
come to the following inequality:

m{(Rppm)™} <

T t3 to
<a/]

+ (GP1P2P3 (t27 t1, t3)) + (GP1P2P3 (t2’ ts, tl)) + (GP1P2P3 (t37 t2, tl))zn +

+ (Gp1p2p3 (tg, t1, tz))Qn) dtldtzdtg—l—

( s (11 12, 13)) 2" 4 (Gopypups (t1, 13, 12)) " +
t

t3

T
2 2
+//<1{u u#O}( Gpipops (t2,2,13)) ™" + (Gpipops (83, 83, 12)) ")+
t t
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+1 (5, =is0} ((Gplpm (t2, 3, 12))*" + (Gppups (3, Lo, t3))2"> +

L rmioso) ((Gonp (112, 12))" + (Gt 1)) o). (2252)

It is important, that integands functions in the right part of (2.252) are con-
tinuous in the domains of integration of multiple integrals and in accordance with
comment to the formula (2.246), are bounded at the boundaries of these domains,
moreover, everywhere in (¢, T)? the following formula takes place:

i tim o Hm Gy (f 82, 83) = 0. (2.253)

Further, similarly to (2.238) (two dimensional case) we realize the repeated

passage to the limit lim lim lim under the integral signs in the right part
P1—00 Pa—00 pP3—0

and we get;:
lim lim lim M {(RpP™)™} = 0.

P1—00 Pa— 00 pP3— X

The last relation in it’s turn means, that

xS X

J [ ]Tt - Z Z Z 0333231 ]2) ;;3)7 (2'254)
J1=0 j2=0 j3=0
where the repeated series converges in the mean of degree 2n (n — natural), that
1s

o bbb (i) ()
lim lim lim M{(J[ ]Tt— Z > > C]3J2J1 32 j33> }

P1—00 pPa—00 p3—r0oQ 0.72 0]3 0

= 0.

2.7.3 The case of integrals of multiplicity &

In this section we will formulate and prove the theorem about expansion of multi-
ple Stratonovich stochastic integrals of any fixed multiplicity & of the form (1.2),
based on the repeated Fourier series according to the Legendre polynomials or the
system of trigonometric functions. This theorem provides a possibility to repre-
sent the multiple Stratonovich stochastic integral in the form of repeated series
of products of standard Gaussian random variables.

Let’s define the following function on the hypercube [t, T]*

k-1
K(tl, .« ) H ¢l(tl) H 1{tl<tl+1}7 k > 2 (2255)
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Let’s formulate the following statement.

Theorem 10. Assume, that the following conditions are met:

L ¢(r); i« = 1,...,k — are continuously differentiated functions at the
interval [t, T].
2. {¢j(z)}329 — is full orthonormal system of Legendre polynomials or

trigonometric functions in the space Lo([t,T]).

Then, the multiple Stratonovich stochastic integral J*[¢®]r; of type (1.2) is
expanded in the converging in the mean of degree 2n; n € N, repeated series

FWlri= Y .. G HCJ : (2.256)

Jj1=0 Jx=0

: T .
where C}:’) = [ ¢;(s)dw) — are independent standard Gaussian random vari-
t
ables for different i or j; (if iy # 0);

k
Cioi = [ Kt 1) 11_11 & (t1)dty . . . dty. (2.257)

[t,T]*

Proving of the theorem will consist of several parts.
Let’s define the function K*(¢1,...,t) at the hypercube [t, T]* as follows:

k—1 1
K*(tl, .. ) H ’(pl(tl) H (1{tl<tl+1} + él{tlztl-ﬂ}) =
k k-1 11 k=1
:l[[l i(t )(H Liyctipn) + Z o > lH | P H 1{tl<tl+l}> (2.258)
- Z:g.’sésll l;ésl ..... sr

Particular cases of (2.258) for k = 2, 3, 4 were examined in detail earlier.

Theorem 11. In conditions of theorem 10 the function K*(t1,...,t) is
represented in any internal point of the hypercube [t, T]F by the repeated Fourier
series

Kty t) = > .. Y. Chi H 5, (t1), (2.259)
J1=0 Jr=0
where Cj,_j, has the form (2.257). At that, the repeated series (2.259) converges
at the boundary of hypercube [t, T1F.

We will perform proving using induction. This theorem is already proved for
the cases k = 2, 3 and 4.
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Let’s introduce assumption of induction:

tr1

i io: Z Pr—1(tr-1) / Vr-2(t—2)Pji_, (tr—2) - -

J1=072=0 Jr—2=0

k—2
tl d).?l tl dtl dtk—Q H d)jl (tl) =
=1

k—2

o
- 1
= ll:Il ¢l(tl) <1{tl<tl+1} + il{tl:tl-i-l}) . (2260)

=1

o~

Then

it
R

Z Yr(ts) /¢k 1(tk—1) g, (tk—1) - -

Jk10

<

syt 1T 63(0) -

(0.¢] 0 (0. 1

=2 > - 2 Uk(te) (1{tk_1<tk} + 5]—{tk_1:tk}> V-1 (tp—1) X
J1=072=0 Jrk—2=0

tp—1 to k—2

X[ Yr-a(ti-2)$i ,(tk2) - [ da(t)es (t1)dt . dty—s TT &y, () =
t =1

t

1 o (6.¢] o0
= ¢k(tk) <1{tk_1<tk} + 51{tk_1:tk}> Z Z Z @/’k—l(tk—l)x
J1=052=0 Jr—2=0
t—1 to k—9
X[ roa(th2)$is s (ths) - [ r(t) ey ()t dty s 11 (1) =
t =

t

1
= Yr(tr) <1{tk1<tk} + 51{tk1=tk}> X

k-2

1
X H hi(tr) H (1{tl<tl+1} + 51{t1=tl+l}) =
k k-1 1
L (tl) H (1{tl<tl+1} + El{tlztl+1}> . (2261)

On the other side, the left part of (2.261) may be represented by expanding
the function

to

ty
Uk(tr) [ Vra(te) b, (i) - [ W1 (0) s, (0)dta - ditx
t

t
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into the Fourier series at the interval (¢,T") using the variable ¢;, to the following
form:

0 oo k
S oY Ciii lgl 5, (t1).

71=0 7x=0
The theorem 11 is proven. O

Let’s introduce the following notations:

s s f
J[@b(k)hi,t i de H {zsp—zsp+17é0}><

p—1
T tsl+3 tsl+2
X /wk(tk) cee / ¢31+2(t81+2) / ¢Sl (t31+1)¢31+1(t81+1) X
t t t
tsl+1 tsl+3 t51+2
X / Pg-1(ts-1) - - / Vs, +2(ts,42) / Vs, (ts,4+1) sy +1(ts 1) X
t t t

tsl —+1

/ s, —1(ts 1) / Pu(t)dwi . dwy Y dt, adwy

cdwidtydwl ) dwlY, (2.262)
*T «t2 '
t t
JpWr, = /% (tr) - /¢1 (t1)dwi). th Y, (2.264)

where in (2.262)—(2.264): ® & (g yy), p® E oy,
Aci=1{(s1,...,81): si>s1+1,...,8>s +1;

S, s1=1,...k—1}, (2.265)

(s1,...,51) € Ay 1 = 1,...,[%] 1 is =0, 1,...,m;s=1,...,k; [z] — is an
integer part of number z; 14 — is an indicator of set A (14 = 1 if the condition
A executed and 14 = 0 otherwise).

Let’s formulate the theorem about connection between multiple Ito and
Stratonovich stochastic integrals J[¢y®]r;, J*[¢v®]r; of fixed multiplicity k.

Theorem 12. Assume, that ¥;(7); i = 1,...,k — are continuously differ-
entiated functions at the interval [t, T).
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Then, the following relation between multiple Ito and Stratonovich stochastic
integrals 1s correct:

4]
T = T+ 2

M

> J[w(k)]fpi;""sl w.p.1, (2.266)

SpyeeeyS1)EALp

1
2" (
where 2@: 1s supposed to be equal to zero.

Proof. Let’s prove the equality (2.266) using induction. The case k = 1 is
obvious.

If k=2 from (2.266) we get
TPry = J[p®re + = Jhb Tt wp.1. (2.267)

Let’s demonstrate, that equality (2.267) is correct with probability 1. In order
to do it let’s examine the process ny,; = ¥a(t2)J[W1]t; t2 € [¢,T] and find its
stochastic differential using the Ito formula:

eyt = J[1]e0dta(ts) + 1 (t2) s (ta)dw (). (2.268)

From the equality (2.268) it follows, that the diffusion coefficient of process
Nty t5 ty € [t, T] equals to 1{i17é0}¢1 (t2)¢2(t2).

Further, using the standard relation between Stratonovich and Ito stochastic
integrals (see sect. 9.2) with probability 1 we will obtain the relation (2.267).
Thus, predicating of this theorem is proven for £k = 1, 2.

Assume, that predicating of this theorem is reasonable for certain £ > 2, and
let’s prove its rightness when the value k is greater by unity. In the assumption
of induction with probability 1 we have

J* [¢(k+1):|Tt —

= o |
= (7 - Jlp®) f_rty...781 dwng) _
[Tt S5 8 IOl

Spyeeey§1)EALy
:/ /wk—}—l(T)J[¢(k):|7-7tdw7(_ik+l)+
t

A 1 |
TS SESD S NP M CP )

r=1 (SpyeeeyS1)EARF ¢
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Using the Ito formula and standard connection between Stratonovich and Ito
stochastic integrals, we get with probability 1

«T
. 1

[ e (DI P ) dwlisn) = T, 4 ST * O, (2.270)

t

«T
[ Gra () TV dwlieed) =
t

JpFFD g5 if s, =k —1,

= (2.271)
T 4 Tl i s <k -1,

After insertion of (2.270) and (2.271) into (2.269) and regrouping of summands
we pass to the relations which are reasonable with probability 1
5] 4
W =V + X o X TSt (2212)

r=1 2" (s, .51 EArian

when k is even and

[’%']
J*[¢(kl+1)]Tt _ J[¢(kl+1 }

1 )
‘= SETI L e

Spyees81)E€AR 11 1

when k' = k + 1 is uneven.
From (2.272) and (2.273) with probability 1 we have

&
J[¢(k+1)}Tt+ Z l Z J[¢(k+1)]§f’%""81. (2.274)

2 (81‘7"-781)€Ak+1,T

J* [¢(k+1)]Tt

7

The relation (2.274) accomplishes proving of the theorem. O

For example, from the theorem 12 w.p.1 we obtain:
*T

/ P1(t1) th /@bl (t1) th )

t

1 xt2 2

[ talta) [ en(t)dwiVdwi? = [(ts) [ (tr)dwi, dwi+

t t t

1 T
+§1{i1=i2¢0}/¢2(t2)¢1(t2)dt2’
t
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T *t2

¢3(t3) .. / '(pl (tl)dwgl) N dW§;3) =

t

s—

ta

T . .
= [Ws(ts)... [a(tr)dwf” .. dwid+
t

t

1 T s i
+5Hi=ioz0} / V3(t3) / o (t2)r () dbadwi®) +
t

t

1 T t3 .
+5 =g 0} / P3(ts)Pa(ts) / 1 () dwi dts,
t

t

«T w2

Yalts) .. [ pu(t)dwy . dwy =

t

e

to

T
= /¢4(t4) - /@bl(tl)dwgl) RN dW§i4)—|—
t t
T t3

1 i is) 7. (ia
o Mimiszoy [ a(ta) [ Ga(ts) [ (t2nlto) dtadwi dwi,+
t t t
T t4

1 7 i i
+§1{¢2:i3¢0}/¢4(t4) /¢3(t3)¢’2(t3) /¢1(t1)dW§1 dtydwii! +
i i i

1 T 71 12 i i
+5 L is=isk0) [ alta)ba(ta) [ alts) [ i (tr)dwt, dwiy dts+
t t

t

1 T t4
+Zl{i1:i27€0}1{i3:z’47&0} / V4 (ta)ePs(ta) / Vo (t2)1)1(t2)dtadty.
¢ ¢

Let’s analyze the stochastic integral of type (1.12) and find its representation,
convenient for following verbal proof. In order to do it we introduce several
notations. Assume, that

J2—1

() &
SN (a) = Z Z Z A(j1,enrfi) s

]k:() -71:0 (.71;7.716)

jST+2_1j3r+1_1 -7.31"‘2_]'j""l"'l_1 .72_]-

(k) N-1
ConCobV @)= X % X X X

jsr+1:0jsr—1:0 jsl—i-l:()jsl—lzo jlz

Electronic Journal. http://www.math.spbu.ru/diffjournal A.172



Differential Equations and Control Processes, N 1, 2017

X z ar

T H Ljs s (J1s--nd )
11;11 Ijsl Jsy+1 (Jl,,]k) =1 Jsprdsy+1\J1 k
Where i
. def | |
ll:[l IjSl,jSl-’_l (]17 o ’]k) - IJST:JSr-l-l “ e Ijsl 7j51+1 (]17 PP 7]k)7
(®) 0 o .
CSo-..CslsN (CL) ( ) H Sl’Jsl+1(]17"-,]k) — (]1’.."]k)7

I" . . . . . . . . @
]l,Jl+1(.7qla'"a](]ga]la](]ga'°°7]qk727]l7]qk717°'°7]qk) -

def , . . . . . . . N
= (]qla vy Ty N1y Jgzs oo vy Jqp—os JI+1s Jqe—19 + + + 7]gk)a

herel:la 2)"';l7£QI7'"7QQ7Q37"'7Qk—27Qk—17"'7Qk:17 27"';817"'757':
1,...,k—1;8.>...> sq; Ay romriay) — scalars; q1,...,qr, = 1,..., k; expression

. > | means the sum according to all possible derangements (jg,, - - -, Jg.)-
Jap r-sJay,

Using induction it is possible to prove the following equality:

k-1 k-
Z Z A (jy,..ejk) Z Z CST Csl Sj(\]rc)(a), (2.275)

£=0 1=0 r=0 sr,...,s1=1
J J S'r’>.z.>51

where £k = 1, 2,...; the sum according to empty set supposed as equal to 1.

Hereafter, we will identify the following records:

A1 ynsin) = UGrege) = D1

In particular, from (2.275) when k£ =2, 3, 4 we get the following formulas

N-1N-1 (
Ay ,j2) = S ( )+ClSN ( )
J2=071=0
N-17-1
:ZZ Z ]1]2+Z Jz]2_
J2=0 71=0 (j1,j2) J2=0
N—-1j2—1
z Z (a’_hjz + anJ1) + Z anJ27
J2=0j1=0 J2=0

=SS 3) 3)
Z_ Z_ Z_ Griads) = S (@) + C1Sy’ (a)+

+C28% (a) + C2C1SP (a) =
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N-1j3—1j2—1 N-1j3—1

= Z Z Z Z a(j1j2j3)+ Z Z Z a(j2j2j3)+

J3=0 72=0 j1=0 (j1,j2,53) J3=0 72=0 (j2,52,3)
N-1j3—1 N-1

+ Z Z Z (51 5343) + Z Ajsjsjs) =

j3:0j1:0 (jl;j3;j3) -73_
N=1j3-1jp-1
=2 2 2 (@jojs + @jijogo + Cjojigs T Qjnjy + oy + Vo) +
]3:0 J2 =0 n =0

N-1j3—-1
+ Z Z (aj2j2j3 + Q25350 + a’j3j2j2) +
713=0 72=0
N-1j3—1
+ 20 Y (@ijsis + Ujngs + Aajsi)
j5=0 j1=0
N-1
+ Z @3 3 (2.276)
Jj3=0

N A ! (4) (4) (4)
S X X Y A ey = Sy (@) + C1Sy (a) + CaSy’ (a)+

Ja=0 j3=0 j2=0 j1=0
+C35W (@) + C2C18W (a) + C5C1SY (a)+
+C3CoSW (@) + C3C2C1S (P (a) =

—1j4—1j3—1jo—1 N-1j4—1j3-1
- Z Z Z Z Z a(j1j2j3j4) + Z Z Z Z a(j2j2j3j4)
J24=0 33=0352=0 j1=0 (j1,j2,53,54) Ja=0 j3=0 j2=0 (j2,j2,J3,j4)
N—]_j4—1 j3—1 N— ].j4 1j2_1
+ Z Z Z Z (1 j3j351) + Z Z Z Z a(j1j2j4j4)+
Ja=0 33=0 j1=0 (j1,j3,J3,j4) J4=0j2=0j1=0 (j1,52,j4,j4)
N-1j4—1 N—-1js—1
+ Z Z ' Z ' A(j3535354) + Z Z Z (j2j2j4j4)+
Ja=0 j3=0 (j3,43,3,j4) Ja=0j2=0 (j2,2,j4,j1)
N-1374—1 N-1
+2 2 X i)t 2 G =
34=0 j1=0 (j1,js,j1,js) Ja=0

N—-1js—1j3—175—1
= Z Z Z Z (aj1j2j3j4 + Qj1j2jajs + Qjy j3j25a + aj1j3j4j2+
j4=0 j3=0 ]2=0 ]1=0
TQjyjsjsjs T Qjyjajajs T Xjojrjaja T
Fjyjijajs T Vojajijs T Ajojajajn + jojajajaT

+jsjsjags T Qjsjijoja T jsjrjajoT
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FQjsjojijs t Qjgjojuji T Vsjajije T Ujsjajoji T
Ty jijojs T Xajijsje T Ujajagrjs T
+ Ajyjajsin + QAjyj35152 + a’j4j3j2j1) +
N-1js—1j3—1
+ Z Z Z (aj2j2j3j4 + Qjsjojags + aj2j3j2j4+
]4=0 ]3=0 ]2=0
T Qjyjsjajs T Xjajsjags T UjajajajaT
FQjsjajojs T Ujygajojs T Vjsjajaje
TQjyjajsje T Xjsjsjajs T aj3j4j2j2) +
N-1j1—1j3—1
+ Z Z Z (aj3j3j1j4 + Qjsjsjajn + aj3j1j3j4+
J4=0 ]320 n =0
TQjsjjsjs T Xjsjagijs T jsjrjajs T
Fjjajsja T Vgjajajs T Wjajajijs T
+aj1j3j4j3 + Qj1 545353 + a’j4j1j3j3) +
N—-1j4s—1j-1
+ 2 2 2 (@jaguge + Bajagois T Wsjijaget
J4=0 ]220 J1=0
+aj4j2j4j1 + Q5251754 + a’j4j1j2j4+
+aj1j4j4j2 + QAjajajas + aj2j4j1j4+

+ @jjogs T Cirjojaje T Cjnjrjais) +

N—-1js—1
+ 20 2 (@ajajoin T+ Gjsjuge T Csjagss + Vjujujoss) +
j4=0 j3=0
N-1j1—1
+ Z Z (a’j2j2j4j4 + Qs jiggoda + aj2j4j4j2+
74=0 j2=0
Fjyjajajs T Cjajajes + Wjjajnga) +
N-1j4+—1 N-1
+ 2 > (@jujaje T Yijujage + Cjgjaguge + Gjajajei) T Do Cjajajaje- (2.277)
j4:0 jl =0 ]4:0

Possibly, the formula (2.275) for any k was founded by the author for the first
time.

The relation (2.275) will be used frequently in the future.

Assume, that

k .
a(]l;;]k) - @ (le? AR T]k) ll:[]- AW§;?7
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where @ (t1,...,1;) — is a nonrandom function of k variables. Then from (1.12)
and (2.275) we have

Jsr+2—1 Jspp1—1 Jsg+2—1js 411 jo—1

im0 Y Y Y ) X

N_)m . _ . _ . _ . _ S
Jk=0 Jsr+1=0Js,—1=0 Jsy+1=0js; -1=0 J1=0 . .
sr+ sr s1+ 81 ll:Il Ijsl7jsl+1 (]1,...,]k)

X

P (le, .. ‘7Tjsl—17Tjs1+17Tjs1+17 .. ‘7Tjsr717TjsT+1?Tjsr+17 .. ‘7Tjk) X

XAWf VAW Aw ) Al

-781 —1 T-781+1 Tjsl—‘rl

..AW(“‘T 1)Aw(“r) Awlisrtt) AW(?’“)] =

JST TJST"Fl 7—]57._;,_1 TJk

:2 S I[@)E wp 1, (2.278)

?
r=0 (sr;---;sl)EAk,T

where

T ts,+3 tsp+2 tsy ts1+3 sy +2 tsy [2)

@)y = [ //// /[ )3 X

t t t t T
ll;ll Itsl ’tsl+1 (tl,...,tk)

"so-

X | P (tla s 7t81—17 ts1—|—17 t81+17 te tsr—la tsﬁ—la tsr+17 R tk‘) X

xdwi™ . dwi Ddwy ) dwi ) g

1 sy +1 tsy+1 sy 42

dw,ﬁz” )dw,gz”) dw(i8r+1)dw(i3r+2) o dwgk) (2.279)

ts.t1 ts 42 )

def

and Z = 1, k > 2; the set Ay, is defined in theorem 12 (see (2.265); we suppose,

that rlght part of (2.279) exists as Ito stochastic integral.

Remark 3. The summands in the right part of (2.279) should be understood
as follows: for each derangement from the set

ll:[ bopstp i (ELs <+ o5 k)
it is necessary to perform replacement in the right part of (2.279) of all pairs

(their number is r) of differentials with similar lower indezes of type dW,gi)th(Z )
by values 1gi—j101dt).
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Using standard evaluations for the moments of stochastic integrals we get:

2n k=l 81,5---38p
{7t <ouy ¥ m{jrem

r=0 (Spyeeey81)EAL,
2
w { e} <

2"} , (2.280)

T tsr43 tsp42 s, ts1 43 tsy+2 bsy to
Yol T A Y OO Y O 000 B SR
t t ot ot t ot ot t lglltsl’tsl“(tl’m’tk)
XO (t, ..t 1, te o1, tsia1y - - s bsy—ly ts, 1y s t1y - - - L) X
thl ca dtsl_ldt51+1dtsl+2 ca dtsr—ldtsr—l-ldtsr—ﬂ ca dtk, (2281)

where derangements in the course of summation in (2.281) are performed only in
@211(. . .); Chk, 081 < oo,

Lemma 4. In conditions of theorem 10 wvalid the following relation

JIKHE) = P Wy w. p. 1. (2.282)

5

Proof. Substituting (2.258) in (1.12), using lemma 1 and remark 2, it is easy
to see, that w. p. 1

* 1 Spry...,81
JIK ]C(Z{?f:*]w)(k)]T,t‘i‘ > Y J®e, (2.283)

(Spyeer81)EAL ;-

ﬁ
hi M ol
i,

where the meaning of theorem 12 notations is kept.

The affirmation of lemma results from (2.169) in accordance with theorem 12
0.

Using lemmas from the proof of theorem 1 we get:
k
T WO, = 20 20 Cci n G+ TRy pdify w1 (2:289)
= Jk
where stochastic integral J [Rpl,__pk}gf % defined in accordance with (1.12) and

Rp1---pk (tb AR tk) = K*(tb s ) Z Z CJk Ji H ¢Jl (tl) (2'285)

Jj1=0 Je=0

(i) _ }1¢ (S)dW(”)
Ji L. s’y P1y---, Pk < OQ.
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At that, the following equation is executed pointwise in (¢, T)* in accordance
with theorem 11:
lim ... lim R, ,(t1,...,t) =0. (2.286)

pP1—00 pk—>oo

Lemma 5. In conditions of theorem 10

lim ... lim M {‘J[Rpl_upk]%,)f

P1—00 Pr—0Q

2n
}:0, n e N.

Proof. According to (2.258) and (2.285) we have the following in all internal
points of the hypercube [t, T]*:

Rplpk (tl, PR ,tk) -

k k-1 -11 k-l
1 t) (T o+ 5 5 & Ml T o) -

sr,.-ns1=1 =1

sr>...>81 l:,tsl ..... sr
- Z Z Clis.i H i, (t1)- (2.287)
51=0 jr=0
Due to (2.287) the function Ry, ,,(¢1,- .., tx) is continuous in the domains of

integration of stochastic integrals in the right part of (2.278) and it is bounded at
the boundaries of these domains (let’s remind, that the repeated series

[ele] & k
Z e z Cjk...jl ll:Il ¢jl (tl)

J1=0 Jr=0

converges at the boundary of hypercube [¢, TF).

Then, taking Ry, p, (t1, ..., tx) instead of ®(¢y, ..., t;) in (2.280), (2.281) and

performing the repeated passage to the limit p}l_I)I(l)o ...pll_lgnoo under the integral

signs in these estimations (like it was performed for the two-dimensional case),
considering (2.286), we get the required result. Lemma 5 and theorem 10 are
proven. U

Note, that in accordance with theorem 10 we may approximate the multiple
Stratonovich stochastic integral J* [1/)(k)]T,t using the expression

J*[p®) JriPh = 20 ZOC]k gt H Cﬂ S DL, ..., PR < OO. (2.288)
= Jk

It easy to note, that if we expand the function K*(t4,. .., %) into the Fourier
series at the interval (¢,7T) at first according to the variable ¢, after that according
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to the variable t;_1, etc., then we will have the expansion:

K*(th e ) Z Z C]k Ji H ¢.7l(tl)

=0 5=
instead of the expansion (2.259).
Let’s prove the expansion (2.289).
Similarly with (2.243) we have:

00 (L1 et + 2] = 55 [ ()6, 001t 0],

Je=0¢;" 4

(2.289)

(2.290)

which is executed pointwise at the interval (¢,7), besides the series in the right

part of (2.290) converges when t; = ¢, T.

Let’s introduce assumption of induction:

Z Z Pa(t2) /?ﬁs (t3) Py (3) - -

Jr=0 Js=

T

/mw%mmmmﬁ%@:

tp_1

= H T/)l(tl)

=i

1
<1{tl<tl+1} -I_ il{tl:tl—i-l}) .

Then

its
M8

1(t1) /¢2 (t2) ), (t2) - .

O

00
S
Jk=0
T

- ¢k(tk)¢jk(tk)dtk...dt2l1:[2 by () =

J3=0 jo

00 00 1
- Z st Z ¢1 (t].) (1{t1<t2} —I_ 51{t1=t2}> ¢2(t2) X
Jk=0 J3=0

T T k
x [ s(ts)gs,(ts) . [ ¢k(tk)¢jk(tk)dtk...dt3l1—[3 di, (1) =
to te—1 -
1 0 e}
=1 (t1) (1{t1<t2} + 51{t1=t2}> Z o2 Pate) x
k=0 j3=0

/ V3(t3) by, (t3) - / Ui (tr) @5, (tr)dty, . . . dts 11:[3 ¢;(t) =

tr—1

(2.291)
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k-1

1 k 1
= 1(t1) (1{t1<t2} + 51{t1=t2}> 11:12 () 11 (1{t,<t,+1} + il{tl:tlﬂ}) =

=2
k-1

k 1
= l[[l i(te) 11 (1{t,<t,+1} + il{t,:tm}) : (2.292)

I=1
On the other side, the left part of (2.292) may be represented by expanding
the function

1(t1) /¢2 (t2) by, (t2) - / Ur(tr) dj, (tr)dty - . . dts

tp—1
into the Fourier series at the interval (¢, T") using the variable ¢; to the following
form:

Z Z C]k Ji H ¢J: (tl)

Jk=0 n=
where we used the followmg replacement of order of integrating:

/ Y1 (th) / Ya(t2) by, (t2) - / Yr(te) @), (te)dty . . . dtadty =

tr—1
T ts t
/ (t) ;. (tr) - /¢2(t2)¢j2 (t2) /¢1(t1)¢j1 (t1)dtidty . .. dty, =
t t t
= Cjk---j1'

The expansion (2.289) is proven. So, we may formulate the following theorem.
Theorem 13. Assume, that the following conditions are met:

L ¢i(r); @« = 1,...,k — are continuously differentiated functions at the
interval [t,T].

2. {dj(x)}520 — s full orthonormal system of Legendre polynomials or
trigonometric functions in the space Lo([t,T]).

Then, the multiple Stratonovich stochastic integral J*[¢®]r; of type (1.2) is
expanded in the converging in the mean of degree 2n' n € N, repeated series

J[ ]Tt—z ZCJk JIHCJ )

Je=0 =
- T .
where C};’) = [ ¢;,(s)dw( are independent standard Gaussian random variables
t

for different i, or 5 (if 4 # 0);

k
Cjk---.h = / K(th < tk) H ¢jl (tl)dtl ... dtg.
[t,T]* =1
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2.8 Expansion of multiple Stratonovich stochastic integrals
of 2nd, 3rd and 4th multiplicity, based on generalized
multiple and repeated Fourier series. Another proof of
theorems 3, 6 and 8

In this section we analyze the method of expansion of multiple Stratonovich
stochastic integrals of the 2nd, 3rd and 4th multiplicities, which is a modifica-
tion of theorem 10 (we analyze new passage to the limit in this theorem for
k = 2, 3, 4) and provides a possibility to obtain new and significantly differ
proofs of theorems 3, 6 and 8 than those, that were presented earlier. See theo-
rems 14 — 16. These results create an entire picture about expansion mechanism
of multiple Stratoinovich stochastic integrals, using multiple and repeated Fourier
series.

2.8.1 The case of integrals of 2nd multiplicity. Another proof of the
theorem 3

Let’s formulate here the theorem 3 and consider the another proof of this theorem.
Theorem 14. Assume, that the following conditions are met:

1. The function o(7) is continuously differentiated at the interval [t,T] and
the function 1 (7) is two times continuously differentiated at the interval [t, T].

2. {¢j()}529 — is a full orthonormal system of Legendre polynomials or
system of trigonometric functions in the space Lo([t,T]).

Then, the multiple Stratonovich stochastic integral of the second multiplicity

«T )

T ®Nre = [ a(t) / i (t)dwDdw(™ (iy,i = 0,1,...,m)
t

15 expanded into the converging in the mean-square sense multiple series
1 (2) A (i2)
= g & £ Gt
: T .
where CJ(;’) = [ ¢;(s)dw®) — are independent standard Gaussian random vari-
t
ables for various i or j; (if i # 0);

Ciain = [ K (b1, 12)j, (11) 3, (t2) dtadiy;
[t,T]?

Electronic Journal. http://www.math.spbu.ru/diffjournal A.181



Differential Equations and Control Processes, N 1, 2017

_ [ i(t)a(ta), t1 < ta
K(t, 1) = {0, otherwise bt €[4T

Proof. Using the scheme of proving of theorem 1 and (2.232) w.p.1 we get:

R )
J [ }Tt - Z Z CJQJIC] 72 11711?27 (2'293)
71=0 72=0
where
T to T t
11;’1{&)2 - //Gp1p2 t17t2 th th +//Gp1p2 tl,tQ th th —I—
t t t t
T
+1{i1:i27é0}/Gp1p2 (thtl)dtl;
t
def N pP1 D2
GP1P2(t17t2) =K (tlatQ) - Z Z Cj2j1¢j1 (t1)¢j2(t2);
J1=0 j2=0
P1, p2 < O0;

1
K*(t1,t2) = K(t1,t2) + 51{t1=t2}7/’1(t1)¢2(t1)7
where tq,t3 € [t, T].

Using standard properties and evaluations for the moments of stochastic in-
tegrals, we obtain

{ p1p2 2}

T t2 L

=M { (//GPIPQ t1,12) dwt th +/
t t t

T 2
+1{i1:i2750} (/ Gp1p2(t17t1)dt1) <

ﬂ-\ﬁ
—

2
Gp1p2 tl,tg dW,g )dW,g )) }

151

T t, .
(/ Gopups (t1,12))” dt1dts _|_//
t tt

t

T 2
+1{i1=i27é0} (/ (GP1P2 (thtl)) dtl) =

t
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T 2
=2 [ (Gpp(ts, 12))” dtrdts + 135,_i, 20y (/ (Gp1p2(t1,t1))dt1) . (2.294)

.17 t
We have:
| (G (t1,12))? dtrdty =
[t,T]
P P2 2
=/ (K*(tlatz)— > > Cj2j1</>j1(t1)¢j2(t2)> dtydty =
[t,T]2 J1=0j2=0
D1 D2 2
=/ (K(tlatz)) ZOZ nggl%(tl)%(h)) dtrdts.
[t,T)? J2

The function K (t1,t2) is sectionally continuous in the square [t, T]?. At this
situation it is well known, that the multiple Fourier series of function K (t1,%3) €
Ly([t, T)?) is converging to this function in the square [t, T]? in the mean-square

sense, i.e.
p1

Pk
i [t 0) = 35 5 o 164000 =

P1,P2—0 0-72_0

where || ]| = ([t I Pt ta)dnde)
So, we obtain:

LN /] (Gt )" dtrdty = 0 (2.205)

Note, that

T
[ (Gpps(tr, 1)) dts =
t

—/T(1¢<t>w<t>—i ic--¢-<t>¢-<t>)dt -
_t21121 =0, J21 P71 \11) P\ U1 1=

J1=0j2=0

D1

T D2
= %/%(h)%(h)dh Z > Chji /0531 (t1) b5, (t1)dtr =
t

0j2 0

D1

1 T D2
= §t/¢ (t1)¢2(t1)dt1 - Z Z Cjzjll{Jl_D}

=0 ja=

min{p;,ps}

T
= %/%(tl)%(tl)dﬁ - _ZO Ciji - (2:296)
t =
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In the section 2.1 we proved, that

T o
% [i(t)ia(t)dty = Y Cyij,. (2.297)
t

71=0
From (2.294) — (2.297) it follows

lim M{(REP)*} =0.

P1,p2—00

Theorem 14 is proven. O

2.8.2 The case of integrals of 3rd multiplicity. Another proof of the
theorem 6

Let’s formulate here the theorem 6 and consider the another proof of this theorem.

Theorem 15. Assume, that {¢;(z)}32, — is a full orthonormal system of
Legendre polynomials or trigonometric functions in the space Lo([t,T]), func-
tion a(s) — is continuously differentiated at the interval [t,T] and functions
P1(s),3(s) — are two times continuously differentiated at the interval [t,T].

Then, for multiple Stratonovich stochastic integral of 3rd multiplicity

T *13 *t2
TN = [ slts) [ alta) [ wn(tr)dEi el a
t t t

(11,42,i3 = 1,...,m) the following converging in the mean-square sense expansion
P Ny g
o, = 13 o i) s(i2) ~(is)
T = Lim. ngj  Cnien GGG (2.298)

1s reasonable, where

T s S1
Cj3j2j1 = /¢3(8)¢j3(8)/1122(81)%‘2(81) /¢1(82)¢j1(82)d82d81d8;
t t t

another denotations see wn theorem 1.

Proof. Let’s consider (2.251), when py = ps =p3=p:

E) L& & (ir) 1(i2) (i5) | poppp
S e = ,ZO ,ZO _ZOCMJ-I 2GR + R (2.299)
J1=Y 2=V J3=
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w.p.1, where
— N-1N-1N-1
. Z Z Z
R =lim. Y 3 5 Gpplm,, 7, 71,) AFD AL AL,
=00 13=0 1,=0 1;=0
b

Gl 2 15) & K1, 2,15) = 32 32 37 Crio ()61 (1)64 )

=0j2

’ 1
K*(tla t27 t3) = H ¢l(tl) (1{t1<t2}1{t2<t3} -+ 51{t1=t2}1{t2<t3}+
=1

1 1
+§1{t1<t2}1{t2:t3} + Zl{tlztz}l{t2:t3}> .

Using (2.276) for multiple sum w.p.1 we get:
—~1N-1N-1
Rg{’f = L.im. Z Z Z Gppp(Tll,le,Tl3)Af i) Af i2) Af is) =
N=00 1,20 1,=0 1,=0
—1l3-115—-1 . . .
Cim S X (Gomp (7, 71,0 7, ) AEED AL AF) 4

N—o0 l3 0 l2 0 ll
l 7 7
+GPPP(7-117 Tl37 le A 1 Af 2 Af 3

Tll

)
G op\Tlys Tly s Tlg)A 11 Af io Af(lg)
JAEIAFD AL 4

(
+Gppp(T1y Tt Ty
+Gppp(7'l3, Ty Tll)Alel; Afnzj Afnll3 +

+GPPP(T13’ Tly s le)Af7§;31)Af7('1212)Af7§;23)> +

—113-1
Him Z 2 ( ppp(Tl27Tl27Tl3)Af i1) AleZ2 Af i3) |
N=00 1,20 1,= 2

Gl (g, Tty 1) ALY AL AL+
+Gppp(Tl3’ Tlys le)Af7§;31)Af7('1222)Af7§;23)> +

—113-1
Him. Z 2 ( ppp(TlnTl3,Tl3)Af i1) AleZ2 Af ia) |
N=00 1,=0 1= :

+Gppp(7'lg ) Tlys Tls) AfT(l’;) AfT(lil‘Z) AfT(liB) +
+Gppp(7'l3a Tlg) Tll)Afr(zi;)AfT(zZ:)AfT(zif)) +
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N-1

+lim. Z Goppp(Tis Tiss Tl3)Af(“)Af(’2)Af@3) _
N—ooo 7.—
_ R%zfppp + Rglppp’
where
1
R(T }ppp _

~~
w

S~
M

Gpp(t1, to, t3)dE dE(? dE( +

H‘\bﬂ @F\H eo-\H ﬂ\’ﬂ w\j ::H

w
~~ ) ) N N

no

Gpp(t1, 3, ta)dfSV dES AL+

+

H-“‘\

w

Gppp(t2, 11, tg)dft(f2)dft(2il) dft(;3) n

+

ﬁ-"*\

w

Gppp(tQ, i3, tl)dft(f3) dft(jl) dft(;‘z,)_'_

_|_

:*”‘\

w

Gppp(t& i, tl)dft(f3)dft(2i2) dft(;l)-l—

_|_

eo-ﬂ-\

+ [ [ [ Goplts, ta, t2)df Ve df);
¢t
2
R} ;ppp _

Tt
= 1{z'1=z'27é0}//Gppp (t2, 12,13 dt2dft

¢t

Tty

1, =igz0y [ [ Cupplta, s, ta)dtadfs )+
t
T t3
+Liiyisro) | [ Gomp(ts, ta, ta)dtadfl, "+
t t
T t3

+1{i2=i3#0}//Gppp(tlat37t3)dft(1il)dt3+
t

~

T t3 .
‘|‘1{i1=7j37$0}//Gppp(t3,tl,tg)dft(fz)dtg-l-
t t
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T ts '
+1{i1=i2¢0}//Gppp(t3at3atl)dft(f3)dt3-
bt

We have:

M { (REE7)°} < 2m {(R;{?pp)z} +2M {(R%pppf} . (2.300)

Now, using standard estimations for moments of stochastic integrals we will
come to the following inequality:

2
M {(Rgril}ppp) } <
T t3 to
< C// ((Gplmpz (t1, to, t3))2 + (Gpypops (tl,tg,t2))2 +
t t t
+ (Gplpzps (t27 t1, t3))2 + (GP1P2P3 (t27 ts, tl))2 + (GP1P2P3 (t37 to, tl))2 +

+ (Gprpops (T3, 11, tz))2> dt dtodts =

- / ppp t17t27t3)) dtldtzdt;;,
[t T

where C' — is a constant.

We have:
/ (Gppp(tla la, t3))2 dtidtodts =
[t.T]?
. p P P 2
= / (K (tla t27t3) - Z Z Z Cj3j2j1¢j1 (t1)¢]2 (t2)¢j3 (t3)) X
[t,T]3 71=0 72=0 53=0
X dt1dtodts =
2
= / (K(tl, t27 t3) z Z Z CJ3J2]1¢J1 (t1)¢]2 (t2)¢]3 (t3)> X
[t,T]3 =0 j2=0 j3=
thldthtg,
where

t) o (ta)s(ts), b <t <t
K(t17t2,t3):{gbl(oiglfi\fviz)e¢3( s i<b<ty 4 belT).

So, we get
: (ppp) 2
plgglo M {(RT’t ) } N
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p p p 2
i, [ (K- £ £ £ o) x
= .72= 3=0

p—0o0
[t.T]°

thldtgdtg, = 0, (2.301)
where K (t1,t,13) € Lao([t, T]3).

After the integration order replacement for Ito stochastic integrals (see theo-

rem 19) in R})ppp w.p.1 we obtain:

2
R(T }ppp _

t3
(13)

T
= 14, 2ir20) ( / / G ppp(ta, 2, t3)dtadf)
t t
T
+/
t
T ts
143,y 40) ( [ [ Gupplts, ta, ta)dtodf}
t t
T
+/
t
t3

T
110, =iz0} (//Gppp (t2,t3,t2) dtzdft( 2)
ot

t3
Gpp(ts, s, t1)dE” dtg)

t

t3
Gppp(t1, 13, t3)dft(“)dt3>
t

t3

T
+//Gppp (3,11, 3 df't1 dt3> _
t
T t, |
e 1{7/127/2750} (//Gppp(t27t2’tl)dt2dft(17'3)_|_
t i
+//Gppp(t2,t2,t1)dt2dft(f3)>+
t i

Tt _
iy ro) ( [ [ Golt, ta, t)dtodeV+
t t

T T
+//Gppp(tlatQ,tg)dthft(lzl)>+
t i
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T t;
+1{i1=i3750} (/ / ppp tg, t1, tQ dtzdft(%)

T T
+// wop(t2, t1, 12) dthft(”)) _
t

T
- 1{11—12760}/ (/ Gppp t27t27t3 dt2 dft
t

T
+1{12—Z3¢0}/ (/ Gppp tlatQatQ dtQ) dft
t
T
1= z3¢0}/ (/ Gppp(t3, 12, 13 dt3) dft =
t

T
= 1{i1=i2¢0}//<< Lity<ty) + 1{t2 t3}>¢1(t2)¢2(t2)¢3(t3)
t ot

J

p

1= méO}//(( Lin<e) + 5 1{t1 t2}>¢1(t1)¢2(t2)¢3(t2)
t t
p p

p )
> ZO Cisjogr @5 (2) D4y (t2) D (t3)) dt2df} S+
1 2 J3

=0 jo=0 js=

— Epl > 2 Cijin &4y (tl)%(t2)¢j3(t2)>dt2dft(f1)+
n=

0 j2:0 ]3:0

TT
Himicrn) | [ (FLmbr(te)ia(t)v(ts) -
t t

- Z Z Z J3Jz.71¢]1 (t3)¢32 (t2)¢33 (t3)>dt3df(2iz) =

=0 j2=0 j3=0

T 4 t
= 1{i1:i2¢0}t/<§¢3(t3) t/¢1(t2)¢2(t2)dt2—

P& (i3)
-> > ngj1j1¢j3(t3)>dft3 +

J1=03j3=0

T 1 T
i [ (G(0) [ sttt

D p (11)
— > > Cljin®i, (t1)>dft1 +

J1=0j3=0
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+1{l1_l37£0}/ Z Z C]1J2]1¢]2(t2)df( 2) =

0]2 0

| T t5 .
= 1y, =i,20) <§/¢3(t3) /¢1(t2)¢2(t2)dt2dft(3 )
¢ ¢

Lo (is)
— 2 > CijiinG, )+

51=073=0

T

T .
+1{i,—iy 20} (% / P1(t1) / U (t2) 3 (t2) dtadf) —

t

D p (11)
=2 > CupinGj )‘

71=073=0

V4 b (’L2)
~Liimizoy 2 2 CiiinGyy -

J1=073=0

From theorem 6 we obtain:

—_
!
o~

w

< C<1{i1=i2#0}M{<§/¢3(t3) t/¢1(t2)¢2(t2)dt2dft(3is)—

t

-5 5 )

J1=03j3=0

T

T .
+1{i2:i3#0}M{<%/¢1(t1)/¢2(t2)¢3(t2)dt2dft(fl)_
¢ i

-5 % Gt J

J1=073=0

+1{i1=i3¢0}|\/|{<2 Z Cirinii G )2}) —0 (2.302)

0j3=

when p — oo, where C' — is a constant. From (2.299) - (2.302) we get the
expansion (2.298). Theorem 15 is proven O.
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2.8.3 The case of integrals of 4th multiplicity. Another proof of the
theorem 8

Let’s formulate here the theorem 8 and consider the another proof of this theorem.

Theorem 16. Assume, that {¢;(z)};2, — is a full orthonormal system of
Legendre polynomials or trigonometric functions in the space Lo([t, T1]).

Then, for multiple Stratonovich stochastic integral of 4th multiplicity

xI xts xt3 xto

I&jﬁﬁi)ﬂ :/ / / / dwt dwt dwt dwt

tot ot ot
(11,142,13,%4 = 0,1,...,m) the following converging in the mean-square sense ez-
Pansion
*(iiaizia) 7 o i) s(i2) (i) #(ia)
(A1A2A3A4)T,t—1]51_-}g10- _ Z CiijsinirCir Sio Sjs Gy
.717.727.737.7420

1s reasonable, where

T

Ciusioin = | $i4(5) [ #s(51) [ b3 (s2) [ 85, (s3)dsadszdsids;
t t t

t

: T .
C;l”) = [¢;(s)dw — are independent standard Gaussian random variables
t
for wvarious iy or j; (if i # 0); w) = £0 — are independent standard Wiener
processes; 1 =1,...,m andwﬁo) =7 =04y =0and =144, =1,...,m

Proof. Let’s consider (2.284) when k =4, p; = py = p3 = py = p and ¥ (s),
Pa(s), ¥3(s), Ya(s) =1

I*(i1i2i3i4) _ P & C: oo (1) f(i2) ~(i3) »(ia) Rpppp 1. (2.303

A ds )Tt — le:o;::o z::ojgz::o JajsiziriSji Sja Sz Sia w. p. 1, (2.303)

where

~1N-1
pppp _
R Lim. Z Z Z Z Gpppp(TlmTlgaTlglelt)AW(“)AW(h)
N—=00 1,20 13=0 1,=0 l,=

7'13 774 Y
def *
Gpppp(t17 t27 t37 t4) = K (tb tQa t3a t4)_

= i DIDS Ciagageis @i (1) 05 (b2) b5 (£3) D5 (84),

71=0 72=0 73=0 j4=0
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3 1

. def

K*(t1,ta,t3,t4) € ] (1{tl<t,+1} + El{tl:tlﬂ}) =
=1

1 1
= Lyt <ty<ty<ts) + 51{t1:t2<t3<t4} + 51{t1<t2:t3<t4}+

1 1 1
+Z]-{t1:t2:t3<t4} + 51{t1<t2<t3:t4} + Zl{t1:t2<t3:t4}+

1 1
+i 1{t1 <t2:t3:t4} + g 1{t1 :t2:t3:t4} .

Using formula (2.277) for muliple sum we get:
T
R = 5 B, (2300
=0

where

(O)ppop N-1l—113—11,—1
R —lim. 5 55 5 (Gl meymm,) %
N=00 1,20 13=015=01,=0 (I la,l3,l4)

X AW AW AwDAwY),

where summation according to derangements (I1, l2, I3, l4) is performed only in the
expression, which is enclosed in parentheses;

N-1
(Lpppp _ :
Ry = 1y mip0pl1m. ) Goppp(Tiy» Tty Ty Tiy) X
N—=oo I4.,13,11=0
1 #l3,0 #la d3 2l
X Am, Aw) Aw(io),
N-1
R@prrp _ 1 ] Gpppn )X
Tt = L{iy=ig#0}L.1.M. > pppp\Tl1s Tlay Tlys Ty
N—oo 14,l9,l1=0
Iy #lol1 #ly,lo#ly
x Ar, Aw? Awli),
N-1
RGwpPP _ g ] 3 G pppn )X
T = L{i=i,#0}L1.1M. pppp\Tl1s Tlas Tlyy Ty
N—o0 13,129,011 =0

11 #l9,l1#£l3,la#l3

X An, Aw Awl),
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N-1
(4)pppp __ .
RT,t = 1{i2:i3¢0}1.1.m. Z Gpppp(Tll, Tloy Tlys 7'14) X
N—oo l4,l9,11=0
1y #lo,l1 #lg doF#ly

x Awi Az, Awli),

T Tiy

N-1
(5)pppp __ :
Rry ™" = Lgi,=i oyl im. > Gpppp (Tl 5 Tla Ty Thy) X
N—o0 13,l9,11 =0
L #lyl1 #13,l2 713

X Awgll) ATbAWS_fs) ,

N-1
(6)pppp __ :
RT,t - 1{i3=i47é0}%\'[1;)m' Z Gpppp(Tllg Tlys Tl3; Tlg) X

o0 I3,l9,11=0

1y #lolq #lg,la#l3

X Awgll) AW%) ATy,

N-1
— 1{i1=i2750}1{’i3=’i4750} lim Z GPPPP(le Tlyy Tlys 774) X

N—oo

(7)pppp
Ry}
l4,l9=0

la#ly

XAT12AT14+
) N—-1
+1gi=ig 0} L{iz=isz0} lim > Goopp(T1a, 145 Ty, 1) X

=00 4,15=0

lo#ly
><A7'12A’/"l4
N-1
+1{i1:i4¢0}1{i2=¢3¢0}]\}i_f>ﬂ | IZ 0 Gopop(Tla > Tl Tias Tiy) X
4502=

lo#ly

XATZQATLI.
From (2.303) and (2.304) it follows, that theorem 16 will be correct if

p—00

. 2
lim M{(R%}fppp) }:o; i=0,1,....17

We have (see (1.13)):

T
RO _ t/ t/ t/ t/ 5 (Gpppp(tl,tQ,t3,t4)x
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X th th th dwt ) y

where summation according to derangements (1, to,t3,t4) is performed only in
the expression, which is enclosed in parentheses.

From the other hand (see theorem 1):

ty t3 to

T
R;O,)pppp ////Gpppp (t1,t2,t3,t4) X
tttt

(t1 ,t2 t3,t4)

de,g )dw,g )dw,g )dW§ ),

where derangements (t1,...,%t4) for summing are performed only in the values
dwgl) e dwg“), at the same time the indexes near upper limits of integration in
the multiple stochastic integrals are changed correspondently and if £, changed
places with ¢, in the derangement (¢y,...,%4), then 4, changes places with ¢, in

the derangement (iy, ..., ).

So, we obtain:

T ty ts ts

M {(Rég)pppp) } //// ppPP tl; t27 tg, t4))
tl;tQ; )t ottt
thldtgdtgdt4 =

=C / (Gpppp(tl, 9,13, t4)))2 dtldtzdt3dt4 — 0,
[t.T]*
if p— 00; K*(t1,t2,t3,t4) € La([t, T]*), where C' — is a constant.
Let’s consider R( JPPRP.
(Wpppp _ - e
Rypi ' = 1yg,—i,201lim. > Gpppp (Tl Ty Tisy iy ) X
N—o00 14,1351 =0

Ly #l3,l1#ly A3 F#ly

X Am, Aw) Awli) =

1{11—12750}1 1.1M. Z Gpppp(Tlv Tlyy T3 7-14) X

OO 1yl =
l3¢l4

XATllAW is) AW 24 =

N-1 /1
= 1{21 22760}11m Z (21{Tl1<7'l3<7'l4}+

N—ro0 ly,l3,l1=
I3#l4

Electronic Journal. http://www.math.spbu.ru/diffjournal A.194



Differential Equations and Control Processes, N 1, 2017

1 1 1
+Z]‘{7'11=T13<Tl4} + 11{7'11<T13:Tl4} + él{Tl12T132T14}_

D
- Z Cj4j3j2j1 ¢j1 (Tl1 ) ¢j2 (Tl1 ) ¢j3 (Tls ) ¢j4 (Tl4)> ATh AW(%) AWS;:)

J4,J3,J2,51=0

N-1 1
= 1g,—i,20plim. 3 (—1 —
1—12750} i - {Tl <T,<T] }
N— lq,3,11=0 2 ! ° !
l3#ly

p . .
- Z Cj4j3j2j1 ¢j1 (Tl1)¢j2 (Tl1)¢j3 (Tls)¢j4 (Tl4)> AT, AWg:)AW%E)

j45j37j27j1:0

—-1N-1/1
=1q 127é0}1 1_{?@ 142:0 1320 llz (2 {ny <my<my}—

p . .
- ) Cj4j3j2j1 ¢j1 (Tl1)¢j2 (Tll)ﬁbjs (Tls)¢j4 (Tl4)> A, Ang)AW%j)

J4,J3,J2,51=0

N—-1N-1
1{“_12#0}1{13 Z4;‘50}11Hl Z Z (0—

N—=oo 1,—0 1=

p
- Z Cj4j3j2j1 ¢j1 (Tll ) ¢j2 (Th ) ¢j3 (774 ) ¢j4 (774 )) ATh ATL; =

j45j3 7j2)j1:0

T t4 t3 p . .
1{21 12#0}< ///dt th th o Z Cj4j3j1j1CJ(33)CJ(44)>+
t t t

j45j35.71:0
p
+1{i1=i27&0}1{i3=i4;&0} Z Cj4j4j1j1 w.p.1l.
Ja,71=0
In theorem 8 we proved, that

[2)

1 7
lim Z CJ4J431J1 = 4 t/ t/ diqdts;

_)
P .74;.71—0

ty t3

f//dt dw!?dw!™ 4
t t t

T t2
+1{z3 14750} //dtldtg W.p. 1.

p
l.im. Z Cj4j3j1]1 ]3 .74 =

L .745.737.7120

l\.’)l»—l

Then
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. 2
Let’s consider R(T}p PP
N-1
R(z)pppp . 1 i . 1 : m Z G ( )X
Tt = Lir=is#0} 1.1 pppp\Tlys Tlys Ty Tly
N—o0 I4,l9,11=0

l1#l,l1 Al lo#ly

x A, Aw(?) Aw (1) =
2 4

N-1
— l{ilziﬁéo}l.i.m. Z Gpppp(Tll, Tlyy Tly 5 Tl4) X
N—oo lg,l2,11=0

Iy #ly
x Az, Awl Awlid) =
1 N-1 1 1
:]—izi d.m. _1’7':7' i _1T=T=T_
{i1 37’50}N1_>I£10 14,12,110<4 {n,=7m,< 14}+8 {my,=mn,=m,}
la#ly
p
- Z Cj4j3j2j1 ¢j1 (Tl1)¢j2 (le)d)js (Tl1)¢j4 (Tl4)> X
J4,J3,J2,J1=0
x Az, Awl Awlid) —
] N—-1N-1N-1 p
= Lmizopldm. 320 3 3 (=1) 3 Clujegain
=0 14=0 1,=0 ;=0 Ja;J3,J2,J1=0
X ¢j1 (Tl1 ) ¢j2 (le ) ¢j3 (Tll ) ¢j4 (Tl4 ) ATll Ang) AWS’?:) -
] N—-1N-1 p
~Liimigzo Lio=iizopl . 20 30 (=1) - X0 Gl X
=0 14=0 ;=0 J4,335J25J1=0
X ¢j1 (Tl1)¢j2 (Tl4)¢j3 (Tll)¢j4 (Tl4)ATl1 ATM =
_ b C (i2) (i)
= —Li=isz0y > CiiioinCjy G T

.747j27j1:0

p
1 =isz0y o=t} 2 Cigjrjajs W-P-1.
j4)j1:0
In theorem 8 we proved, that

D . .
. (i2) ~(i4) _
Lim. > ChjipinGy G, =0 w.p.l,
.747.725.71:0

p
hm Z Cj4j1j4j1 = 0.

— .=
P01 51i=0
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Then 2
. (2)pppp
Jim m{(REP)"} =0
Let’s consider RT 3)pPrP.
" ‘ N-1
RT PPPP 1{1'1:@'4750}1.1.111. Z Gpppp(Tll, Tlyy Tl 7-11) X
3 N_)OO l3’l2,11:0

11 2oyl #l3 do#l3

X Az, AwlP Awle) =
N-1

=14,= z47é0}1 im. > Gpppp(TlnleaTl3aTll)X
N—=00 1515.1,=0

x A, Awl Aw (i) =
1 Tiq Tig

N-1 /1
1{11_14#)}1 1.101. Z (81{771:712:773}_

N—=00 1315,1,=0
lo#l3

p
- Z Cj4j3j2j1 ¢j1 (Tll ) ¢j2 (le ) ¢j3 (Tl3 ) ¢j4 (Tll )) X

J4,J3,J2,J1=0
x Az, AwliP Awl) =
—-1N-1 p
= Lii=izopl . Z Z (1) X Gl X
N—=00 13=0 1,=0 1,=0 J4,J3,J2,J1=0
XQj (Tl1 ) Pj, (le ) Djs (Tls ) D, (Tll ) A, Ang) AW%) -
N—-1N-1 p
~Li=icrop L {ip=igropl - M0 ZZO lZO(—l)j ijj OCj4j3j2j1><
3 1 4,)35]25]J1=
X ¢j1 (Tl1)¢j2 (Tl3)¢j3 (Tl3)¢j4 (Tl1)ATl1 A7-l3 =
— 1. o i) )
{i1=i4#0} Z JaJgsJ2JaSjs  Sj3 +
.74;]3:.72:0

p
L =it} Lis=igz0y 22 Clsjajnjs W-p-1.
Ja,j2=0

In theorem 8 we proved, that

: % (i2) -(ia)
Li.m. Z Cj4j3j2j4 ; =0 w. p. ].

—00 . = J2 5]
b Ja,J3,52=0
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lim Z Clisjajais = 0-

pe0 Ja,J2=0

Then 5
lim M {(R&i”%”f’pp) } ~ 0.
pP—00 )

Let’s consider Rg,w JPPpp.,

(4)pppp Nl
Rrp ™" = 1{i,=izz0pl1m. ) Gpppp (T1y» Thys iy, T1y) X
N—o0 Ig,09,l1=0

Iy #lo,ly #lg o #ly
(i1) (ia) —
X Awy VAT, Awp Y =

= L{pp=igzoplim. > G0, 71y, Ty5 T1) X

N—oo I4,l9,11=0
Iy #ly

X AWS_ZI)ATbAng) =

N-1 1
= 1{22—237&0}1 1.111. Z (51{771 <772<7'l4}+

N—=0oo 4,15,0,=0
L7l

1 1 1
+Zl{7—11:772<7—l4} + Zl{Tll<le=Tl4} + él{T112T122T14}_

o zp: Cj4j3j2j1 ¢j1 (Tll ) ¢j2 (le ) ¢j3 (Tlg ) ¢j4 (7-14)) AW AT AW i4)

j47j37j2)j1:0

. N-1 /1
:1{i2=733760}¥\-71;>m- Z (51{Tzl<712<n4}_

I4,l9,1;=0
L7l
p . .
- Z - Cj4j3j2j1 ¢j1 (Tl1 ) ¢j2 (7-12 ) ¢j3 (TlQ ) ¢j4 (Tl4 )) Awgll) A, AW%:) =
J4,J3502:01=

—1N-1

1
— 1{7,2—237é0}1 1_)1’{.10 lllzo ZZZO llz (2 {Tll <7'12<Tl4}

p . .
- ) Cj4j3j2j1 ¢j1 (Tl1)¢j2 (le)qus (le)¢j4 (Tl4)> AW&?;)Ale AW%Z)

Ja,J3,J2,J1=0
—-1N-1 p
1{12 13760}1{11 14760}11m Z Z( ) z Oj4j3j2j1><
N—=00 [,=0 I,= J4,33,J2,J1=0

X ¢j1 (Tl4)¢j2 (le ) ¢j3 (le)¢j4 (Tl4 ) A7'12 ATM -
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ty to

x (ia) L (i1) (i)
/ / / dVVt1 dthWt = 2 Chjpi j11 J'44 )+
ttt

Ja;J2,51=0

N | =

= 1yi,=is0) (

+1{zz 13#0}1{11 =i4#0} Z Clisjisjogs W-p-1.
Ja,J2=0

In theorem 8 we proved, that

lim Z Clsodojs = 05

p—00

J4,J2=0
P 1 T t4 t2 ( )
. ’L
Lim. > CipniiGy = [ [ [ dwiPdtadwi? wp.1.
P J4,J2,J1=0 t tt
Then
lim M ( R(4)pppp)2 —0
p—00 Tyt
Let’s consider RT pppp.
R(5)pppp — 1 1 = G
Tt {ia=i4#0} 1.1T. Z pppp(Tlla Tlys Tls;s le) X
N—oo I3,19,11=0

11 £lgyly £l3 do#£lg

x Aw!D Az, Awli) =
1 3

1{12 14#0}1 1.0, Z GPPPP(TZU Tlyy T3 le) X
N—=00 1315.1,=0

l1#l3
(i1) (i3) _
><AW7_I1 ATl2Awn3 =

N-1 (1 1

= 1{12—147&0}1 1.1M1. 41{711 <T12=7’13}+§1{T11=T12=7'13}_

N—oo I3,l9,11=0
L1 #l3

p
- Z Cj4j3j2j1 ¢j1 (Tll ) ¢j2 (le ) d)js (7-13 ) ¢j4 (le )) X

j47j37j21j1=0
(1) (i3) —
XAwy VAT, Awy Y =

N-1 D
= 1g,migzoplim. > (=1) > Cjjpjji X

N—o0 l3,l2,11=0 j4aj3aj2;j1:0
1 #lg

X ¢j1 (Tll ) ¢j2 (le ) ¢j3 (Tl3 ) ¢j4 (le ) AW%) A772 Ang) =
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P (i) ~(i3) _
= —1{i2:i47é()} . Z Clsgajain Ji 53

J4,J3,J1=0
N-1N-1 p
1{12 14760}1{@1 13#0}11m Z Z( ) Z Cj4j3j2j1><
=0 3=0 [p= Ja,33,J2,J1=0

X ¢j1 (Tl3)¢j2 (Tl2)¢]'3 (Tl3)¢j4 (le)AleATl3 —

D c (i1) »(is)
_1{i2=i47é0}_ Z iajsisi1Cjy Gjs T
J4,J3,J1=0

p
+1i,=iiz0} Lii=isz0y 2~ Cisjijujn W-P-1.
j47jl=0

In theorem 8 we proved, that

: 3 (i1) (i) _
Lim. > Cjijsjuin§ =0 w.p.l,

J1 J3
P00y a1 =0
pll)m Z Cjigrjagn = 0.
J4,J1=0
Then )
. 5
lim M {(R(Tlpppp) } =0.
P—00 '
Let’s consider R )p PPP.
N—1
R(G)pppp 11— 2nlim > Goppp (i, Tlys Tlss T3) X
Tt = Hiz=ig#0} -1 pppp\Tl1) Tlyy Tl3s Tls
N—oo i3,l9,11=0

11 #lg,l1 #l3 Io#lg

x AWl Awl Ar, =

1{13 14#0}1 1.0, Z GPPPP(TZU Tlyy T3 Tls) X
N—=00 1315.1,=0

11 #ly

X Awgll)AW%)ATls =

N-1 /1
= 1{23—24;£0}1 l_glo | lzzl:l 0(21{Tl1<”2<”3}+
1y #ly

1 1
+Z]-{Tll =71, <Tiy } + 11{771 <T,=Tiy } + §1{711:T12:Tl3}_

b . .
- X Cj4j3jzj1¢j1(Tll)¢j2(le)¢j3(Tlg)¢j4(713))AWﬁﬁj)AW%j)ATzs

j4aj3aj2:j1:0
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N-1 /1
= 1g,—i,zoplim. 3 (—1 —
3—14750} i - {Tl <T,<T] }
N— l3,l2,l1=0 2 ! 2 ’
1, #ly

'S . .
o Z Cj4j3j2j1 ¢j1 (Tl1 ) ¢j2 (le ) ¢j3 (Tl3 ) ¢j4 (Tl3 )) AW%I) AWS’?ZZ) ATlg =

j45j37j2>j1:0

T t3 to ] '
= Lis= wéO}( / / / dwi; dw dts — > Clajuioin Gy, .7(:2))_
J4,J2,1=0
—1N-1 p
1{13—24760}1{@1—@2790}1 L.111. Z Z ( ) Z Cj4j3j2j1><
o0 l3 0hL= ]47j3aj2aj1:0

X ¢j1 (Tll)¢j2 (Tll)¢j3 (Tl3)¢j4 (Tl3)ATl1ATl3 =

T t3 t2 . .
1{23_14760}( / / / dwidw Pty — > Cliain B §§2)>+

.745.725.71

+1 (i, =ir20} L{is=is0} Z Clujujiir =

J4,j1=0
T t3 t T t3
t

2

/ / dw( "V dw?dts + - 1{“_1#0} / / dtydts—
t t

N | —

= Liis=i,0) (

P (1) ~(i2)
— 2 CiupiGi G, >+

j47j27j1:0
T ts
+1{i1:i2760}1{i3:i4;£0}< > OCj4j4j1j1 — //dtldt3> w.p.1.
.747.71_ t t

In theorem 8 we proved, that

T t3
1
pll)m 2 Cisjijuin = 4 / / dtqdts;
Ja,J1=0 tt
p 1 T t3 t2
. 1 Z
O R e
Ja,j32,J1=0 t tt

T t3
‘|‘1{z1 127é0} //dtldtg W.p. 1.

Then
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Let’s consider RT Jpprp .
(Mpppp _ =
Rri™™ = =iy Higmigroy) L1 D0 Grppp(7i3, 715 71y, 71, ) X
N—oo I4,l0=0
Iy
XAT[QAT14-|—

N-1
+1{11_13¢0}1{12_’L47§0}1 1.101. Z Gpppp(lea Tl4) le) Tl4) X

N—oo l4,l9=0

N-1
"’1{11—14#0}1{22—23#0}1 . IEO l ZZO Goppop(T1ys Ty iy Tiy) X
4542
lo#ly
XAleATM =
N-1N-1
= 1{21 zzgéO}l{zg z4760}1 1.1m. Z Z Gpppp(lea Tlys Tly» 7-14)

=0 [,=0 ly=
XATIQAT14
N—-1N-1
+1{Z1 23#0}1{22 24#0}11m Z Z Gpppp(leTluTlmTh)X

N—oo 1,=0 15=0
XATIQATM
N-1N-1

+1{zl—z47é0}1{12—137é0}1 1.1m. Z Z Gpppp(leaTluTlule)
N—oo 1,=0 I,=0

XAT12AT14 =
N-1N-1/1 1
— 1{21 22750}1{13 14760}1 l_glo l;o 122 <4 {m,<m,} +3 8 {Tl2—7'14}

p
- X Cj4j3j2j1¢j1(Tz2)¢j2(712)¢j3(Tl4)¢j4(ﬂ4)>A%Aﬂﬂr

j4)j37j27j1:0
N-1N-1/1 P
+1{11—l3750}1{l2—247é0}11m Z Z (8 {ny=m,} — Z Cj4j3j2j1><
=0 14=0 ly= .747j37j27j1:0
X0 (1.0 (1) () (m,) | Am A
N-1N=1/1 p
Hlizistoy =iz lim. 20 3 (8 tn=ny — 2 Ciijsjoin X
N=00 1,=0 I,= J4,J3:J2,51=0

%0 (1) (1) (), (1) ) Am, A, =
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T t4

- 1{%1 12750}1{@3 14#0}< //dtht‘l_ Z CJ4J4J1J1>

J45.71—0

1{@1 @3760}1{z2 =iy #0} Z CJ4J1J4]1_
.745.71—0

1{11—14750}1{12—13750} Z CJ412J2J4
.745.72 =0

In theorem 8 we proved, that

hm Z CJ4J4J1J1 =

%
b ja,1=0

B |

T t4
/ / dtodty;
t t

p

lim > Cjgjujy = 0;

— .=
L .74;.71:0

lim Z Clajagejs = 0-
p—o0
.743.72 =0

Then

7)
lim R(T PP = 0,
p—00 &

The theorem 16 is proven 0.
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Chapter 3

Expansions of multiple stochastic
integrals of other types, based on
generalized multiple Fourier series

In this chapter we demonstrate, that approach to expansion of multiple Ito
stochastic integrals considered in chapter 1 (theorem 1) is essentially general and
allows some transformation for other types of multiple stochastic integrals. Here
we consider the versions of the theorem 1 for multiple stochastic integrals accord-
ing to martingale Poisson measures and for multiple stochastic integrals according
to martingales. Considered theorems are sufficiently natural according to general
properties of martingales.

3.1 Expansion of multiple stochastic integrals according to
martingale Poisson’s measures

Let’s introduce the following stochastic integral in the analysis:

P[X(k)]T,t =

T
= [ [xe(tsyn)- //X1 (t1,y0) " (dty, dyn) ... 00 (diy, dyr),  (3.1)
t X

where Rr & X i1,...,5% =0, 1,...,m; v9(dt,dy) — are independent Poisson
measures, which deﬁnes on [0,7] x X (see sect. 9.6); ) (dt,dy) = 1/( )(dt,dy) —
II(dy)dt — are martingale Poisson measures; i = 1,...,m; 70(dt,dy) af

(dy)dt; xi(t,y) = dbi(n)ey); eu(r) = [t,T] — R 901(}’) C X = RY
xi(s,y) € Ho(I,[t,T]), I = 1,...,k; — is a class of nonanticipative random
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functions ¢ : [0,7] x Y x Q — R, for which

| [ M{le(t,y)P}TT(dy)dt < oo

(see sect. 9.6).
Theorem 17. Assume, that the following conditions are met:
L. ¢i(r); =1, 2,...,k — are continuous functions at the interval [t,T].

2. {9j(z)}29 — is a full orthonormal system of functions in the space
Lo([t, T)) each function of which for finite j satisfies the condition (x) (see p.43).

3. [P T(dy) < oo; 1=1,...,k; s=1,2,...,2F1L
b'e
Then, the multiple stochastic integral according to martingale Poisson mea-

sures P[X(k)]T,t 15 expanded into the multiple series converging in the mean-square

sense
k

- Li
Pl = Y cjk...jl(nﬂ;l )

jla ,ijO =1

—lLim. Z H qur 7-l /SOT . Tlr7Tlr+1)7dY)>7 (32)

N—o0 (lla 5lk)€Gkr

Gr=H\Li; He={(l,..., ) : lLy...,[x =0, 1,..., N —1},

Lk:{(ll,...,lk): ll,...,lk:O, 1,...,N—1;
lg#lT(g#T)a 97T:17°*°7k};

, T .
7rJ(-l’”) = tff ¢; (1) oi(y) 7 (dr,dy) — are independent for different iy # 0 and
X

uncorrelated random variables for different j;

k
Clpes = / K(t1,. .., tk) 11_11 ¢;,(t)dty . . . dity;
[t,T]k =

Vi(t) . e(t), t1 < ... <t
K(tq,... — )
(th ’tk) {0, otherwise '

th, ...ty € [t,T).
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Proof. This theorem may be proven as well as theorem 1. Small differences
will take place only in proving of analogues of lemmas 1 — 3 for the considered
case.

Lemma 6. Assume, that (1) — are continuous functions at the interval
[t,T), and the functions pi(y) are such, that [ |o(y)[FII(dy) < oo; p = 1, 2;
X

l=1,..., k. Then, we have with probability 1:

— Ja—1

P[ ()} t_llm Z Z H/XZ(TJwy) (i )([TJI’TJI+1) dy)v (3'3)

N=oo =0 ji=0I=1%

where {sz}j'j:_ol — is partition of the interval [t, T], which satisfies the condition

(1.7), 29([r,s),dy) = D(i)([T, s),dy) or v@([r,s),dy); the integral P[x®]r,

differs from the integral P[x®)r; by the fact, that in P[x™]r; instead of
o) (dty, dy;) stay 0 (dty, dy;); 1 =1,... k.

Proof. Using estimations of stochastic integrals according to Poisson mea-
sures (see sect. 9.7), and the conditions of lemma 6, it is easy to note, that the
integral sum of the integral P [)Z(k)]T,t under conditions of lemma 6 may be repre-
sented in the form of prelimit expression from the right part of (3.3) and of value,
which converges to zero in the mean-square sense it N — oo. O

Let’s introduce the following stochastic integrals in the analysis:

N-1

. ; def k
%\.rl.m. > O(r,-..,T) H /901 leale+1)7dy) = P[cb}}},
70 k=0 =1k

to

T
[ [0 t) [ ()o@ (dtn,dy) ... [ or(y)o®™ (dts, dy) <
t t X X

)

where the sense of notations included in (3.3) is kept; ®(t1,. .., ) : [t, T]* — R
— is bounded nonrandom function.

Note, that if the functions ¢;(y); I = 1,. .., k satisfy the conditions of lemma
6, and the function ®(¢1,...,%) is continuous, then for the integral P[@]gﬁ the
equality of type (3.3) is reasonable with probability 1

Lemma 7. Assume, that for l = 1,...,k the following conditions are exe-
cuted: g(1,y) = h(T)i(y); the functions hy(T) : [t,T] — R satisfy the con-
dition (x) (see p.43) and the functions ¢i(y) : X — R satisfy the condition
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o ()PI(dy) < oo; p=1,2,3,. ., 281 Then
X

kT .
11 [ [ a(s,y)7%) (ds, dy) = P[®)7)} w.p1, ®(ty,...,tx) = [] hultr).
I=1% x

Proof. Let’s introduce the following notations:

L et N _(i7)
Jgiln = Zo /gl(Tj:Y)V ([75, Tj+1), dy),

=V Xx

T .
J[gl}T,t — // gl(sa Y)D(”) (dsa dY)
t X
It is easy to see, that

k k

lH Jgiln — zH Jlglr: =

—1 =1

ko/l1-1 k
= > (1T Jlggles) (lay — Jlaleo) ( 11 Jlav)
q=Il+1
Using Minkowsky inequality and inequality of Cauchy-Bunyakovsky together
with estimations of moments of integrals according to Poisson measures [2] (see
sect. 9.7) and conditions of lemma 7, we get

k k 2\\ 3 k 1
(M{ II Jl@]~ — lH J(gilT, }) < Cklz (M{|J[g@i]v — J[gl]T,t|4})4 ,  (3.4)
=1 =1 =1
where C}, < 0.
Since it is clear, that
N-1
Jaly — Jglr: = Z‘b JAG] 7 7,5
q:
Tg+1
JAG rm, = | [ (ar(r0y) = ai(s,¥)) 7% (ds, dy),
T X

then due to independence of J[Agj],,,, -, for different ¢ we have [27]:

N-1 4
M{ )3 b+

[Agl}Tj_H,Tj

4y  N-1
}: ZO M {‘J[Agl}nﬂﬁj
j=
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N-1 _ 9 .7_1 _ 2
+6 3 M {71881, }zo M{| 1A - (3.5)
Jj= 9=
Then, using estimations of moments of stochastic integrals according to Pois-
son measures [2| (see sect. 9.7) and the conditions of lemma 7, we get, that the

right part of (3.5) converges to zero when N — oo. Considering this fact and
(3.4) we come to the affirmation of lemma. O

Proving of theorem 17 according to the scheme used for proving of theorem

1 using lemmas 6, 7 and estimations of moments of stochastic integrals according
to Poisson measures (see sect. 9.7), we get:

M{(RE")"} < G f[ [ ey

* (K(th o ) Z Z Clto H Pi (tl)>2dt1 Loudty <

[t, T 51=0  jx=0
2
<G [ (K(tl,... D=5 .S H qu,(tl)) dtr ... dty — 0
[t,T]k 1=0  Jx=0

if p1,...,pr — 00, where constant Cj, depends only on k (multiplicity of multiple
stochastic integral according to martingale Poisson measures) and

B = Pl - 35 . 8 o (T -

:0 Jk =0

—lim. > H dJJ,, ,) /SOr ' [TlT7Tlr+1)adY))-

N—o0 (lla 7lk)€Gkr

Theorem 17 is proven. O

Let’s give an example of theorem 17 usage. When 4y # 49, 41,70 = 1,...,m
according to theorem 17 using the system of Legendre polynomials we get
T tl . .
| [o2n) [ [ 01(32)5 (dts, dy2) 7™ (dts, dyr) =
t X t X
T—1

Liy) (2,i2) 2,i2) (1,01 1,61) (22
s £ L)

T
//901 p)(dty, dy,) = VT — tﬂ(()l’“),
t X

l ¥
where 7%

T .

= [ [ ¢i(n)@(y)? W (dr,dy); 1 = 1, 2; {¢;(7) X0 — is a full or-
tX

thonormal system of Legendre polynomials in the space Lo([t, T7).
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3.2 Expansion of multiple stochastic integrals according to
martingales

Assume, that the fixed probability space (2, F,P) is preset and assume, that
{Fy,t € [0,T]} — is a non-decreasing collection of o-subalgebras F. Through
Ma(p, [0, T]) we will denote a class of Fi-measurable for each ¢ € [0, 7] martingales

M;, and satisfying the conditions M {(Ms — Mt)2} = fp(’/')d’]’, M{|M; — M|’} <
Cpls — t|, where 0 <t < s < T; p(r) — is a non-negative, continuously differ-
entiated nonrandom function at the interval [0,T]; C, < oo — is a constant;
p=3,4,....
It is obvious, that the martingale from class Ma(p, [0,77]) is D-martingale [2].
Assume, that {7;};_, — is a partition of interval [0, T, for which

O=m<n<...<7y=T, max |7j41 — 7] — 0when N - oc0. (3.6)
0<j<N-1

In accordance with features of the function p(7) we will write the condition

of membership of Fy-measurable for each ¢ € [0, T'] stochastic process &;t € [0, T]

T
to the class Ha(p, [0,T1]) (see sect. 9.5) in the form (J]" M{|&*}p(t)dt < oco.

N

j=0
Et(N) = &;,_, with probability 1 when t € [7;_1,7;); j = 1,..., N. In the section 9.5
(see also |2]) we defined the stochastic integral from the process & € Hay(p, [0,T])
according to martingale. In accordance with it, the stochastic integral according

to the martingale M; € My(p, [0,T]) is defined by the following equality

Let’s assume the step random function ft(N) at the partition {7; as follows:

= v def ’
Lim. 3 &M (M, — M) ¥ [&dM, (3.7)
J=0 0

N—oo ;-
where {7}, — is a partition of the interval [0, T], satisfying the condition (3.6);
T
£§N) — is any sequence of step functions from Hs(p, [0, T1]), for which [ M{|§§N) —
0

&|?}p(t)dt — 0 when N — co.

Using Q4(p, [0,7]) let’s denote the subclass May(p, [0,7]) of martingales
M, t € [0,T], for which in case of some a > 0 the following estimation is true:

u{ [sls)am. b<r, CRS

where 0 < 6 < 7 < T g(s) — is a bounded non-random function at the interval
[0,T]; K4 < oo — is a constant.
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Using G,(p,[0,7]) let’s denote the subclass Msy(p,[0,7]) of martingales
M, t € [0,T], for which
u{ |/ o)
b

where 0 < 8 <7 <T; n € N; g(s) — is the same function, as in the definition

of Q4(p7 [07 T])
Let’s remind (see sect. 9.1), that if (&)™ € Ha(p, [0,T]) when p(t) = 1, then
the estimation [2| is correct:

"
0

Assume, that

n
| <o

dt

%}sw—eWHfmﬂa%waose<TST- (38)
0

e RN /«pl (t)dME™ dME g =0,1,. . m,

where M) (r =1,... k) — are independent for different ¢ = 1, 2,...,m.
Let’s prove the following theorem.
Theorem 18. Assume, that the following conditions are met:
1. ME € Qq(p, [t,T)), Gu(p, [t, T]); n=2,4,...,25 k€ N; iy =1,...,m;
l=1,...,k.
2. {¢j(x)}329 — is a full orthonormal system of functions in the space
Lo([t, T]), each function of which for finite j satisfies the condition (x) (see p.43).
3. ¥i(r); i=1, 2,...,k — are continuous functions at the interval [t,T).

Then the multiple stochastic integral J[¢ ]Tt according to martingales 1is
expanded into the converging in the mean-square sense multiple series

J[¢(k)]%t - Z C]k J1 (H é-jl 0

—lim. Y 4y, (Th)AM“l i, (nk)AM(’“k)>
N—ro0 (I, lk)EGE

where Gy = Hi\Lx; He = {(ly, ..., k) : ly,...,[xp=0,1,...,N — 1},
Ek:{(ll,...,lk)i ll,...,lk:O, 1,...,N—1;
ly #1.(9 #r); g,rzl,...,k};
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l” f(,/>]l( YdM&D — are independent for differents; =1,...,m;1=1,...,k
and uncorrelated for various j; (if p(T) — is a constant, i; # 0) random variables;

Jk g1 T / tl: <. H ¢Jl (tl)dtl L dtg;

[t,T*
K(tl,...,tk) = {¢1(t1)¢k(tk)7 tr <... <tk; t1,...,t € [t,T]

0, otherwise

Proof. In order to prove theorem 18 let’s analyze several lemmas.
Lemma 8. Assume, that M"0 € My(p, [t,T]); 1 =1,...,m; 1 =1,...,k,

and i (1); =1, 2,...,k — are continuous functions at the interval [t,T].
Then
- J2—1l &k
T =lim Y S am)aMt wpt, (9

=0 =0 J1=01=

where {Tj}é-V:O — s a partition of the interval [0,T)], satisfying the condition of
type (3.6).
Proof. Since (see sect. 9.5)

{(/gde’“)} /M{|£S|2}p )ds
M{<9/ £sds) b<-0) 0/ M{J&,|2}ds,

where & € Ha(p,[0,T]);t <8 <7 <T;4=1,...,m; 1l =1,...,k, then the
integral sum of integral J [@b(k)]% in conditions of lemma 8 may be represented
in the form of prelimit expression from the right part (3.9) and the value, which

converges to zero in the mean-square sense when N — oo. O
Assume, that
N-1

Lim. Y ®(r,... Tjk)HAMTlll o r1e)%), (3.10)
N=oo jy,.,jk=0 n ’

where {Tj}j-vzo is a partition of the interval [0, T'], satisfying the condition of type
(3.6).

Lemma 9. Assume, that MU € Qulp, [t,T)), Gr(p,[t,T)); © =
2,4,....285 4 =1,....0m; 1l = 1,...,k, and g1(s),...,gx(s) — are functions
satisfying the condition (%) (see p.43).
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Then
LA ( (i ¢
11 [ ai(s)aM0 = I1[®]7) wp.1, dta,.... 1) = I (k).
I=1% =1
Proof. Let’s denote
T
T[gi)n = Z g(r) AMU, Tglrs € [ gu(s)dM.
J=0 t
Note, that
k k k sl-1
I o ~ T1 o = 32 (10 Zlode) (o — Tlale) ( 11 Tlaiv).
=1 =1 I=1 \¢g=1 g=I+1

Using the Minkowsky inequality and inequality of Cauchy-Bunyakovsky, as
well as the conditions of lemma 9, we get

(M{ :1 2}>% = Cklé (M {| gl — 1'[91]T,t|4})i . (3.11)

where C), < oo — is a constant.

k

[91]v — 11;11 Igilr,

Since
N-1

Igllny — gl = Z; IAG 7
q:

Tq+1

I[AGryrr, = | (91(7s) = au(s)) AM,

Tq

then due to independence of I[Ag] for different g we have [27]:

Tq+15Tq

N—-1 4 N-1 4
M{ Z() I[Agl]Tj_H,Tj } = 20 M {‘I[Agl}TjH,Tj‘ } +
J= J=

N-1 j—1
+6 3 M{|[I[Ags,,. [ } S M{|T1Ag,,. [} (3.12)
j=0 q=0

Then, using the conditions of lemma 9, we get, that the right part of (3.12)
converges to zero when N — oo. Considering this fact and (3.11) we come to the
affirmation of lemma. O

Then, using the proven lemmas and repeating the proof of theorem 1 with
correspondent changes we get;:

M {(Rg{;..,pk)?} < / (K(tl, N -,tk)_

[,T]*
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_ S S G H %(tl)) p(t1)dty ... p(ty)dty <

—0 jk =0
_ 2
< Cy / (K(tl,... ) Z Z C]k g1 H¢Jl(tl)) dty...dty — 0
[t,T]* J1=0 7,k=0
when py, ..., pr — 00, where the constant Cy depends only on k (multiplicity of

multiple stochastic integral according to martingales) and

Bpp = T - 3 o (T

71=0 7x=0
“limo Y gy (m)AME g, (rlk)AM(’“k))
N=oo (. . 1)eGy

Theorem 18 is proven. O

3.3 Remark about full orthonormal systems of functions
with weight in the space Lo([t,T])

Let’s note, that in theorem 18 we may use the full orthonormal systems of func-
tions not only with weight 1 but with some other weight in the space Lo([t, T]).

Let’s analyze the following boundary-value problem

(p(z)®'(2)) + q(2)®(z) = —Ar(2)®(z),
a®(a) + P (a) =0, v®(a) + §9'(a) = 0,
where functions p(x), ¢(z), r(z) satisfy the well-known conditions and «, 3, v, §
A — are real numbers.

It has been known (V.A. Steklov), that eigenfunctions ®g(z), ®1(z),
of this boundary-value problem create a full orthonormal system of functions
with weight 'r( ) in the space Ls([a,b]), as well as the Fourier series of func—
tion F f(z) € Lo([a,b]) according to the system of functions F Dy (x
\/7 ®(2),... converges in the mean to this function at this interval, moreover
the Fourier coefficients are defined using the formula

b
Cj = [ r(2)f(z)®;(z)de. (3.13)

Note, that if we expand the function f(z) € Ls([a, b]) into the Fourier series
in accordance with the system of functions ®y(z), ®1(z), ..., then the expansion
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coefficients will also be defined using the formula (3.13) and the convergence of
Fourier series will take place in the mean with weight r(z) to the function f(x)
at the interval [a, b].

It is known, that analyzing the task about fluctuations of circular membrane
(common case) the boundary-value problem appears for the equation of Euler-
Bessel with the parameter A and integer index n :

r’R"(r) + rR'(r) + (\*r* —n®) R(r) = 0. (3.14)

The eigenfunctions of this task considering specific boundary conditions are
the following functions

Jn(ﬂj%)? (3.15)

where r € [0, L], uj; j =0, 1, 2,... — are ordered in ascending order positive
roots of the Bessel function J,(u); n =0, 1, 2,....

In the task about radial fluctuations of the circular membrane the boundary-
value task appears for the equation (3.14) when n = 0, the eigenfunctions of
which are functions (3.15) when n = 0.

Let’s analyze the system of functions
Hj

\/éluj)Jn<?T); j=0,1 2. .. (3.16)

\Ijj (T) = TJn+1(

where o
Te) = X (1" (5) (Tm+ DNm+n -+ 1)
m=0
— is the Bessel function of first kind and

0
I'(z) = /e_””:cz_ldzc
0
— is a gamma-function:; pu; — are numbered in ascending order positive roots of
9 ] p

the function J,(z), n — is a natural number or zero.

Due to the well-known features of the Bessel functions, the system {¥; (T)};io

is a full orthonormal system of continuous functions with weight 7 in the space
Ly([0, T7).
Let’s use the system of functions (3.16) in the theorem 18.

Let’s analyze the multiple stochastic integral

[ 1 o)
AMOdM @)
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where

MY = [ rdfl;
0

£ (i =1,2) — are independent standart Wiener processes, 0 < s < T; M{® —
is a martingale (see sect. 9.5), where p(7) = 7. In addition, M) has a Gaussian
distribution. It is obvious, that the conditions of theorem 18 when k& = 2 are

executed.

Repeating the proof of the theorem 18 when k& = 2 for the system of functions
(3.16), we get

[ = (1) (@)
[ [dMDam® = 5> ;56067
00 J1,J2=0
where the multiple series converges in the mean-square sense and

T
¢ = [wi(r)dml?
0
— are standard Gaussian random variables; 7 = 0,1,2,...; + = 1,2;

M{G G = 0;

T s
Cj2j1 - /S\IIJE (S)/T\Ijjl (T)deS'
0 0

It is obvious, that we may get this result using another method: we can use
theorem 1 for multiple Ito stochastic integral

T s
[ V5 [ rdedE®),
0 0
and as a system of functions {¢;(s)}32, in the theorem 1 we may take

V2s i
= _J.(Zs); 5=0,1,2,....
TJn+1(,U’j) <T ) g

As a result, we would obtain

;(s)

T s 00
[ V3 [ VrdEDaE? = 3 G
0 0

J1:J2=

where the multiple series converges in the mean-square sense and

. T i
= [ 6,ryie®
0
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— are standard Gaussian random variables; 7 = 0,1,2,...; + = 1,2;

M{G G} = 05
T s
Cijs = [ V383,(s) [ VT5,(7)drds.
0 0
Easy calculation demonstrates, that

dits) = =

K :
Jn< s—t>; ~0,1,2,...
T — ) dua() " \T =27 D) 3

— is a full orthonormal system of functions in the space La([t, T1).

Then, using theorem 1 we get

T S [e0] - ~ ~
/\/5 — t/\/T - tdf}.l)dfs(z) = Z OC]'2J'1C.7(11)CJ('22)7
y + J1,J)2=

where the multiple series converges in the mean-square sense and
G = [ &i(r)af)
t

— are standard Gaussian random variables; 7 = 0,1,2,...; + = 1,2;
(1) %(2
MEG Gy =0

T s
éijl = / VS — tggjg (S) / VT — tﬁgjl (T)deS.
t t
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Chapter 4

Exact and approximate expressions for
errors of approximations of multiple
stochastic integrals

This chapter is based on results of chapter 1 (theorems 1 and 2) and adapt this
results to practical needs (numerical integration of Ito stochastic differential equa-
tions). We derive the approximate and exact expressions for the mean-square
errors of approximations of multiple Ito stochastic integrals. The convergence in
the mean of degree 2n, n € N of expansions from theorem 1 is proven.

4.1 The case of any fixed k£ and pairwise different numbers
il,...,z'kzl,...,m

At first, let’s build mean-square approximations of multiple Ito stochastic integrals
J[®]r; of type (1.1) for pairwise different numbers 4,...,iz = 1,...,m (in
this case they coinside with the correspondent multiple Stratonovich stochastic
integrals) in the form of truncated multiple series, into which they expand in
accordance with the approach, based on multiple Fourier series, converging in the
mean (theorem 1).

Assume, that J [1,[)(’“)]%;5""‘1’ ¥ — is approximation of multiple Ito stochastic in-
tegral J[op®]r; for pairwise different numbers 4y, ...,4; = 1,...,m, which looks
(according to theorem 1) as follows

J[¢(k ]pl’ P = Z Z Cjk J1 H Cj ’ (41)

Jj1=0 Jr=0

where numbers p; < oo and satisfy the following condition on the mean-square
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accuracy of approximation:

M (Tl ® 7 = T Pr) )} <e, (4.2)

¢ — is a fixed small positive number.

Theorem 1 provides a possibility to calculate accurately the mean-square error
of approximation of multiple Ito stochastic integral of any fixed multiplicity & for
the case of pairwise different numbers #,...,2: =1,...,m

Lemma 10. Assume, that i1,...,% = 1,...,m and pairwise different.

Then, the mean-square error of approrimation (4.1) of the multiple Ito
stochastic integral J[p™]r; is defining by the formula

M {(J[w(k)}%%,pk . J[¢(k)}T,t)2} _

— / K2(ty, ... ty)dty ... dtg — Z Z 2 i (4.3)
[t,T]* 51=0 5x=0
convergence in (4.3) takes place in the sense of limit when py,...,pr — 0.

Proof. Let’s consider the expression (1.24) for the difference J[t)®]z; —
JWWIPE (i, i =1,...,m):

g =y /.../(K(tl,...,tk)_
t

(t17 -tk ) t

S S H </>J,(tl))dft L dE™, (4.4)

J1=0 Jr=0
where derangements (ti,...,t) for summing are performed only in the values
dft(li 0 dft( ), at the same time the indexes near upper limits of integration in
the mult1ple stochastic integrals are changed correspondently and if ¢, changed
places with ¢, in the derangement (¢y,...,%), then i, changes places with i, in
the derangement (i1, ..., ).

Note, that integrals in the right part of (4.4) will be pairwise stochastically
independent in the case of pairwise different numbers 71,...,72, = 1,...,m. Then

() =
(=, [/

/( tl)"'atk)_
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2
SORND SN | PO -dféi“) =
= Jk
to
- {(/ (Kt
(th Stk) t
2
=5 5 o T o) >...df§,:k>) =
71=0 Jk=0 =
T to
> [ (Kt
(t1,enti) t
2
_Y LY G H awz)) dty ... dty =
71=0 Jk=0

— /k<K(t1,...

[t,T]

-8 8 s ) docdie (09

Jj1=0 Jk=0

n (4.5) we used the equality (1.19).
Let’s consider the integral (4.5):

/ (K(tl,...

[¢.T]*

) / K(ty,...,t

[¢,T]*

Ae

[t kL

k) — Z Z Cly.fi H ¢Jl(tl))2dt1 Cdt =

Jj1=0 Je=0

= [ Kt,...,t)dtr ... dty—
[tT¢

k) Z Z Cipn H ¢j (t)dty . . . dtx+

Jj1=0 Jr=0

S .S C Il ¢J,(tl)>2dt1...dtk _

Jj1=0 Jk=0

= [ Kti,....te)dts ... dty—
[#T]*

k
—2 z s Cioii | K(tr,.. . th) lgl i, (t)dty . .. dtp+

1= Jr=0 [t,T]*
pPr P Pr Pk
+ 2 2 -2 2 GGy H /¢Jz (1) ¢ (tr)dty =
71=041=0  Jjr=04,=0 I=1%
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= / KQ(tl,...,tk)dtl dtk_2z Z ]k .71

[t,T] J1=0 jx=0
+ Z Z Jk g1
=0 jx=0
= [ Kti,....t)dt ... dty — Z S 2 i (4.6)
[t,T]k J1=0  jx=0

The lemma is proven. O

In particular case p; =

P k 2
/<K(t1""’tk)_ 2 Cjk...jllljlqﬁjl(tz)) dty...dty =

.= pr = p we get:

jl,...,jk:()

[t.T]*
p
= [ Kti,....te)dt...dty— > Ch ;. (4.7)
[t,T]F J15essJk=0
Note, that Parseval equality in our case looks as follows
/ K2(ty, .. ty)dty . dt = Tim, _Z Z 2 i
[t,T] J1=0  jr=0
Then from (4.6) we obtain:
M {(Rph ,pk)2} —
:ph_lipr{l_)oo Z:: sz—: et Z_:o sz_: Jk-d1”
If pr=...=p = p, then
{7} -
P k 2
-/ (K(tl,...,tk)— 5 cjkmjlngbj,(t,)) dty .. dt, =
[t,T] JisensJk=0 =1
P
= [ Kt,... . t)dt...dty— > C} (4.8)
[t,T] J1eeJk=0
or
M{ (RE; )"} =
: d 2 < 2
:pll%lo, Z Clyii — Z Cliy.ir-
1 5e-,0=0 J1yeesJr=0
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4.2 The case of any fixed k£ and numbers ¢1,...,7; =1,...,m

In the case of any fixed £ and numbers ¢1,...,4x = 1,..., m the integrals in the
right part of (4.4) will be depend in the stochastic sence.

Let’s estimate the right part of (4.4).
From (1.19), (4.4), (4.6) and inequality

(a1+a2+...+am)2Sm(a%—i—ag—l—...—i—a?n)

we obtain the following estimate for the case #1,...,1x =1,...,m:
M{ (R} <
T
gk'( / /( (tr, .. tr)—
(t1yeesth) ¢ t
2
- Z Z Clie...di H d’]z(tl)) dty .. -dtk> =
J1=0 Jk=0
2
— k[ (K(tl,... NI SR S H %(tl)) dt ... dty =
[t, T 51=0 jr=0
9 Y41
=k [ K3ty te)dtr...dtx— Y .. S 2 Jl> (4.9)
¢, Tk J1=0 jx=0
In particular case p; = ... = pr = p from (4.7) we get:

{7}

p
Sk‘!ﬂ/ K*(ty, ..., tp)dty .. .dty, — > ka gl>

t,T]k jl;---;]k 0

4.3 The case of any fixed £ and numbers i,...,i; =

0,1,...,m
For the case of any fixed k£ and numbers 4;,...,4 = 0,1,...,m we have (see
theorem 1):
) T
M {(R%Zypk) } S Ck / /< tl) L. —
t17 7 t t
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S S G 1l ¢Jl(tl)>2dt1...dtk _

—0 jk 0

=6 [ (Kot - 5. S 0 Jlncﬁg,(tl))thl...dtk:

[t,T]* =0 Jx=0
9 b1
=Cy| [ Ktr,... te)dty...dty— Y .. Z 2 h),
t T Jj1=0  jr=0
where C}, — is a constant.

From lemma 2 and the following properties of stochastic integrals:

M{tt 2} < (t—tp) /M |§T dT { }:jM{|§T|2}dT

(& € Ma([to, t]), see sect. 9.1) we obtain, that constant Cj depend on k (k — is a
multiplicity of multiple Ito stochastic integral) and T'— ¢ (T — ¢ — is an interval
of integration of multiple Ito stochastic integral).

dr df,

Moreover C}, has the following form
Cr =kl -max{(T —t)*, (T —t)*%, ..., (T —1t)*},

where a1, a9,...,apn =0, 1,..., k—1.

However, as we noted before, it is obvious, that the interval T — ¢ of integra-
tion of multiple Ito stochastic integrals is a step of numerical procedures for Ito
stochastic differential equations which is a small value. For example T"'— ¢ < 1.

Then Cy < k.

It means, that for the case any fixed k£ and numbers ¢1,...,% = 0,1,...,m

we can write down: )

Sk'(y/ Kz(tl,...,tk)dh Ldty — Z Z Tk J1>’

t,T]k =0 =0
where T — t < 1.

4.4 The other proof of lemma 10

Let’s consider the other proof of the formula:
2
M{ (T @7 = TPl ) =
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b1
= [ Kti,... te)dty...dty— Y .. Z 2
(1T} R
for pairwise different numbers ¢, ...,7; = 1,..., m, where convergence takes place
in the sense of limit when pq, ..., pr — oo and
k)1P15s
J[¢( )] Z Z CJk J1 H C] )

=0 jx=0

Tl = /wtk /wl t)df) . dfy".

Proof. At first, let’s formulate the obvious proposition.

If lhi—'glo' &, = € and M{€?} < oo, then
lim M{(& — &) &t =M{( - &) &t

n—oo

We have
M{ (T = TPl )} = M{ (TPl | -

2 I T M (T )]

Moreover
5 T to
ML B 1)} = [wRt) - [wit)dtr . dty =
+ t
= [ Kt,...,t)dtr ... dy, (4.10)
[t,T
2
M { (1)} =
D1 Dk )
= Z Z Cjk--]l e J1HM{ Ji Jl }:
J1gi=0  jk,ji=0
Z Z Jk Jie
Jj1=0 Je=0
Then

= / K2(ty, ..., tp)dty .. .dt, + Z Z Jk g1
[, Tk nE e
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oM {JW)]TtJ[w““)]%;""p’“} =

:/KQ(tl,...,tk)dtl dtk+Z Z

Jk Ju
[t, Tk 51=0 7x=0

—2M {(J[w(k)]T,t — J[w(k)]%;f""pk) J[,”b(k)}pl,-..,pk} _

Tt

—2M {(J[«ﬁ(k)}’%z“’p’“f} =
= / K2(t1,...,tk)dt1 Ldty, — Z Z

Jk Jr
[t,T]* =0 =0

—oM { (J[ @, — TP TP

T,

Let’s consider M {(J[®]r, — Jp® gy 7) JppW]=-P+ 1 We have:

J1=0 Jr=0 71=0  ji=p1+1/ j2=0 Jr=0

z% T Y Y.y =

=0 j»=0 Jr=0  ji=p1+1 j>=0 Jr=0

P $oR0 ol RS S o o o
0 \j2=0  jo=p2+1/ js=0 Jk=0  ji=p1+1j>=0 jr=0
Zl > %3 Z+Z Z Z Z+

J1=0 j2=0j3=0 Je=0  j1=0j2=p2+1 j3=0 Jk=0

TS S SR

J1=p1+1 j2=0 Je=0

J1=0 Jr=0

1] o Wi i 3.

=0 \j1=0 =0 jir1=pr+1+1 ji42=0 Jr=0

M {(Jw(k)]T,t — J[¢(k)]p1""’pk) J[¢(k)]p1,--.,pk} _

Tt Tt

=, dm  M{(T O = T W) Ty Ol

Tt Tt
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= . Jim, M {(Z ZCJHIHCJ z zcwncj)

=0 Jr=0 = Jk=0

<3S Gl -

Jj1=0 Jr=0

D1 Ni4+1 Pi+1 Ni+2  Pi+2 N

:m, ,mc—>ooZ Zl Z ( Z Z) Z Z Z ZX

1=0 j1,j1=0 Jl,jl'=0 Jirr=piy1+1§ =0/ ji42=04;,,=0  jr=04;=0

XCjk--Jl T hHM{ 'll)}

Since
M{ J(fi?)gj(;:ﬂ} =0 (Jit1 > D+, Jio1 < Dis1),s
then
M {(Jw(k)]T,t - J[@b(k)]%;“’pk) Jw(k)]g{%ﬂ-,pk} —0
and

M {(J[w(k)]g{%,pk . J[¢(k)}T,t)2} _

= / K2(t1, o tp)dty L dty — Z Z Jk Jr
[¢,T]*

J1=0 Jr=0

4.5 Exact calculation of mean-square error of approxima-
tion. The case k=1, 2; 11,i0=1,...,m

4.5.1 The case k=1

In this case according to lemma 10 we get

M {(Jw(l)]%t _ J[¢(1)]T,t)2} — / Kz(tl)dtl Z ]la

[t,T]t 71=0
where
1 ’ 1 P (ir)
T MNre = [i(s)df,, J[pVTh, = > GGt
t n=
T
CJl = /¢1(8)¢j1 (S)dsa K(S) = zpl(s)a
t
’il = 1, ey M.
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4.5.2 The case £k =2 and any 71,50 =1,...,m

When i1 # 19 we get the required formula from lemma 10. Let 4y =9 = 1,...,m.
At first, let’s formulate the obvious proposition.

Iflim. & = ¢ and M{£?} < oo, then
lim M{&.6p} = M{&6,}
Let’s consider double Ito stochastic integral
T t2 . .
TP = [ 4alts) [n(t)de dfyy”
t t

According to theorem 1 we have:

p (21) p

J[Qp@)}g’,t: Z Jeg1Si Sj T _Zzocjul‘
Then
M{(T1®lr — T @)} = M{ (@)} +
M { (TP} — 2M (TP ]r TP ) (4.11)
Moreover

M {(J[¢(2)}T’t _ J[W’]’},t)?‘} _

=M {(J[¢(2)]T,t)2} +
M {(T10T5)} — 2 Jim M {0 T ) =

— / K?(t1, ty)dtrdty + M {(‘]w(z)}%tf} B
[t,T]?

_2nh_>r£loM{( Z CJ2.71 J1 Sj2 Z CJlJl) [ )]g“,t} -

J1,J2=0 J1=0

— / K2(t1,t2)dt1dt2+M{(JW(Q)%)Q}_
6,772
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_2nh—>I£10M {(J[ }Tt—i_ z Z CJ2JICJ J2

=0 jo=p+1

+ Z Z 0.72.71 2 )+

Ji=p+1ji=
+ Z Z CJZ]I CJ(;I)_ Z lejl) JW(Q)]]%,;:}:
J1=p+1 j2=p+1 Ji=p+1
2
= [ K%ty to)dtvdts — M{(J[p®T,)"} -
[t,T]?
—2limM{§ > O+ zo )y
n=0o ) ) J2J15)1 J2j1 92
1=0 jo=p+1 Ji=p+1j1=

- - (i1) +(i1)
+ Z Z Cj2j1 g1 Sja T Z lejl X

J1=p+1 ja=p+1 Ji=p+1

( Z CJ2J1CJ J2 Z Cth)}

J1,J2=0 J1=0
_ 2 2)1p \2
= [ Kty ta)dtydty — M{(J[¢ 7)) }—
[t,T]?
n V4
_2nli_,m ( Z CJ1J1 Z CJlJl Z Cj1j1 Z Cj1j1_
Ji=p+1 J1=0 Ji=p+1 71=0
- Z C(]131 Z CJI]I + Z leh Z CJ1]1) =
Ji=p+1 n= Ji=p+1 =
_ 2 2)1p \2
= [ K*(ts,t2)dtrdts — M{ (J[p®T,)"} (4.12)
[t,T]?

Using (2.277) we get

MU

0 (i
M{ Z C]Z.hcjz.h ( )CJ({ ) .7(2 )CJQ)}

.7 7.717.727.72

p

2} {( 2 CthCJ CQ > lejl>2}=

J1,J2=0 J1=0

2<]i 1131>2 <]Z 01111)2 i: i T

j1=0 1=0
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p J2—1 P 2
2
+ ZO Z ( JoJ1 + OJ1,72 + 2CJ1J10J232 + 2612310]1]2) <ZO Cj1j1> )
J2=0j1= j1=
p J2—1 5
Z J1J1 +2 X ( doir T Cjuz) = Z 32917
Jj1=0 J2=0j1=0 J1,72=0

p Jj2—1 p D 2
Z J1J1 + 2 Z Z Cj1j10j2j2 = Z Cj1j10j2j2 = (Z Cj1j1> )

71=0 J2=071=0 71,72=0 41=0
p J2—1 P
Z T T2Y Y CipnChi= X CjChji-
71=0 J2=071=0 J1,52=0
Then
2
M {(J['Lp@)}g’,t) } = Z J2]1 + Z 0313203231 (413)
J1,J2=0 J1,j2=0

From (4.11) — (4.13) we obtain

- / K2(t1,t2)dt1dt2 Z .72.71 Z CyzhCJm
T]

2 J1,J2= J1,72=0

Let’s consider double Stratonovich stochastic integral

*t2

T @]y, = /¢2 (t2) /¢1 (t)dE Ve,

where the function (1) is contmuously dlfferentlated at the interval [t,T] and
the function 1 (7) is two times continuously differentiated at the interval [¢, T.

According to theorem 3 we have:

WPl = S Cag

J1,J2=0
and

J*[gb@)]%t: Z CJ2.71 J1 Cz)'

J1,J2=
Then )
M{(T [z, — TP, ) =
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J1,J2=0

M{(«]W Tt‘l‘ /wl 1;[)2 )dS— 2 Cjzh Cz)) }_

— M { (J[¢(2)]T7t — TP, + %/'@bl(s)po(S)dS — zpj lejl) } =

t J1=0

I
<
——

T 2
[ Wr(s)a(s)ds — 2%) =
t

J1

N | —

(Tlze - TWP,)°} + (

= / KQ(t17t2)dt1dt2 Z ,72]1_ Z 032310]1.72
T]

2 Ji,J2= J1,52=0
17 p ?
+ |3/ eva(e)ds = 3 Cii | -
t =

4.6 Exact calculation of mean-square error of approxima-
tion. The case k =2, 3, 4;41,...,i4=1,...,m (another
approach)

4.6.1 Thecase k=241 =111 =1,...,m
Let’s consider another approach. We have:
to

T
TP = [ Wa(ta) [ o (t)dfy df,
t

t

J[Qp@)}g’,t_ Z 03231 g1 Sj. T Z_ Cj1j17
(T — T @) " = M{ (TP} +
M { (T @1h,) — 2M T[T [P} (4.14)
M{(T®lr) ) = [ K3(ty, ) dtadt. (4.15)

[t,T]?

Using (2.277) we get
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M{ (T 1)} = {(J > CiinG G - Ep: ij)2} =

1,J2=0 Jj1=0
(i1) ~(i1) f(in) (6
M{ C]z.hcjé]i jll CJ{I J2 Ch}
17.71).727.72
p 2
_2<Z lejl) + (Z lejl) =3 Z JlJl
j1=0 Jj1=0 J1=0
P J2—1 5 P 2
+ z Z ( Je1 + 0]1.72 + 20j1j10j2j2 + 20j2j10j1j2) - (Z Cj1j1> .
J2=0j1= j1=0
Moreover
Ja—1 )
Z J1]1 + Z Z ( Je1 +CJ1.72) = Z .72.717
=0j1= J1:J2=

p J2—1 D p 2
Z .71.71 +2 Z Z Cj1j1Cj2j2 - z Cj1j1Cj2j2 - (Z lejl) )
J1=0 J2=051=0 J1,J2=0 J1=0

Ja—1 p
Z ]1]1 + 2 Z Z 0.71]20]2.71 = Z Cj1j2cj2j1'
jl_ 0-71 0 jl;jZZO
Then
2
M {(‘][1/)(2)]177“,15) } = Z ‘0 .72]1 + Z OC.thOth (416)
J1:J2= JisJ2=

From the Ito formula we obtain:
1 2 /¢J1 /¢J2 /¢J1 )/¢Jz(51)df5§:1)dfs(“)+
t

T s T
+/¢J’2(5)/¢jl(81)df§j1)df§zl) + 1{j1:j2}/¢j1(s)¢j2(s)ds w.p.1.
t t t

Then
M {JT [P, TP, ) =

T to
=M {/¢2<t2)/¢1(t1)dft( dft ( > Chii (/ ;i (s /d)h 51) df i) f( H 4
t

t J1,J2=0

T b
+ [ dils / G (s)dfVdEl™) + 145, J2}) -2 lejl)} =
t =
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= i Cjzjl (/ ¢2(8)¢jz(5)/S¢1(51)¢j1(31)d81d8+

J1,j2=0 t t
T s
+/¢2(8)¢j1(8)/¢1(81)¢j2(51)d51d8) =
t t
p p p
= _ Z Cj2j1 (Cj2j1 + Cj1j2) = ) Z nggjl + _ Z Cj2j10j1j2' (417)
J1,J2=0 J1,J2=0 J1,J2=0

From (4.14) — (4.17) we get

M {(J[¢(2)]T,t _ J[¢(2)]1:;,t)2} _

b b
= / KQ(tl’tQ)dtldtQ_ Z C]iﬁ - Z Cj2j10j1j2' (418)
T]

2 J1,52=0 J1,52=0
[t,

4.6.2 The case £k =3 and any 1,140,213 =1,...,m

The case of pairwise different 71, 2, 23 is analyzed in lemma 10, that is why we have
to analyze 4 cases (it is assumed, that 41,149,493 = 1,...,m): 1. i1 = ig # i3; 2.
’i17£'i2:’i3; 3. ilzig#ig; 4. i1:i2:’i3.

Let’s start from the first case (i; = ig # 43):

2
M{(J[®N0a) ) = [ K2(ta, b, ts)dtrdbadts, (4.19)
T
T s 51 . . .
T ®Nry = [Ws(s) [als1) [ gu(so)df D e i),
t t t

D . . . .
J[¢(3)]g“t - Z Cj3j2j1 (CJ( I)CJ( I)CJ( ) 1{j1=j2}<3(33)> )

, J1,J2,53=0
M {(J[¢(3)]T,t _ J[¢(3)]g,t)2} _
= / K2(t17 ta, t3)dt1dt2dt3 + M {(J[¢(3)]%’t)2} _

[,T]?

—2M {J [, T[N} (4.20)

?
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Further using of (2.277) we get

b .
(11) ~(i1)
= M{ Z Cj3j2j1 Cjéjéj{ ( jf Jo 1{J1 ]2})

J3:38,J2,05,91,51 =0

X (C]Z CJ; - 1{j{=j§}> Cj? Cng } _
p p | | |
- M{ Z Z 0'73]2-71CJ3.72]1C(ll)gﬂ%l)c};l)gjgl)}_

J3=0 j%jéajl 3.7{ 0

—2 i (i Cj3j1j1)2 + i (i Cj3j1j1>2 =

j3=0 \j; =0 §3=0 \j;=0
Ja—1 .
:3 Z Z( J3J1J1) + Z Z Z ( Jaj2J1 +CJ331J2
=0j1= J3=072=07:=0
p 2
+2Cj3j1j10j3j2j2 + 2Cj3j2j1 Cj3j1j2) - Z (Z CJ3]1J1> .
J3=0 \j1
Moreover
p J—1 5 p 5
Z .73.71.71 + > X ( JstJ1+Cysmz) = Z CJ3J2]1’
J3,J1=0 J3,52=0j1=0 J3,52,J1=0
p Ja—1 D
Z wiin T2 X Y CiiiiCisiin = % CisjujnCisosp =
J3,J1=0 J3,Jj2=0j1=0 J3,J2,J1=0
p 2
= (% Giuna)
J3=0 \j1
p  Jo—1 D
Z P T2 X X CiiipCisiin = X CijuinClsioi-
J3,J1=0 J3,J2=071=0 J3,J2,J1=0
Then

p p
M {(J[¢(3)]g’,t)2} = Z 03233231 _ Z Cj3j1j20j3j2j1' (4'21)

J3,J2,51=0 J3,J2,J1=0

Not difficult to demonstrate, that the following equality valid with probability

T T
A / 85.(5)dE) [ 6,(5)at™ [ g, (5)af ™ =
¢ t

Electronic Journal. http://www.math.spbu.ru/diffjournal A.232



Differential Equations and Control Processes, N 1, 2017

. / b1 (3) / b, (t2) / By, (t1)dESD b af™)

(tl ;t2;t3

+ / 65,(5) / b5, (51)8, (51)ds1df )+
t t

T s
+ [ 65.(5) 65 (s) [ b (s1)dEds,
t t

where derangements (t1,t9,t3) for summing are performed only in the values
dft(f3)dft dft , at the same time the indexes near upper limits of integration
in the multiple stochastic integrals are changed correspondently and if ¢, changed
places with ¢, in the derangement (%1, t2,%3), then 4, changes places with ¢, in the
derangement (i3, 41, 147)-
Then
M {J[¢(3)}th[¢(3)]p } —

T s
- M {/¢3(s)/¢2 s1) /wl (82)df ) dE) dF )
t

t

x( > Ciai (( > / b (ts) / b, (1) / b5, (h)dEs" LV dfy )+
J t t

1,J2,J3= t1,ta,t3) ¢

T s
+ / b5,(5) / B3, (51)85, (s1)dsrdE )+

T
+/¢J1 ¢J2 /¢g3 51 df i3) g — 1{J‘1—j2}/¢j3(8)df§@3)} —
t

= Z Cisjoir (Cisjoji + Clsjrjn) =

j15j27j3:0
P 2
- Z C]gjgjl + Z Cj3j2j10j3j1j2' (422)
J1,J2,53=0 J1,J2,j3=0

From (4.19) — (4.22) we obtain:
M{ (T, — Tz} =

P
= / KQ(t1,t2,t3)dt1dt2dt3_' 2 i~
AL J3,J2,1=0
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b
- Z Cj3j1j20j3j2j1 (il = g 7£ Z.3)'

j3aj2>j1:0

In the 2nd and 3rd case similarly to the previous reasoning we correspondently
get

M{ (T, — T @lre) ) =

p
— / K2 (t17 t27 t3)dt1dt2dt3 — Z 02

= Jsj2gi
[t,T)3 J3,J2,1=0

D
— Y Cijii Cigosy (i1 # 12 = 13).

J3,J2,J1=0

MO, - T)r,)"} =

p
= / K*(ty, o, ts)dtidtadts — 3. =
it T2 J3:J2,1=0

p
o Z Cj3j2j10j1j2j3 (Zl =13 # Z2)-
J3,J2,J1=0

In the 4th particular case when 1(s), ¥a(s), ¥3(s) = 1 with probability 1 we
have (see sect. 8.1):

ivini) 1 3 i)\ 3 iy
i) = L f (6" - s

In more general case, when 11(s), 12(s), 3(s) = (t—s)!; 1 — is a fixed natural
number or zero, with probability 1 we may right down (see sect. 8.1):

i) 1 i)\ 3 iy
[l(llT,t )= 6 ((IJ(T,t)> - BIZ(T’t)AlT,t> :

(inins 1 .\ 3
i _ (T 1) (),

lr Iry

. ! .
In) = 3 CiG;™,
=0
T T
where Ay, = [(t—s)%ds, C; = [(t—s)'¢;(s)ds; {¢j(s)}320 — is a full orthonor-
ot t
mal system of Legendre polynomials in the space Lo([t, T).

If the functions ¥1(s), ..., v¥s(s) are different in the 4th particular case, then
calculation of the value M {(J [¢(3)]§¢t - J [¢(3)}T,t)2} becomes more difficult then
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in all cases analyzed previously. This case may be analized using (2.275) when
k=6 and k = 4.

We will make one remark concerning calculation of the mean-square error of
approximation for the multiple Stratonovich stochastic integral of 3rd multiplicity
of the following form:

*T" xt3 xo

[ [ [t de?des? s iy g i =1, m.
t t t
Since
(iinis) (iinis) 1 T 1 '
It = ooy + 5=} / / dsdf(® + - 1{12 —iy [ [ dEdr =
t t
- 1 3 . ,
= ]é%loli’lj) + Zl{i1=i2}(T_t)2 (C(gzz) + Téw)) 4
1 3

+Z]-{7,2:7,3}(T - t)2 <CO \/_ClZl ) ) (4'23)

N T
where CJ@ = [ ¢;(s)dfD; {¢p;(z )}529 — is a full orthonormal system of Legendre
i
polynomials in the space Lo([t, T]), then

(izinis) Grinia)p . 1 s 1 .
IOOB;,Z3 P = IO:)OZT,ztg Y + il{z&:iz}(T )2 <C0z3 \/§C§l3)> +
L (T - OF (¢ = =) (424
4 2—13 \/g ’
where Iéf)l()i;i3)p — is the approximation of multiple Ito stochastic integral [ééloi;’if),
which has the following form:

(irizia)p L (i1) »-(i2) -(is)
IOOOTt - Z OCjajzjl J1 Sj2 SJ3 1{11 12}1{31 Jz}CJ3
J1,J2,)3=

(1) (i2)
“Uir=is) L= G — Liir=is} L=} G )
From (4.23) and (4.24) we finally get:
* igigil 131921 2 i3i2i1 131211 )P 2
M {(IO((JOT,t ) IO(gOTt ) ) } = M {([(gOOT’t) [(gOOTt) ) } (425)

It is obvious, that formula (4.25) will also be correct for trigonometric system
of functions.
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4.6.3 The case £ =4 and any 11,%9,13,24 = 1,...,m

The case of pairwise different 4q,...,%4 is examined in lemma 10, so we just
need to analyze the following particular cases: 1. 41 = iy # 13, 14; 13 7 t4; 2.
1 = U3 7 19,045 92 7 145 3. 11 = 14 F U2,13; 92 7 13; 4. 19 = 13 7 11,945 11 7 147 O.
Gy = U4 F 11,13; 1) £ 13; 6. 13 =44 F 41,095 91 £ lo; 7. 4 = g = i3 £ ig; 8.
i2:i3:’i47é’i1; 9. i1:i2:i47£?:3; 10. i1:i3:i47é’i2; 11.
’1:1 == ’ig = ig = ’i4; 12. ’il = ’iz 75 ’i3 = ?:4; 13. ’il == ’L3 7é ’i2 = ’1:4; 14.
11 = 14 F 1o = 13.

Let’s consider only 1-6 particular cases.

For the 1st particular case we have:

T t2 . .
JO)rs = [ats) ... [ u(t)df) .. dESY (iy = iy # i3, ia),
t t
@7, \2\ _ 2
M{([WIre) ) = [ K2t ta, ts, ta)dtrdtadtsdts, (4.26)
174
D . . . . . .
J[w(4)]%’t - Z 00j4j3j2j1 ( 3(11) J(21) 3(33) J(44) o 1{j1=]'2}CJ(33) J(44)> )
J1,725]3,J4=

M {(J[¢(4)]T,t _ J[¢(4)]%t)2} _

-/ K2(t1,tz,t3,t4)dt1dt2dt3dt4+M{(J[¢(4)]’%,t)2}—
7)1

—2M {J[y]r S} (4.27)
Using (2.277) we have:

= 'V'{ > CiuiisCustit G5 5" gl)c(’l)}_

! !
. - . . . . 1 J2
J3,J4=0 J1,91,J2,75=0

q q
- Z CJ'4J'3J2]'2CJ'4]'3J'{J'{ - Z Cj4j3j2j20j4j3jéjé+
J2,J3,J4,31=0 J2,J3,J4,J5=0

q
+ o Z Cj4j3j2j2cj4j3jéjé =
J2:J3:J4,J5=0
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_ v (M OSS o on Hi) Hi Hi) f)]
= Z Z Jag3j2J1™~ jajajsdi S Cj{ J2 Ch

j3aj4:0 jlaj{ajzajé:(]
2
(Z CJ4J3J232> ) =
J2=0
p Ja—1 9
= Z (3 Z J4J3J1J1 + Z Z ( jajsgeis T CJ4J3JlJ2
J3,Ja=0\  751=0 J2=0j1=0

p 2
+20j4j3j1j1 Cj4j3j2j2 + 20j4j3j2j1 Cj4j3j1j2> - (Z Cj4j3j2j2) ) =
J

2=

p D
= Y Clunit X CipsiiCiisinir (4.28)

J1,J2,53,54=0 J1,J2,J3,J4=0

Analogously to the case of £ = 3 we obtain

M {J[¢(4)}T,tj[¢(4)]% t} =

?

p p
2
= Z Cj4]3]1]2 + ' Z Cj4j3j1j20j4j3j2j1' (4'29)

J4,J3,J2,51=0 Jajz,j2,J1=0

Therefore from (4.26) — (4.29) we get

M{ (T, = T D)} = [ Kt ta)dt . dta—

[t,T]*
b
2
Iy Z Clrdsgoin—
.74).737.727.71—0
p . . . . . .
- Z Cj4j3j1j20j4j3j2j1 (21 =12 7& 13,745 13 7’é 24)-

j47j37j27j1=0

For particular cases 2-6 we get in the complete analogy:

M{(J[@b(‘”]’},t—J[¢(4)]T7t)2}: [ Kt ta)dty . dta—

[t.T]*
D
2
- .. Z CJ4]3J2]1
J4,J3,2,J1=0
p
o Z Cj4j3j2j1Cj4j1j2j3 (Zl =13 7é 12,745 12 7é Z4);

J4,J3,J2,51=0
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M{ (T, — T D)} = [ Kt ta)dt . dta—

[t,T]*
P
2
L Z Cj4j3j2j1_
J4,J3,J2,J1=0
P
— Y Cisinj Ciraings (11 = 14 # 2, 13; 12 7 13);

j47j37j27j1=0

M{ (T, — T W)} = [ Kt ta)dt - dta—

[t,T]*
P 2
o Z Cj4.i3j2j1_
Ja,J3,42,J1=0
D
— Y ChgsinisCispojsin (12 = i3 # 11,145 11 # 1a);

j47j37j27j1=0

M{ (T D8, — T6@Wr) "t = [ K3t ta)dt . dts-

[t,T]*
P 2
L Z Cj4j3j2j1_
J4,33,J2,71=0
D
— Y CiijspoisCiojajag (12 = 14 7 91,835 i1 7 13);

j47j37j27j1=0

|\/|{(J[1/)(4)}gw’t—J[¢(4)]T7t)2}: [ Kt ta)dty . dta—

[t,T]*
p
2
L Z Cmsjzjl—
.74).737.725.71:0
D
— > CiijsiniiCiagey (i3 = g # 11,025 11 # i2).

j4aj3aj2aj1:0

Within the frame of 11th particular case when t1(s),...,¥4(s) = 1, as we
mentioned before, with probability 1 the following formula is correct (see sect.
8.1):
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i1i1i1i1 T - t Z'1 2
T, = I(goooT,t ) = (27) ((Co ) —6 (C(g )> + 3) :
In more general case, when v1(s), ..., %4(s) = (t — s)}; | — is a fixed natural

number or zero, with probability 1 we may write down (see sect. 8.1):

i 1
J [¢(4)]T,t = l(lzll;,f W= ((

= (7 )) 6(11(;1))2A1T,t+3(AlT’t)2>,

* * (41810191 1 i1 4
J [¢(4)]T,t = IU%TZz W= = (Iz(;,t)) 3

Ith Z Cj le1 Ath - /(t o S)Qldsa
t
where in the next-to-last formula we propose, that the expansion of stochastic

integral is performed using Legendre polynomials.

The particular cases 7-14 may be considered using (2.275) when k = 8, k =6
and k = 4.

According the scheme proposed above we may, increasing metodically the mul-
tiplicity k of the multiple Ito stochastic integral and separating various particular
cases which correspond to various combinations of indexes %1,...,%, = 1,...,m,
calculate accurately the mean-square errors of approximations of the multiple
stochastic integrals, obtained in accordance with theorem 1.

4.7 Convergence in the mean of degree 2n of expansion of
multiple Ito stochastic integrals from theorem 1

Creating expansions of Ito stochastic integrals from theorem 1 we stored all in-
formation about these integrals, that is why it is natural to expect, that the
mentioned expansions will be converged not only in the mean-square sense but in
the stronger probability meanings.

We will obtain the common evaluation which proves convergence in the mean
of degree 2n, n € N of approximations from theorem 1.

According to notations of theorem 1:

T [2) , .
R%Z.-',pk = Z / /R --Pk t17 SR tk)dft(fl) T dft(klk)7 (430)

(tla'"a k)t t
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def
Rpl---pk (tl; SRR tk) = K(th SR ) Z Z CJk Ji H ¢Jz(tl)
=0 j=0
For definiteness we will consider, that 41,...,4 = 1,...,m (it is obviously
quite enough for unified Taylor-Ito expansion (see sect. 9.9) and we can see
decoding of other notations used in this section at the text of proving of theorem
1.

Note, that proving of theorem 1 we obtained, that

M{(REP)2) < O, / / (b te)dt L dty =
’ (t1 i)
=Cy [ R, (tr,... t)dty ... diy,
[t,T]k
Cir < oo and Cy = k! for the case i1,...,ix = 1,...,m.

Assume, that

l .
me ) [ Ry gty t)dE) L dE 1 =2,8, kL
t t

(k) def (k)
t

terit — Tt

T

k € il 7

) L [ [ Rp gy, ) Y.
t t

Using Ito formula (see sect. 9.3) it is easy to demonstrate, that

M{ (/t gTdfT) 2n} — n(2n — 1) t/t M{( / §udfu>2n_2§§}ds.

Using the Holder inequality in the right part under the sign of integration if
p=n/(n—1), ¢ =n and using the increase of value

m{ Q/t AN

with the growth ¢, we get:

n—1

u{ (/t )} <nizn—1)(M| (/t ear) )" / (M{g"})*d
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Raising to power n the obtained inequality and dividing it on

(] ear)p)

we get the following estimation
t

M{Q/ &)} < (n(on - Oy (foggpias)’. )

0

Using estimation (4.31) we have

k n n
M{(n¥)*"} < (n(2n — 1))

T n
/ Utk " 2n}) dtk] <
¢

173

t/T<(n(2n— 1))n[/(M{( M, lt)zn}) ndty_ 11”) dtk]n =

t

3=

< (n(2n - 1))"

T t n
)] [ g2y ldtk] <.
t t

t3

t )
/ / (M{( 77t2t 2”} ..dtk_ldtk] =
t t

< (n(2n — 1))

T
1)/
t

= (n(2n - 1))"Y(2n

/ / tl,...,tk)dtl...dtkrg

< (n(2n —1))"*=D(2n — 1)

| R (. th)dt .dtk] .

[t,T]*

The next to last step was obtained using the formula

/ tl,...,tk)dtlr,

M{(ni,1)*"} = (2n — 1!

which follows from gaussianity of

e = /Rp1 (b1, o ) dEY.
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Similarly we estimate each summand in the right part of (4.30). Then, from
(4.30) using Minkowski inequality we finally get

M{(RR; )2} < (k!((n(2n —1))"tD(2p — 1)l1x

n % 2n
X /Rf;l...pk(tla---,tk)dtl---dtk]) ) =

[¢,T]*

= () (n(2n — 1))"* -V (2n — 1)!Ix

x| [ Rglmpk(tl,...,tk)dtl...dtk]. (4.32)

[,T]*

From (4.6) we obtain:

/ R12)1---pk (t17 I tk)dtl Ce . dtk' =

[¢,T]*

D1 Dk
— / K*(t,...,t)dty..dty — 3 ... 3 CF . (4.33)
[t,T]k 51=0 5x=0

Let’s substitute (4.33) into (4.32):

M{(Rp; 7)™} <

< (EY*(n(2n — 1))"*D(2n — 1)!1x

n

D1 Dk
[ Kt te)dt . dte— Y Y Ch L (4.34)
[t, Tt n=0 =0

The inequality (4.32) (or (4.34)) means, that approximations of multiple Ito
stochastic integrals, obtained using theorem 1, converge in the mean of degree 2n,

n € N, as according to Parseval equality

X

[ RL (. te)dty .ty — 0
T

when pq, ..., pr — 0.
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4.8 Some peculiarities of calculation of mean square error
of approximation for the systems of polynomial and
trigonometric functions

Using the example we will demonstrate, that for the case of trigonometric system
of functions the approximation on the basis of formula (4.1) may be developed in

such manner, that the error M {(J (@5, —J [¢(2)]T,t)2} (i1 # 12) will turn out
to be less, than the right part of (4.3).

Assume, that the following trigonometric system of functions is taken as the
system of functions {¢;(s)}32,

1 when 5 =0

1 ™ .
¢;(s) = — V2sin 22 (s when j =2r — 1, (4.35)
\/icos%;(_t ) when j = 2r

where r =1, 2,...
Using the theorem 1 for the system of functions (4.35) to the multiple Ito
stochastic integral of type

T

S
62;1 / AP | iy iy =1, my iy # b,
bt

we get
iniy 1 i 1 x 1
[(gom) = 5( —1) [Co +o g ;{ e Sarie e o2
+\[<C2r 160 Cozl e 1) H (4.36)
¢ T .
where C dof / ¢;(s)dfD; £0 (i = 1,...,m) — are independent standard Wiener

processes. At that, the series (4.36) converges in the mean-square sense.

According to (4.1) it is necessary to write down

201 1 1 2
I(%;t) —5( _t)lgoz () 4 = Z {2r 27’1 C2r12r

+\/_(C2r 160" Co“ i 1) }] (4.37)

From (4.36) and (4.37) when i, # iy we have:
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(i2%1) (i291)g 2 _ 3(T - t)2 7T_2 - d i
M {(IOOT,t IOOTt ) } - 27T2 6 = 7,2 : (438)

It is easy to see, that the right part of (4.38) may be decreased three-fold, if
instead of the approximation of type (4.37) we take the following approximation
123]:

71
Z;{ 2r 2r1 C2r12r

r=1

V@ (69657 - )|, (439

I(%Qq:) —%( —1) l(oh %
+\/_<C2r 160" Co“ o 1)} v2

™

where
é-(_ _C 0717
Y= X dh N
2 7 1
anE_Tzlﬁ'

At that, the Gaussian random variables Céi), Cz(?; C2(?—1; §éi); r=1,...,q;
1 =1,...,m are independent in total.

From (4.36) and (4.39) when i, # iy we get

(irir) _ pliaing) 2| _ (T —1)*
M { (1) = 1557} =S (G - ;1 . (4.40)
i.e the right part of equation (4.40) is tree-times less then the right part of equation
(4.38).
The given method of advancing approximations of multiple stochastic integrals
[23] is generalized for the case of integrals of third multiplicity [24]. Apparently,
analyzing stochastic integrals of higher multiplicity, than the third one, we cannot
propose the universal method for introducing additional random variables as it
was made in (4.39). As a result, in each case we have to act individually.

You may omit it selecting the full orthonormal system of Legendre polynomials
at the space La([t,T]) as a system of functions {¢;(s)}52,.

Let’s remind, that in chapter 2 using the system of Legendre polynomials for
11 7 19 we got the expantion:

155 = 5|66 + £ o {6 - )

which doesn’t require perfection, as in the case of trigonometric system of func-
tions.
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It is easy to see, that
192 192 2 T—1 211 a 1
w (i iy =S ) e
From (4.40) and (4.41) we get:

igil 2211 )9 2 T - t 2 > 1
M {(Io(om) I(goTt) ) } Gl > 5 <

T —1)? Fd T —t)? T —t)?
LT=t) pde (Tt o (T=) (4.42)
22 ) x? 2m2q q
and (T )2 .
(i1i2) (ii2)g\ 2| _ —1 &
M {(IOOM Tog;.") } =3 2 aw—is
-2 7 1 T —t)? 2
iy A el M ‘_
) 40? —1 8 2q + 1
T — t)?
< (72( 7 ) (4;43)

correspondently, where C7, Cs — are constant.

Since the value T — t plays the role of integration step in the numerical
procedures for Ito stochastic differential equations, then this value is sufficiently
small.

Keeping in mind this circumstance, it is easy to note, that there is such
constant C', that

.. .. 2
M{ (1), - 1)} < em{ (1 - 152},

where [ l( )q — is the approximation of multiple stochastic integral I, l( ) from

the class (5 1) which has the form of truncated expansions from the sectlon 1.3
(k> 2).
From (4.42), (4.43) and (4.44) we finally get:

Iyry 1-leTy

M{(Il(“ = L) }< o=t ; —i (4.45)

where C — is a constant.

Note, that the estimation (4.45) is general enough, and at the same time it is
rather rough.
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Also the following estimates (see sect. 4.2, 4.3):

M{(Ry )"} <

Sk!g/ KQ(tl,...,tk)dh Ldty — Z Z Ji-- Jl)’
t

Tk n=0 =0

M{(Bg; 7)) <

p
gk!(l/ Kz(tl,...,tk)dh---dtk_ Z CJ2k J1>’

t, Tk J1y-Jk=0

which valid for the case 41,...,7, = 1,...,m or the case i1,...,7; = 0,1, ...

(T —t < 1) are usefull for practice.
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Chapter 5

Approximation of specific multiple
Stratonovich and Ito stochastic integrals

In this chapter we give huge practical material about expansions and approxima-
tions of specific multiple Ito and Stratonovich stochastic integrals using theorem
1 and systems of Legendre polynomials and system of trigonometric functions.
Considered multiple Ito and Stratonovich integrals are included into stochastic
Taylor expansions (Taylor-Ito and Taylor-Stratonovich expansions). Therefore,
results of this chapter may be very useful for numerical solution of Ito stochas-
tic differential equations. Expansions of multiple Ito and Stratonovich stochastic
integrals of multiplicity 1 — 5 using of Legendre polynomials and expansions of
multiple Ito and Stratonovich stochastic integrals of multiplicity 1 — 3 using of
trigonometric functions are derived.

5.1 Approximation of specific multiple stochastic integrals
of multiplicities 1-5 using Legendre polynomials

In this chapter we provide considerable practical material (based on theorems 1
— 8) about expansions of multiple Ito and Stratonovich stochastic integrals of the
following form:

T ta
I = (=)™ /t—t Yade) . af), (5.1)
t t
. . *T xto .
L = =) [(E—0)dE L dE,
t t
where t1,...,0, = 1,...,m; ly,..., [z =0, 1,....
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The full orthonormal system of Legendre polynomials in the space Lo([t, T])
looks as follows

G 60 = p (- ), 62

where Pj(z) — is a Legendre polynomial. It is well-known [28], that the polyno-
mials Pj(z) may be represented for example in the form

This representation, as we know, is called an equality of Rodrigues. Note
some well known features of polynomials Pj(z):

Pi(1)=1; Pia(—-1)=—Pj(-1); =0, 1,2, ...,

IPine) _APA®) _ g

1
/:I:kPj(x)d:U:O; k=0, 1,2...,5—1,
-1

1

0 itk #j
Py(z)Pj(z)dz = { . .
_/1 J 2)—2“ ifk=j
+ 1) P; P
2Py(z) = S EVE@) £ b))
27+1
m
Pn(x)Pm(x) = Z Km,n,kpn+m—2k(x)7
k=0
where
_ — 1\
K. .- Am—kQkn—k 2n + 2m — 4k + 1; o — (2k 1)..; m<n.
” mtn—k 2n +2m — 2k + 1 k!

Considering these features and using the system of functions (5.2) we get the
following expansions of multiple Ito and Stratonovich stochastic integrals:

1§ = VT =g, (5.3)

: T —t)3% 1
g _ ( (i) (m>’ 5 4
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7:1 T - t 5/2 ’1:1 \/g il 31

*(i162) __
IOO -

[co“ 9+ 5 g {0 - 5?2}], (5.6)

T —t _uiiyi T—t)271 ).
e = 5 - E [ o g

(i+2)¢M68 - (+1GREY G )
JEi+1D)(2i+5)(2i+3) (20— 1)(2i+3)

+3

1=0

1102 T ivio T —t 2 i i
oy == SHa | 4)lv§% ¢+

2+ DEHE — (+2¢7¢ - ¢

+7J=ZO< \/(21+1)(2z+5)(2i+3) + (22’—1)(2@'4_3))]

(5-8)

. 1 - 1
]1(101;2;) ]161”2) + Zl{h:iz}(T —1)%; ](ngqzvi) 101(“22) + Z]—{ilziz}(T —t)%, (5.9

1
a9 =~ (10 + 105 +

‘|‘11(§i~3,) (IOO(WQ) Ioo(ml)> -

2
él(m<m<<m (i) 1 @v
—(T —t)2 |~ 3G —
( ) lGCO CO CO + \/_Cl \/ECZ +
1 11291
+4D“2”] (5.10)

or in general form:

00
*(i1inis) o (i1) (i2) +(i3)
IOOOT,t - ] Z C.73.72.71 1 92 VER
J1,J2,53=0

T S S1
Cioinis = [ $5,(5) [ 63x(51) [ 85, (52)dsadsuds,
t t t
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i1i2i3 7,1227,3 1 i3 1 1 1
[(SOOT,t) [oé "t 1{2'1:z'2}§]1(T,2 ~ Li=ig} 5 ((T — t)f( 1! )> ,

Tt

192 T—1 102 192 T—1t) i) (11
Io(”)__( )]00(Z )_(T )1—01(”) ( 3 ) lg\/ggéz C(gz)‘F

e T 4
1 & (626 +3)EHE™ — 6+ 1) +2)¢™ ¢
T30 G +Z< V(20 +1)(2i + 7)(2i + 3)(2i + 5) -

1=0
(P +i=3)GAGY - <z‘2+3z‘—1)c¥2’<§i1%>
V(204 1)(26 + 3)(2i — 1)(2i + 5)

, (5.11)

B N3 .
126“22) _ _(T ; ) [Oémz) . (T . t)ll(guw) (T - t) lg\/ggom C2(“ +
4 2 (D +2GH — 42)(+ 3)G
*3 40 + Z( JZAD@iT )2+ 3)2i+5)
(2 +3i — DGAGY — (P +i - 3)@-"'”@-‘.":%) (5.12)
J@it 1)(2i 1 3)(20 — 1)(2i + 5) | |

T — T —
[11(1122) — _( 7 ) Io(glllz) _( > )(Ilélllz)+101(1112)>+

RO F o <<¢+1><z'+3> (e — ¢t cff:§)+
8 1370 Y TS\ i+ 1)(20+7)(2i 4+ 3)(2i + 5)

(5.13)

(i +1)? (¢ = =)
V(20 + 1)(26 + 3)(2i — 1)(2i + 5))]

192 192 1 192 192 1
]0(@2;’3 102(1 2) él{ilziz}(T —1)%; 12(6;3 Izél 2 gl{ilziz}(T— t)’, (5.14)

192 192 1
]ﬁ;,t) 111(z ) 61{7:1:7:2}(7_' - t)3, (5-15)
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. —$)7/2
- T (g0 280 oy ). o

15(217,27,37,4) — 1

0007 Z Cj4j3j2j1 (i1) #(i2) ~(i3) »(is)

J1 J2 OJ3 )4

(7:177;2)7:377:4 = 07 17 .- 7m)a

T s S1 Ep)
Cisinin = [ 3.(5) [ dis(51) [ 61,(s2) [ $5.(s3)dssdsadsads,
t t t t

L b
*(i19203) 7 001 (i3)
[001T,t - lpl_gé , Z CJ332]1CJ J2 Sj3 2
.717.727.73—0
L. p
*(i1d2iz) _ 7 - 010 (i3)
IO].OT’t - 11')]'_'>IO%' . Z CJ3]2]1 gj 2 J3 )
.715.727.73—0
. Y4
*(i1i2d3) __ 7 . 100 (i3)
IlOOT,t _lpl_g(l, , Z 0133231CJ J2 SJs
J1,J2,]3= =0

(’l:l,iQ,ig, = 1,...,m);

T
CJQ30J'12J'1 /( ¢J3 /¢]2 51 /Qbh 82 d82d81d8
t

T s
CJO:sljgh /¢]3 / ngz 31 /Qsjl 82 d82d81d3
t

t

T s 81
CJ130]'(;J'1 /¢j3(8)/¢j2(51) /(t - 82)¢j1(82)d82d81d87
t t t

D(Zﬂzls) _
= > N K. i2) ~(is)
B i=1 Jz=:0 k=i ijk i+1,k+1, k—H J+1<7, C Ck,‘ +

2i>k+i—j>—2; k+i—j — even

[e) 1—1 . . .
+ > 2 Niijk+1i+1 ’“r#i+1<i(ll)<g(12)<183)_
i=1,j=0 k=1 AT

2k>k+i—j>—2; k+i—j — even
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- %.E NkaK +1,k—1, HLJ_C C( )CIEZB)_
i=1,j=0,k=i+42
2i+2>k+i—3j>0; k+i—j — even

o0 Z+1 .1 2 .
- X X Nijp K111 m@(z )Cy(l )Clgm_
i=1=0 k=1 AL

2k—2>k+i—j>0; k+i—j — even

o0

i2) ~(i3)
— > Niji K, _ ki JC C (' —
i=1,j=0,k=i—2,k>1 " LE+1, ' k
2i—2>k+i—j>0; k+i—j — even

00 —3 i\ i .
B izlzjzo kz_:l NiijkH,z‘—l,%iCi(l )CJ(Z )C;g%)-l—

2k+2>k+i—j>0; k+i—j — even

5 NijiK, i2) ~(is)
+ i=1j2=:0 i ikt i—1k—1,54=1 1Cz C G+
2732]54'1'—]'2’2; ki—i—j — even
00 i—1 i, i .
+ i=1Z]:':0 kZ::1 Nijchk—1,z‘—1,%_1Cz'(Z )CJQ )ngzg), (5.17)
2k>k-+i—j>2; k+i—j — even
where
N — 1
TN (2k+ 1)(25 + 1)(2i + 1)’
m— n—k 2 2 4k +1 2k — 1
Kmnk:a Kakd iy ntem= L Q, m < n.
Um4n—k 2n +2m — 2k + 1 k!
Let’s analyze approximation Ioémz)q of multiple stochastic integral I())ko(?iz)),

obtained from (5.6) replacing oo on g.

It is easy to prove, that
(i1i2) _ pr(ivin)a\ 2| _ —(T — t)2 (1 — q 1 >
M {(IOO Toor, ) } - 2 2 1:21 42 — 1) (5.18)
Then, using lemma 10 we get:
2 2
M {(Ilénlz) Il(ghlz) ) } M {(I()Ylw) _ 101(2112) ) } —

(T—t)* (5 q 1
16 (5_2Z4z2—1 izl(2i_ (2 +3)*
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¢ (14274 (i +1)? )

=5 (204 1) (26 + 5)(2i + 3)2 (5.19)

We proposed ¢; # iz in formulas (5.18), (5.19). Let’s examine (5.7), (5.8) for

i1 =1z
rii = - ()4 gy

" ija{ J@i+ 1)(2@'1+ 5)(2i + 3) Qe - (2 — 1)1(22' +3) (Q'(il)f}] , (5:20)
i) = -2 () 4 S

" ijo{_ V(2i+ 1)(2il—|— 5)(2i + 3) QMG+ (2i — 1)1(27l +3) <Ci(i1)>2}] , (5:21)

from which, considering (5.3) and (5.4), we get

winin) | i) _ (L= (a2 L 1 ) @)Y _ ) 60
hop, "+ loiy, = 5 (Co ) +\/§C0 G = Io Ly, wp. 1. (5.22)

Obtaining (5.22) we supposed, that equations (5.7), (5.8) are executed with
probability 1. Complete proof of this fact will be given in this chapter.

Note, that it is easy to get equality (5.22) using Ito formula and formulas of
connection between multiple Ito and Stratonovich stochastic integrals.

Direct calculation using (5.20), (5.21) gives:

M { (1 = nige ) b =mf (1) - R =
2

(T —t)"

= 1
2 i+ D)2+ 5) 2+ 3) +Z§+1 (2i— 122437

+<i:§1 (2 — 1)1(22' + 3))2 ’

where 101(“21) Im(““ detected from (5.20), (5.21) replacing oo by g.
Let’s consider the variant of (5.23):

M { (1 = nigg ) b = (1) - B =
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(T-vt (4 g 1
- 16 (4__;(2i+1)(2i+5)(2i+3)2_

q 1 q 1 2
§ (20 — 1)2(2i + 3)2 ( g (22—1)(2i+3)> )

On the other side, formula (4.18) provides a possibility to get more comfort-
able expressions from the practical point of view, but for multiple Ito stochastic

integrals:
w{ (1) - 1) = m{ (n - 1)’} =

(T-ti (1 g 1
16 (§_§(2i+1)(2¢+5)(2i+3)2_

g 1
22 i@t 3)2) ' (5.24)

In tables 5.1 — 5.3 we have calculations according to formulas (5.18), (5.19),
(5.24) for various values of ¢. In the given tables ¢ means right parts of these
formulas. It follows from (8.13), that

2
[(@1)
L = M w. p. 1. (5.25)

In addition, using the Ito formula we have:

i i ) iy T —¢)3
)+ 1 = 1) - T

from which, considering formula (5.14) we get:
L) 4 1) = [0 18w p. 1. (5.26)

Let’s check whether formulas (5.25), (5.26) follow from (5.11) — (5.13), if we
suppose i1 = 19 in the last ones.

From (5.11) - (5.13) when 41 = iy we get:

T —
r 1 = T2 o (550 4 1) ¢

P () + 2. (527
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1111 T 1111 T Zl’Ll 1111
[11( ):—7( 4)[08 o 5 (Il(() )+[01( )>+

S (), (5.29)

It is easy to see, that from (5.27) and (5.28), considering (5.22) and (5.3) —
(5.6), we actually obtain equalities (5.25) and (5.26), and it indirectly confirm
rightness of formulas (5.11) — (5.13).

On the basis of presented expansions of multiple stochastic integrals we can
see, that increasing of multiplicities of these integrals or degree indexes of their
weight functions leads to noticeable complication of formulas intended for men-
tioned expansions.

However, increasing of mentioned parameters lead to increasing of orders of
smallness according to T' — ¢ in the mean-square sense for multiple stochastic
integrals, that lead to sharp decrease of member quantities in the expansions
of multiple stochastic integrals, which are required for achieving acceptable ac-
curacies of approximation. In the context of it let’s examine the approach to
approximation of multiple stochastic integrals, which provides a possibility to ob-
tain mean-square approximations of the required accuracy without using common
expansions of type (5.10).

Let’s analyze the following approximation:
q1

i - £ a(@ig-
1,J,k=0

(i3) (1) (i2)
L= L=y G — Yimip L=0}G " — Lin=ig} Li=}G ) (5.29)

where ’il,’i2, 'i3 = 1, N and

z

Crji = [ $i(2) [ ¢5(v) /y 6i(w)dzdydz =

t t

_ J(2i+ 1)(2j8—|— 1)(2k +1) (T — 192Gy

¥4

Chji = /Pk(z)/Pj(y)/yB(x)dwdde;

-1

P(z); i=0, 1, 2,... — are Legendre polynomials.
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In particular, from (5.29) when 4y # is, iy # i3, 11 # i3 wWe get:
piia _ S5 gy elin) olia) o) 5.30
0007, - % . leCz C Ck ( . )
l’]’

Note, that due to the results obtained in chapter 2, the right part of

the formula (5.30) determines approximation Iy (mm)ql of multiple stochastic
Stratonovich integral 1-061112@3) but for any possible 71,479,713 =1,...,m :
]I *(i1inis)qn q C (i1) (i3) (+ - . 1
0007, = Z szCz C C (21,7»2713— 7---7m)-
i,J,k=0

From chapter 4 we obtain the following relations for the mean-square errors
of approximations:

i1i2i3 111213 )q 2 T - t 3
Y {(Io(ooT,t) I } _ =

6
q1
— X Gy (i # i, in # 3,00 # 13), (5.31)
4,5,k=0
1921 192 2 (T - t)3 &
M{ (52— I )} =S = 2 Gl
i, =0
q1
— Y CjriCyji (41 # i2 = 13),
1,7,k=0
L L 2 T —¢)3 a1
w(nie) - aggon)’ = TS - 3 o
i,3,k=0
q1
— Y. CrjiCiji, (11 = i3 # 12),
1,7,k=0
1921 192 2 (T - t)3 I
M { (1~ rfggr) = St - 3 o
1,7,k=0
q1
— > CyijCji (11 = ia # 13),
i,3,k=0
il’iQi 112212 2 T - t 3 &
M {(I(gOOT;) - (goon) ) } S 6 (% — ' % Oclzji> ) (532)
Z7]7 =

il,iz,’Lg: 1,...,m.
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For the case i1 = 19 = 13 = ¢ it is comfortable to use the following formulas:

oot = 5@ =0 (&) 5, = 5@ - 07 (&)~ 36) w. v 1. (533

In more general case, when 1 (s), ¥a(s), 13(s) = (t—s)!; 1 — is a fixed natural
number or zero, with probability 1 we may write down

11 1 ) 3 )
Il(llT)t 6 ((IJ(T,)t> - 311(T,)tAlT,t> ,
(i) _ 1 0 r
Izu?i = E(T — 1) (Il;) [th Z CJCJ SAVAES /(t — s5)%ds.
t

T
where Cj = [(t — 5)'¢;(s)ds; {$;(s)}32, — is a full orthonormal system of Leg-
t

endre polynomials in the space Lo([t, T1).

Now, it is clear, that for approximation of stochastic integral 16010; f) we may

use formulas (5.29) — (5.33) instead of complex expansion (5.10). We may act
similarly with more complicated multiple(.s‘pqc_h)astic integrals. For example, for
[ 21%213%4

the approximation of stochastic integral Ijg,," according to theorem 1, we may

write down: .
2

156156;334) = Y Cuji (gi("l)gj(iz) Clgia') Cl(u)_
1,7,k,1=0
~Lirminy o= GG = Lmi Lm0 =
_1{i1=i4}1{i=z}Cg(i2)C1§i3) - 1{¢2:i3}1{j:k}§i(i1)§l(i4)_
~Lipmi =0 GG = Lmig Lumn GG+
+1g =iy L= Lis=in) Lk=1) + Liii=is) Li=k) L{in=ig) L=} F
+1{i1=i4}1{z‘=l}1{jz=j3}1{j=k}> :
where

Clkji = /¢1(U)/u¢k(2)/z¢j(y)/y@(m)da:dydzdu =

_V(@2i+1)(25 + 1)6(% +1)(20+1) (T — 1)Cus

Cirji = /1 Bi(u) / / P;(y /y Py()dzdydzdu.
-1 -1 -1
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Table 5.1: Check of formula (5.18)
2¢/(T —t)>  0.1667 0.0238 0.0025 2.4988-10"% 2.4999-10°

q 1 10 100 1000 10000

Table 5.2: Check of formula (5.19)
16¢/(T —t)* 0.3797 0.0581 0.0062 6.2450-10~* 6.2495-107°

q 1 10 100 1000 10000

On the other side, according to the theorem 8, for the approximation of mul-
tiple Stratonovich stochastic integral 13‘0“013;;3“) we may write down:

(irinizia) g2 = (1) (i) -(i3) ~(ia) ¢ :
[OOOOT,t = Z Clkjigz' C] Ck Cl (Zla R Z 07 17 ceey m)
1,J,k,1=0

In chapter 4 we obtained for example the following formulas for the mean-
square error of approximation:

M I(i1i2i3i4)_ (irinigia)gs ) 2 _
00007 00007 =

(T —t)* & 2
=—= > Cii
24 iikizo
where ¢1,...,%24 = 1,...,m and pairwise different;
4
(i1 inisia) (ininisis) g 2 (T_t) q2 5 .
M {(10650;?34 - 06010;3,54 ! ) } < 24 (T — i,j,kZ,ZZO Clkji ;
’il,ig,ig,i4 = 1,...,77?,.
In the case 11 = ... = 14 = ¢ there are the following representations:
(T — t)2 N 4 A 2
sogh, =5 ((67) =6 (&) +3).
wiiii) _ (T =) 1 i)
Too0o,, = 2 <C0 )
w.p.1.
In more general case, when 91(7), ..., ¥4(7) = (t—7)}; I — is a fixed natural

number or zero, with probability 1 we may right down the following:
1 4 N2 5
Il(lllzll;,)t = ﬂ ((Il(;’,)t> -6 (Il(:lz’,)t) AlT,t +3 <AlT,t) ) )
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Table 5.3: Check of formula (5.24)
16e/(T—t)* 0.0070 4.3551-10° 6.0076-10"% 6.2251-10"!* 6.3178-10"

q 1 10 100 1000 10000

Table 5.4: Coefficients Cojp,

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 3 = = 0 0 0 0
j=1 0 = I T 0 0 0
i=2 5 05 % w0 0
j=3 0 3 % 315 & w5 O
j=4 0 0 715 & 53 W 287
j=5 0 0 0 = 2 s =
j= 0 0 0 0 o = S

w(iiii 1 N4 . l . T
i = 53 ()" 1, = X 06, Ay, = [t = s)as,
J= t

where in the next-to-last formula we propose, that the expansion of stochastic
integral is performed using Legendre polynomials.

Assume, that ¢; = 6. In tables 5.4-5.10 are given the exact values of coeffi-
cients C_’ka- when ¢,7,k=0,1,...,6.

Calculating the value of expression (5.31) when g1 = 6, 41 # 49, 11 # 13, i3 7# 12

Table 5.5: Coefficients C|

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 2 = 0 = 0 0 0
j=1 £ 0 = 0 = 0
i=2 % 705 0 0 0 s 0
i=3 3 0 AL sies 0 5003
j=4 0 == 0 - 0 s 0
j=5 0 0 s 0 oo 0 P
j=6 0 0 0 s 0 = 0
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Table 5.6: Coefficients Cy;p,

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 X 0 = 0 = 0 0
i=1 5 05 0 o 0 5 0
i=2 &= 0 0 0 = 0 o3
i=3 3 s5 O s O wois O
i=4 0 195 0 a5 0 5509
ji=5 0 = 0 o 0 e 0
j=6 0 0 o 0 =3 0 s

Table 5.7: Coefficients Cs

k=0 k=1 k=2 k=3 k=4 k=5 k=6
i=0 0 = 0 = 0 = 0
j=1 @ 0 SR w5 0 5003
i=2 3% w0 sics 0 wis 0
i=3 35 0 s 0 e L 5509
=4 F 55 O wois 0 w5 O
Jj=3 571:? 0 % 0 ﬁ 761527265
j=6 0 s O s 0 7oores O

Table 5.8: Coeflicients C_'4jk

k=0 k=1 k=2 k=3 k=4 k=5 k=6
j=0 0 0 T 0 s 0 7
j=1 0 = 0 T 0 S 0
i=2 @ 0 w0 e THo0is
i=3 & s O w5 0 w5 O
j=4 & 0 s O T30
j=9 §_92 % 0 ﬁ 0 1531253 0
j=6 % 0 % 0 % 0 18§9255

Electronic Journal. http://www.math.spbu.ru/diffjournal A.260



Differential Equations and Control Processes, N 1, 2017

Table 5.9: Coefficients Csj

k= k=1 k=2 k=3 k=4 k=5 k=6
j= 0 0 0 = 0 G 0
j=1 0 0 v 0 oo 0 e
j= 0 T 0 T 0 = 0
i=3 & 0 s 0 o 0 53005
ji=4 3 555 0 o5 0 = 0
i=5 ms 0 o5 w0 T
j= % 71115 0 7g§7225 0 ﬁ 0

Table 5.10: Coefficients C;p,

k= k=1 k=2 k=3 k=4 k=5 k=6
j=0 0 0 0 0 T 0 T
j=1 0 0 0 s 0 e 0
ji=2 0 0 o003 0 e 0 s
i=3 0 S5 0 s 0 e 0
i=4 @m0 ws 0 mn 0 THR955
j=95 1?1_3 % 0 761527265 0 ﬁ 0
j=6 212—45 0 ﬁ 0 1859255 0 0

Table 5.11: Coefficients Cygy;

_ 2 =2 2
=0 3 5 5
— =2 2 —2
=1 3 i o)
_9 2 2 2

15 35 105

Table 5.12: Coefficients Cjop

l= =1 =2
— 2 =2 2
=0 5 9 35
=1 =2 2 =2

45 35 45

—2 2 2
=2 21 45 315
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Table 5.13: Coefficients Cyop;

=0 I1=1 1=2
_ —2 2 —4
k=0 3 a1 105
_ 2 —4 2
k=1 5 105 05
_o 4 -2 0
105 105

Table 5.14: Coefficients Cyy

=0 =1 1=2
_ 2 —2 =2
15 45 105
k=1 & o5 s
k=2 & 35

Table 5.15: Coefficients C}1j;

=0 =1 [=2
_ 2 —2
k=0 5 35 0

2 -2
— —4 2
k=2 o5 0

Table 5.16: Coefficients Cagy;

=0 =1 [=2
. 2 —2
k=20 5 35 0
k=1 & 0 T
. —4 2
k=2 o5 05 0

Table 5.17: Coefficients Coj;

=0 =1 (=2
_ 2 =2 2

k - 0 21 45 315
=1 2 2 =2
- 315 315 225
_ =2 2 _2

k =2 105 225 1155
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Table 5.18: Coefficients Cjop
[=0 =1 =2

_ —2 2 =2
k =0 35 45 105

— 2 =2 2
k=1 63 105 225

— 2 2 —2
k=2 105 225 3465

we get the following approximate equality:
ilig’i 212212 2
M {(IéooT;) I ) } ~ 0.01956(T — ¢)°.
Let’s choose, for example, go = 2. In tables 5.11-5.19 we have the exact values

of coefficients C_'lkji; 1,7,k,l = 0,1,2. In case of pairwise different 21, 19, 3,74 We
have the following equality:

igiai iy 2 T — )4 2
w (g~ i) =T S g e
i,j, e 1=0

Note, that it is easy to check correctness of the following equalities (see (5.7),
(5.8), (5.11) - (5.13)):

(T —t)?
T

(T —t)°
6

.Z Ciy = Z Cjj = - (5.35)
j=

_2 Cy = 2 Cjj = Zo CY = (5.36)
J= J=

where

Cjj = /T $i(x) / 6;(y)(t — y)dydz,
col = /¢J t—qusj(y)dyda:,
Cjj = / b(a)(t — ) / #;(y)(t - y)dyda,
C = / b,(z) f 6i(y)(t — y)*dydz,

CY? = /cbg )t —2)* [ 6;(y)dydz,
t
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{#;(%)}529 — is a full orthonormal system of Legendre polynomials in the space
Ly([t, T1).

Note, that equalities (5.35) and (5.36) together with the theorem 1 when k = 2
and formulas (5.9), (5.14), (5.15) confirm formula (2.3) for multiple Stratonovich

#(ivin)  pr(inia)  px(iniz)  pr(ivia)  px(inia) |
stochastic integrals Iyg,.,”, Toiy, s Loor, 5 Litr, » Lo2g, 5 01,02 =1,...,m.

Let’s analyze approx1mations for the following four multiple Ito stochastic
integrals:
1(112223) _ qz3 001 (C i1) C C )
0017, — ka i

1,5,k=0

(i3) (1) (i2)
L =iy =3 Sk — Vio=ig) 1=mG = Li=is} L=k} G )

4
i = > ot -

i,j,k=0
P s R T T GO
{ir=i2} L{i=3}Ck fia=is} L{j=k}Ci
—1{i1=i3}1{i=k}4§w)> !
qs .
Him = > oo
1,),K=

(i3) (i1) (i2)
— L=y L= 0k — Yi=is) L i=03G = L{i=is} L{i=k}G; >,

..... de . . . . .
Iégloz(z]ég;szs)% — k; Crlkji <C£l5)Cl(u)clgw)cj(w)ci(h)_
i’j’ b ,T'_O

~Lpimin L=y 2 V) — 1 iy L (P ¢ ¢l —
—1{i1=¢4}1{¢=z}€}(i2) 1) ¢lis) —1{i1—i5}1{i—r}Cj klg -
—1{¢2=¢3}1{j=k}C ¢l — Lii=iy 1= z}C ) ¢lis) _
—1{i2=z‘5}1{j=r}@'“ klg Cl“ — 1{i3:i4}1{k=l}@ CjZ2 ¢l —
~Liymin Ly GV G — Lgimig Lpan VP G+
15y Limi) L =i L=ty G + L =iy L= Ligmio) L=y G4
iy Limp L Lamn G+ Lo Lo Liamin L=+
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i L=t Liamin L= G+ =i L Lamin La=n Q)+
1 iy Limt L imin) 1=ty &) + L i L=ty Lisgmin) Lij=my G+
+1gi=i) Lim L igmi) L= G + Limio) Lii=r Linmi) Lm0+
+1{i1=i5}1{i:7'}1{i2=i4}1{j=l}C]§i3) + 1{i1:i5}1{i=7"}1{i3:i4}1{k=l}chi2)+
1 i,y L=k Liaminp L= G+ Liamiay L= L igmio) Ly G+

(i1)
F1i,=is} Lj=r} Lig=in} Lr=03Gi )

where
o = (1= 0x) [ s | oeiutz =
_ (@24 1)(21; 1)(2k + 1) 7 — e,
Chfl = / e / ¥)$5(y) / ¢i(w)dzdydz =
_ V(20 + 1)(231; 1)(2k + 1) (7 — i,
Chyt = / e / 6i(y / t — 2) () dudydz =
_ /(2i+ 1)(231; 1)(2k + )( Hice,
Cragi = / ) [ ) [ () [ 500 / 61(2)dadydsdudy =
_ @i+ 1)(25 + 1)(21;):2+ D20+ 1)(2r +1) (T — 1) o
where . . .
CE0 = —_/1 Pk<z>_/1 P;(y) / Pi(z)(z + 1)dwdydz;
8 = | 1) [ B+ 1) | Piodadu
== [ P@e+1) [ B | Ploisdua
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Table 5.19: Coefficients Cogp;
=0 =1 =2

_ —2 —2

k=0 3T 0
_ 2 —2

k=1 35 0 1155
_ 2

k=2 0 2 0

Table 5.20: Coefficients C’&Q,%

k=0 k=1 k=2

. _ 14 =2
j=0 2 15 15

=2 =2 5
J 1 15 15 35
s 2 —22 =2
J=2 £ 105 105

Table 5.21: Coefficients C{9;

k=0 k=1 k=2

) — -0 22 -2
J=0 5 45 105
- =2 =2 26
Jj=1 9 105 315

_ 22 =38 =2
J= 105 315 315

Table 5.22: Coefficients C'SJQ,%

k=0 k=1 k=2

j=0 =2 2 4

5 21 105
C —22 4 2
J=1 105 105 105
. =2
Jj=2 0 105

Table 5.23: Coefficients C1%

0jk

k=0 k=1 k=2
. —2 2 2
J=0 15 15
. —2 -2 2
J=1 3 re 35
. 2 -2 —4
J=2 3 B 05
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Table 5.24: Coefficients C90

15k
k=0 k=1 k=2
s —2 2 2
J=0 = s a1
- —2 —2 4
J=1 3 105 105
- 2 —2 —2
J=2 3 o 105

Table 5.25: Coefficients C'199

2k

k=0 k=1 k=2
. 2 —2 4
J=0 3 105 708
- —2 —2 2
J=1 3 315 105
- -2 -2

Table 5.26: Coefficients C910

0jk
k=0 k=1 k=2
_ —4 8
1=0 3 15 0
. 4 8
J=1 3 0 708
s 4 —16
J=2 5 105

Table 5.27: Coefficients C?19

1jk
k=0 k=1 k=2

_ —4 4 4

J=0 =5 5 05
—4 4 4

J=1 3 708 708

: 4 —8

J=2 3 105

Table 5.28: Coefficients C910

25k

k=0 k=1 k=2
. —4 4 4
J=0 3 108 108
. —4 4 4
J=1 3 708 315
- —4
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Table 5.29: Coefficients Cogor

r=0 r=1
. 4 —8
(=0 5 i3
_ —4 8
=1 v 105

Table 5.30: Coefficients Co1gsr

r=0 r=1
_ 4 ~16
=0 i 15
_ —4 4
=1 31E 315
Table 5.31: Coefficients Ci1q;,
r=0 r=1
_ 8 =2
=0 105 3
_ 4 4
=1 35 315

Table 5.32: Coefficients Coy1;y

r=20 r=1
_ 8 —4
l=0 315 315
i 2
=1 0 945

Table 5.33: Coefficients Coo1;r

r=0 r=1
. 4
[=0 0 315
_ 8 —2
l=1 315 105

Table 5.34: Coefficients Cig,

r=0 r=1
_ 8 —4
[=0 45 35
_ —16 2
=1 35 15
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Table 5.35: Coefficients Cigy;y

r=0 r=1
_ 4
[=0 I 0
_ 4 -8

Table 5.36: Coefficients Cyq1;,

r=0 r=1
=0 & o
=1 & 0
. 1 v Y
Chrikji = / P,(v) / / / Pi(y / P;(z)dzdydzdudv.
~1 -1 -1

Assume, that qg3 = q4 = g5 = 2, g6 = 1. In tables 5.20-5.36 we have the exact
values of coefficients C’,??Zl, C’,?}?, C’%?zo, 4,7,k =0,1,2; Cupji 1, 5, k,[,m =0, 1.

In case of pairwise different 1, ..., %5 from tables 5.20-5.36 we have
(ininis) (iinis) 2 B (T_t)5 g3 00\2
e e N

~ 0.00815429(T — t)°,

11920 21122 2 T - t)5 el 2
w{ (i - sy} = - % (et~
Z7J7 =

~ 0.0173903(T — t)°,

i i ) (T _ t)5 as 9
(- ) - T £ e
l’ s =

~ 0.0252801(T — t)°,

.......... 2 T — ¢)° 6
w{ (i — )y = o S ons
i,J,k,0,r=0

Electronic Journal. http://www.math.spbu.ru/diffjournal A.269



Differential Equations and Control Processes, N 1, 2017

~ 0.00759105(T — t)°.

Note, that from (4.9) we can write down

L 2 T — ¢)° g6
m { (1 - gy <o (L2 2 )
i,j,k,l,rzO

1,---,05=1,...,m.

5.2 About Fourier-Legendre coefficients

As we can see from the results of this chapter, the most labor-intensive work
while building approximations of multiple stochastic integrals is connected with
calculation of coefficients

k
Cioir = | K(tl,...,tk)lﬂl &, (t))dty . . . dty; (5.37)
7] -

k k-1 _
lgl ’l/)l(tl) lljl 1{tl<tl+1} lf ]{7 Z 2
K(tl,...,tk): o -

1(t1) iftk=1

Here (ti,...,t:) € [t, T)F; {#;(%)}529 — is full orthonormal system of func-
tions in the space Lo([t,T]).

The aim of this section is to identify some features of calculation of Fourier
coefficients Cj,_;, (k — is fixed) for expansions of multiple stochastic integrals
from the stochastic Taylor-Ito and Taylor-Stratonovich expansions (see sect. 9.8)
when using the system of Legendre polynomials.

For classical Taylor-Ito and Taylor-Stratonovich expansions [22], [24] (see sect.
9.8) in (5.37) it is necessary to assume, that 1;(s),...,¥x(s) = 1, and for unified

Taylor-Ito and Taylor-Stratonovich expansions [43], [46] (see sect. 9.9) — 1,(s) =
(t—s);q=1,....k1,=0, 1, 2,....

So, we will calculate the integrals
Jk g1 /¢]k tk /¢Jk 1 tk 1 /¢]1 t1 dtl dtk_ldtk;
to

T
CJlllc le1 / t - tk lk¢,]k tk) /(t — tl)l1¢j1 (t1)dt1 ... dty,
t

t
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where {#;(z)}52, — is a full orthonormal system of Legendre polynomials in the
space Lao([t, T1).

We have .
~ (T —t)z F ,
C]k T ok ll:Il V2.7l +1- A]k Jis
where
1 tr to
Ajjo= [ Pi(te) [ Pos(ticr) . [ P(tr)dty ... dty_adty; (5.38)
21 Z1 21

{P (2)}52, — is a full orthonormal system of Legendre polynomials in the space
1

Ly([=1,1]) :

1B (—1)92n—29)0
P = 3 35 gt s (5.59)
5.

Substituting (5.39) into (5.38) we get

N 1@ ﬁ (—1)(2j; — 2q)!
et ikt 20T =0 @l — @) (G — 2q)!
1 ' to .
x [ ()2 [ (0)P 0ty e
-1 -1

So, calculation of éjk---jl reduces to calculation of integral

ta
Loy = [P [ (@) dty .. dty; pr,. . pe=0,1,2,.... (540
1

»I—n\»—t

Now, examine lez lj’j We have

k
bt _ (T—1)2 F - (—)(T —t)\ottte
CJk = T ok 11 V2ﬂ+1'< 9 1573

=1

where

Il1 dy

to
o= [t P [ (L 0) Py (h)dt . dty =
-1

L\»—t

1 to

I Iy
=Y Y GG () Py () - [ ()™ Py (t)dty . dt,

s=0 81=0 -1 -1
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where C* — is a binomial coefficient.
Further

'—‘\»—l
"U

o [ () Pty . dty =

_ 1 W e - 2a)!
20tk =0 gZoi=1 @' (G — ) (i — 2q1)!
1 t2
x [ (e[ (#) 720 Lty
1 1
Consequently, calculation C’Jl}c lj’“ again reduces to calculation of integral
(5.40). Calculation of integral (5.40) is not a problem:
1
I, = 1 — (=1,
]pzpl -
+1
_ 1 1 (1 . (_1)p1+p2+2) . (_1)p * (1 _ (_1)172-1-1) .
pr+1\pr+p+2 po+1 ’
IP3P2P1 -
— 1 ( 1 ( 1 (1 _ (_1)p1+p2+p3+3) .
mt1l\pr+p2+2\p1+p2+p3+3
—1 DP1+p2+2
_L (1 _ (_1)P3+1) _
p3+1
1+1
_(=1)P ( 1 (1 — (—1)poteet?) -
p2+1 \ps+p2+2
—1 pa+1
_L (1 — (_1)p3+1)
ps+1

Actually, the integral of type I, , may be calculated for various values k
using computer packs of symbol transformations of type DERIVE or MAPLE.

It will not be easy if we use trigonometric functions instead of Legendre poly-
nomials. It is connected with the fact, that integrals

Jk g1 = /¢Jk tk /¢Jk 1 tk 1 /¢]1 t1 dtl dtk_ldtk;
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T ta
Cih = [(¢ = t0)" i (te) .. [(t = t1)"5, (B)dta ... i,
t t
where {#;(z)}52y — is a full orthonormal system of trigonometric functions in
the space Lo([t,T1]) :

1 1 for j =0
¢;(s) = T \/_sm%r when j =2r —1;
B \/icos%;(_t ) when j = 2r
r =1, 2,... "ramify intensively" for various combinations of indexes ji,..., jr
i.e. in cases of various combinations of indexes jq, ..., jr the mentioned integrals

are calculated using significantly different formulas, moreover the number of these
formulas grows abruptly with the growth of multiplicity of stochastic integral. It
is obvious, that even when k& = 4, calculations become very complicated.

Let’s explain the mentioned idea using an example.

Using trigonometric functions, for example, there could be a necessity to

integrate the product of the following form: sin 2=t gjp 27d(s=1) (r,q > 0), which

T— T—t
equals to 3 (—cos%jf‘t) + cos%ﬂqf—t))

It is clear, that integrating the last expression the following cases may occur:
l.r+qg#0andr—q#0,2. r+q#0andr—qg=20,3. r+g=0and r—q = 0.

In each of three cases, the primitive function will be calculated using "its own
formula".

If we use in previous reasonings the system of Legendre polynomials, then
there are no different cases and integration will be more simple.

Since the product of two polynomials is a polynomial and integrating poly-
nomials we actually use only the formula of primitive function from the power
function with non-negative degree index.

5.3 Approximation of specific multiple stochastic integrals
of multiplicities 1-3 using the trigonometric system of
functions

Let’s examine approximations of some multiple stochastic integrals of the follow-

ing types
ts

T
i) /t—tk /(t—t Yade) | af),
t

1 ey

Electronic Journal. http://www.math.spbu.ru/diffjournal A.273



Differential Equations and Control Processes, N 1, 2017

«T *t2

LU = [ =) (= n)hdEY L dfyY,
t t
obtained using theorems 1 — 4 and using the trigonometric system of functions:

1§ = VT =i, (5.41)
3
) T -2 ., V2 /4.1 ) '
[1(;,2(1 = i lCOZ — 7(21 ;Céf«-% + \/Oéqfé“)ﬂ, (5.42)
r—=

’LQ’Ll 1 1 1 g 12
100( )—5( _t)[Co +—Z {2r 2r1 C2r12r)+

+ \/_(Czr 16" Co“ 2 1)}

b“ﬁa

ﬂ O

(231221 11 Zz l3
I 0007,¢ — CO CO

V% (i) 1-(is) (i) (i)
Mﬂ(é esles f; e

\/ﬂiq< C )C(gw) . 2N((Ji2)g(gi1)<-éi3) + H((J@)g(gzl)géw)) n

2\/52
\[Z[ {rlOC C:zrloC)}+

g { GG — I 4+ g }]+

I & 1 1) (42 1
+27r2 > [TQ — ZQ{ g«) 2(3 )Co Coz 2l
rl=1
r#l

+ CQ Cz CoZ3 Co“ C2r 1 21 1} — _CQT 1 0 2 )1] +

-I-T:Z1 LL—W{ Czr 1 0 Czr 1 27« C CQr 1 27« Co“
+ Czr 1 27’ Co(“)}

82r {3C2r 1 27«2 1 0@3 ‘|‘C2 COZS — 6C2r 1 2r 1 522)4‘

+3C2 Czr 1 0 2(2 27’ sz +C2 2r C(g“)}] +

_|_
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1 q 23
+4\/§7r2{2 ['r [ G ) + P )+
+C2r 1 2m 2(:% 1— Czr 1 2m 1] +
1 ) Ais)
+m [ CQ (m+r) r 2m C 1C2r 1 2m -
—Cg (m+r) 1(2 1 + Cz (m+r) Czr 1 2m 1H+
> ¥ [c TN N o
+ e ot
el el m(l ) 2(1 2(1 —152]—-152m
e @2';_1 + G i S ]
1 i2)  (is
+l(l ) [ 4-2 + CQ —léém)—l él )_
edy 5.44
Cz 1C2 21 1 Cz sz 1 21 1 (5.44)

l2l1 1 il Z 7,1 @2
g™ = (7 = 02 —5686 - o v+
1 : :

(i2) (i1) _ (i1) p(i2)
+ ﬁ 5By (265766 = 6™ ) +

L s (i2) L (i) (i) }
+— _— + "/ +
2\/§rzz1l {CQT 10 \/—CQ” Tek V2o sl
L (el gel L i) i)
+7r2fr ( o o +2C0 27‘ — 2\[@7« 1 27‘ 1 2\@ or Gor )]'F

oy 3 s P - T, (5.49

kyi=1
k£l

1291 1 1) ~(42 1 1 i9) +(i1 i1) ~(i2
G = (1 - t)Q(—gcé G+ (56— 606 +
)
1 ’Ll il ig
+—=> [ { Co 2r 1 Czr 1 0 2\/— {Czr 1 2r ér) 2(r—)1}}

2 ’,"—_I
7/| 7’2 7’2

1
+— 4\/—27' 2r

7T
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1 4 1 Iy . o
+ﬁ klZI 72 lzéﬁﬁgi + 62(21) 2(;2)Da (5.46)
[

; s[1 1 a9 1 .
5 = (1 — ¢ 5[_ (i) < R <zl>)
274 ( ) SCO + \/5,”2 T;,,,QCZT' + ﬂq,uq +
o (i 1(%«1_)1—#\/_%{(“))], (5.47)

1 =1 41 < 1
(i) — = e o, T = =
“ \/CTqr=§+17’ Gty O = 6 1«21"“2’ ' = \/7 Z r?

4

T
r= t

$;(s) has the form (4.35); cé”, Gy, céi)_l, D =1, qi=1,...,m—
are independent standard Gaussian random variables; 71, %9, i3 =1,...,m.

Note, that from (5.45), (5.46) it follows:

(5.48)

where

C']O1 /g/)J (t — ) /gbj(y)dyda:.
t

Let’s analyze the mean-square errors of approximations (5.43)—(5.46). From
relations (5.43)—(5.46) when 41 # i9, i9 # 13, 11 # i3 we get

R N e o I CE)

27('2 6 r=1T

9
m { (1 - 1) =
1 /72 7 1 55 (mt 71
ool 58 (5
(T=0 226 Eﬁ«? T 3271\ 90 Z:lr‘l T
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(Z Z (5.50)

rl=1 rl=1
r#l r;él

514 4+ 4r* — 3122
r22(r2 — [2)2 }’

*(11 *(11 2 4 1 71'2 71
M{<101(;,2 _101(;,211> }: (T —1) 32\§ ; — |+

+3257r4 <g—; - é %4) (Z Eq?) %} (5.51)

ki=1  ki=1
kAl kAl

201 201 2 1 7T2 d 1
(e = 1) = =0l - )

+325 4<7r4 i %) (Z i) (12 + 1222) } (5.52)

kl=1  ki=1
k£l kAl

It is easy to demonstrate, that relations (5.50), (5.51) and (5.52) may be
represented using lemma 10 in the following form:

4

(isigiy) (isining\ 2] 1 L1
w (e’ — dspe )} = @ - 025 - 1

1"‘2

55 4.1 1 514 + 47t — 3122
v _ 5.53
3974 = 7.4 mt 5 r2]2 (7“2 _ 12)2 }7 ( )
(4211) #(izi)g\ 2| _ (T — t)4{1 — i ; i_
M {(110 ~ Tor, ) } 4 9 272, =2
5 1 1 49 kK402
e S Zlm}’ 554
(i2i1) _ p*(i2i1)g 2| —(T — t>4{1 — L ! l_
M {(Imm Loty ) } =T 9z
5 L1 1 4 124k?
T8l 2 2 (12 - k2)2} (5:55)

k£l
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Comparing (5.53)—(5.55) and (5.50)—(5.52), note, that

00 12+ k2 00 12+ k2 il
2; k22— k2 Z 22— k2)? 48 (5-56)
F£L F£l
© 5[4 4+ 49t — 37212 9pt
PORTE 212> 80 (5:57)
r#l

We will mention approximations of stochastic integrals I féiffl), 101““ and the

conditions of selecting the number ¢ using the trigonometric system of functions:

Ilé““) =

- (= 0 () - 5 VG
e 3 [ (06 - 5 () - S (0)) -

22 ;= Ly 2v/2 2v/2
- —C2r 1 0 ]
1 1 .
2 9.9 Z 12 — kQ[ ) 2l __CQk 1 2[ 1])
kkz#1
I()Ym) _

1 NN ) .
YR Y (i) (1) _ (i) 4
=T t)< 3 (6") 2\/§7rvaq5q 0 2\/5 VB "+
1 471 3 (i1) \?2 (i1) (i1) +(i1)
Tova r(ﬁ<) M( ) - @ >_

- ) +

1 4 1
to 22 @ [ GG+ &Y D
k,i=1

Then we will get

M{ (507 = 166) b = (g - B | =
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Table 5.37: Check of formula (5.53)
e/(T —1t)>  0.0459 0.0072 7.5722-107% 7.5973-10"° 7.5990-10 6

q 1 10 100 1000 10000

Table 5.38: Check of formulas (5.54), (5.55)
4e/(T —t)* 0.0540  0.0082  8.4261-10°* 8.4429-10° 8.4435-10°

q 1 10 100 1000 10000
_(T—1v) l2<7r4 il) 1(71'2 a 1>2+
4 7\ St 1\6 =

00 q 12 + k2
— 55 | - 95.98
T (Z Z) k2(12—k2)2] (5:58)
k
Considering (5.56) we will rewrite relation (5.58) in the following form

M{ (155 = 166) b = (g - B} =

(T — t)4[ 17 1 4 l 3 i
4 240 371'2 r=1 7’2 7'('4 r=1T
1 /9. 1\2 1 U4 12 4 k2
(Z _> 4 2 k2(12 — k2)2 ]

2
r=1T k=1
kel

: (5.59)

s

In tables 5.37 — 5.39 we check numerically formulas (5.53) — (5.55), (5.59) for

various values q. In tables 5.37 — 5.39, ¢ — means the right parts of mentioned
formulas.

Formulas (5.56), (5.57) appear to be very interesting. Let’s confirm numeri-

cally their rightness (tables 5.40, 5.41; ¢, — is an absolute deviation of multiple
partial sums with the upper limit of summation p for series (5.56), (5.57) from the
right parts of formulas (5.56), (5.57); convergence of multiple series is regarded
here when p; = ps = p — oo, which is acceptable according to theorem 1).

Using the trigonometric system of functions, let’s analyze approximations of

multiple stochastic integrals of the following form:

*To

T, / / dw W,
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Table 5.39: Check of formula (5.59)
4e/(T —t)* 0.0268 0.0034 3.3955-10°* 3.3804-10° 3.3778-10°6

q 1 10 100 1000 10000

Table 5.40: Check of formula (5.56)

Ep 2.0294 0.3241 0.0330 0.0033 3.2902-10*
q 1 10 100 1000 10000
Wherew f ) i=1,. mlf/\l—landw =7if N =0.

It is easy to see, that approximations J ml)%t, J(/\(Z:j\f;fl)) 74 of stochastic in-

*(iod1) *(i31211)

tegrals Jo, 37 Josaanr,: are detected by the right parts of formulas (5.43),
T .
(5.44), where it is necessary to take CJ@ = [ ¢;(8)dw; iy, 49, i3=0, 1,...,m
t

Since
{ T—t ifj=0
0 if j£0°

then it is easy to get from (5.43) and (5.44), considering, that in these equalities

CJ@ = {qu(s)dwgl); 1, t2, 13 =0, 1,...,m, the following family of formulas:
20 1 sl i) V2(&1 g
J((;O)%?,t - i(T - t)2 Céz ) + 7(; ;é:«—)l + \/Oéqf(gz )) R
i 1 3 [ f
J(((()]{)%t:?T_t)z’ C( <Z C2 21+ /o §l2> :

J(001)T,t - (T t) [GCO 2\/—71_2(2 CZ + /Bq,uq1 )‘l‘

1 Lo (i) (z’l))]
+2\/§ﬂ' <7§1 TC2T—]. + \/Oquq )

Table 5.41: Check of formula (5.57)
Ep 10.9585 1.8836 0.1968 0.0197 0.0020

q 1 10 100 1000 10000
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(0i20)q N3 i 1 L1 i) 2
J(ol?))T,t ( ) l €02 \/571_2 <7§1 ﬁ@f + /Bq:u((]l) )

(i300) s[1 (i) i
J(1?60)T,t—(T_t) l6€03 2\/5 2(2 Czrg + /Bq,u )

s (S 3+ )]

Tt = (1 = 02 (GG + 5 vt
2\/5 2\@( el —2u0 2) i )>+
1 i) A (i is) (i1

22 [27“) + C2r 12l)1]+

rl= 1
r#l

+Z[ {r 2r1 C2r12r}+

+87r1 {3Czr 12y + Ve }D,

#(igia L (i) -(in) is) oliz) |
Tl = (@ = 02 (o4 - e+
1 ’i3 (7’2 ig (7/3)
+W\/§q(ué G0 = 2ud)¢ >+
+ﬁ2l —C2r ok 1 { 2052 ¢ + Pl }]‘F

r=1

QQZP [C2r12l1+<2 ]'F

rl=1
T;él

+Z[ { (r)l o +C2r12r)}+

37y {3C2r 1Gor 1+C2 27‘ }D,

_I_
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*(13001 1 11) ~(i3 1 i1) (i3 ig) ~(i1
Tt = (7 = 02 (G0 &+ v (606 - 60¢) +
= (i1) ~(i3) (i3) ~(i1)
+2\/§ 2\/,87(1('[1(1 CO +:uq CO )+
1 q
Z\le {Czrlo Czrlo }‘*‘

r=1

1 1 1
+m{ e SN (e )}] Z Czr 1 21 1

rl 1
r;él

{3C2r (G e })

>
r=1 42

5.4 Convergence with probability 1 of expansions of some
specific multiple stochastic integrals

Let’s address now to the convergence with probability 1. Let’s analyze in detail
the multiple stochastic Stratonovich integral of type:

B8 = 5|66 + X oo (e - ). 0
When i = iy from (5.60) we get the following equality:
s(ivin) _ Loy ()2
Ioo,, = 2(T t) (Co ) :

which is correct with probability 1 and may be obtained using the Ito formula.

Let’s examine the case 11 # i5. In this case

L™ = ) w.p.1.

First, note the well-known fact.

Lemma 11. If for the sequence of random values &, and for some o > 0 the
number series

i M {&,1°}

converges, then the sequence &, converges to zero with probability 1.

In our speciﬁc case (i1 # i9):

15 = 5 [6767 + ¥ = {8 - )|+,
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(hi)p _ L — [ (i) (i) | < ! (i) (i) _ ~(in) »(i2)
Io?)qui Ty 60" 6" +z‘=21 /—42.2_1{@1_11@22 -G iz_21} ;
T_t > 11 lz (12)

& =5 > e (P - ()

1=p+1

According to notations of the theorem 1 and section 1.8 we obtain:

T to T t1
Tt—//R (tr, to)dfVdf? + [ [ Ry(t, to)df(y df,
t t

T to Tt

M{|£p } // tl,tz dtldt2+// tl,tg dtzdtl =
t t

t

o~

= [ (Ry(t1,12))* dtrdts, (5.61)
T2

(T —t)* = 1

M{ &2} = : , 5.62
D
Rp(tlatQ) = K(th tz) - Z Cjzh ¢j1 (t1)¢j2 (t2)7
J1,J2=0
REP € RY, Ry, (t,te) € Ry(ty, o), if pr=p2 =p,
o0 1 T 1 1 2 C
DRIy (L MY ‘ < ¢ (5.63)
i=p+1 474 — 1 D 4rs —1 4 2p+1 p

where constant C' doesn’t depend on p.

Therefore, taking o = 2 in lemma 11, we may not prove convergence of &, to

zero with probability 1, since the series

i’i M{[&,2}

will be majorized by the divergent series of Dirichlet with index 1. Let’s take
a = 4 and estimate M{|£,[*}.

According to (4.32) when k£ =2, n =2 and (5.61) — (5.63) we obtain:

2
K
M{prl‘*}gK(r / Rﬁ(tl,tQ)dtld@) <&
£T]
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and

o0 o 1
S Mg < K1 Y = < oo, (5.64)
p=1 p:lp

where constants K, K; doesn’t depend on p.

Since the series in (5.64) converges, then according to lemma 11 we obtain,
that £, — 0 when p — oo with probability 1. Then Ié“”) — I(%;i) when p — 0o
with probability 1.

Let’s analyze stochastic integrals Ig&?% Ilélm) whose expansions look as

(5.7), (5.8).

Let’s examine the case i1 # i5. In this case

) = 0, ) = 10, ) = 1w

and - (T )2
(i182) __ — b (i1in) —1 1) (i)
1'021’17:7,5 - 2 07(/)77:’,5 d - 4 l\/gébl Cll +

(+26Ve -+ nene™ ¢V )]+ g
JEi+1D(2i+5)(2i+3) (20— 1)(2i+3) r

w3y

1=0

] T 2112)p T_t2 12 il
): [(gOTt) _( 4 ) l\/g((] Cl )+

(i + 1)¢adg" - (z‘+2>cﬁ2 ' de )
+§)< V(2i+1)(2i+5)(2i + 3) +(2i—1)(2z‘+3)>]+fp )

where

g = -T2 (5 {8 — e+

1=p+1

(i+2)¢"a8 - G+ )ehe™ ¢V )
J2i+1D)(2i+5)2i+3)  (2i—1)(2i+3)])

o0

+ 2

i=p+1

T —t i1) ~(i2) 1) ~(22
o = L y s (z \/4@27{@ df — e+

1=p+1

(i+ )¢V - (+2¢ne™  ¢veY )
J2i+1D)(2i+5)2i+3)  (2i—1)(2i+3)])

o0

+ 2

i=p+1

Then
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M{IEPD P} = / (RY )(tl,t2))2dt1dt2= (Tl_Gt)4><
[t.7)2
y Z ( 2 - (i+2)%+ (1 + 1)? 1 )

(2i+ 1)(2i +5)(2i +3)2 (20— 1)2(2i + 3)2
1

0
_C_Z Z.—QS
1=p+1

where C, K doesn’t depend on p.

K
> (5.65)

Analogously we obtain:

M{EDR = [ (RY(t1, 1))’ dtadty < (5.6

[t,T]Q p
where K doesn’t depend on p.
According to (4.32) when k =2, n =2 and (5.65), (5.66) we obtain:

2 2 K
M{lEPN"Y < K (’ | (BYV(t1,12)) dtldtz) < p—;
t,T2

2

2 K
M{IE0) SK(y [ (REO0,2))° duadia) <2,

t,T]?
and
1 1
ZM{|§01| }<K12—<OO ZM{|§10| }<K12—2<007 (5.67)
p=1 p p=1P
where constant K; doesn’t depend on p.
According (5.67) and lemma 11 we obtain, that 51(,01), 51(,10) — 0 when p — oo
with probability 1. Then Ié“”) — Iélf;i), [%{ﬁi)p — [%{ﬁi), when p — oo with
probability 1 (i; # i2).

Let’s consider the case 11 = 19:

191 G191 T —t)?
R

T—-t)2 (T—-1t2%[/.4 1 )6
_ 4)_( 4)[(65))2+\/§Cé)d)+
p

1 i) (i1 1 i1
+z§0{\/(2z' +1)(2i+5)(2i + 3)@( L (20— 1)(2i + 3) (Ci( )) }] i
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+uY,
ilil * ilil T - t 2
Il(OT,t) - Il(gT,t : + ( 4 ) =
(T =t (T=t)Tr N, 1 )6
= 1 — 1 [(Co ) + %C@ G+
L 1 (1) ~(ir) 1 (1) 2”
230{ JRi+1)(2i+5)(2 + 3)C St B @i 3) (")
+u”,
where (T )2
¢t
ﬂ1(901) - X
X 1 (1) ~(i1) 1 (i) 2)
>< . . J— . ,
i:%—l<\/(2i + 1) (204 5)(2i + 3)@ T i@+ 3) (6"
T —t)?
P ( . ) o
X 1 (i1) ~(i1) 1 (i) 2)
X - i Gir2 T oo - i :
Z-:%H{ V(204 1)(20 + 5)(2i + 3)C i (20 —1)(2i +3) (C )
Then ) )
01 10
M ()7} = M{ ()7} =
(T —t)*[ = 1 o0 2
= , - , + - - +
16 i=§1 (2i 4 1)(2i + 5)(2i + 3)2 Z-Z%I (2i — 1)2(2i + 3)2
o0 1 27 K
+ . : < —
<i:§|—1 (2’& — 1)(22 + 3)) ] o p2
and

e} e} 1 e} e} 1
> M{PH <K Y < < oo, S M{iOP} <K Y — <o, (5.68)
p=1 p=1P p=1 p=1D

where constants K doesn’t depend on p.

According (5.68) and lemma 11 we obtain, that ,UI(,OI), ]()10) — 0 when p — oo

with probability 1. Then I§y? — I§t) 1P — 1™ when p — oo with
probability 1.

Analogously we obtain: Iéz';;i)p — Iéi;;i), Il(zf;i)p — Iﬁl;i), IéélTii)p — 1'2%1;?,
(t1,i9 = 1,...,m), when p — oo with probability 1. Here expansions for the
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stochastic integrals [ééqui), Il(lf]fi), Iémz) defined according to formulas (5.11) —

(5.15) and

102 1
L5 = = — L=} (T = t)’—

T —t)° is) Ain

( 8t) lsf@’% 4

L), (4 2+ 3)GHE — 4+ 1)+ 27 ¢

307w +z§0< V(20 + 1)(2i + 7)(2i + 3)(2i + 5) "

(P 4i= 3R - <ﬂ+3r—ndmdﬂ)
V(20 + 1) (21 + 3) (26 — 1)(26 + 5)

T -
_ y 2k [P (T — ) [P

Y

192 1
L T )
(T ) (zz) (i1i2)p (T_t) l i2) ~(i1)
. I 192)p (T —HI 192)p 2) ~(i1
1 007, ( )10 + 3 3\[&) G '+

(i + 1) +2)¢8¢™ - G +2)(i+3)G ¢
V(20 + 1)(2i + 7)(2i + 3)(2i + 5)
(2 +3i — 1)6AG" — <ﬂ+i—m¢mdﬂ)
V(204 1)(26 + 3) (20 — 1)(2i + 5)

+3 Co ¢ ‘*’Z(

Y

182 1
[1(7i;t) _él{ilziz}(T - t)3_

T — 1119 T — *(2112 *(11102
_ : )Ioé w_ ( : t) (1w 1 i) 4
(T —t)° llg(il)g@z) £y <(i+1)(i+3) <C’ i< _Ci(b)@(??)’)
8 13> 0 TS\ JRi+ D)2+ 7)(2i +3)(2i +5)
(i+1)2 (¢ - () ]
V(2i+1)(20+3)(20 — 1)(2i + 5) /)

_|_

Expansions (5.3)—(5.5), (5.16) for integrals 1§ i) g Ié’le are initially

OT t? 1T t? 2T t?
correct with probability 1 (they include 1, 2, 3 and 4 members of sum, correspon-

dently).
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Apparently, using the proposed scheme we may prove convergence with prob-
ability 1 of other multiple stochastic integrals.

Let’s consider some relations, describing the proposed method.
From (4.32) we obtain:

M{(R """ pk)2n} < Cn,k

[ Rt i ]

[¢,T]*

or

M{(RE; ™)™} <

/ KQ(tl,...,tk)dtl .dty, — Z Z ke 311 ,

[#.T)¢ =0 =0

S Cn,k

where constant C), ; depend only on n and k.

For p1 = ... = pr = p we have:
S MR < OS] Rf,_up(tl,...,tk)dtl...dtk] L (5.69)
p=1 p=1 [t,T]k

If for multiple stochastic Ito Integral

T ta . .
J[p®] 7, = /d;k(tk) : ../¢1(t1)dwgl) - -dW§Zk)
t t
and some n we have:

>

/ p(tl,...,tk)dtl...dtk] < 00,

[, 7]

then J[y®f, — J[®]7; when p — co with probability 1, where J[p®]f, —
is approximation, based on theorem 1. For example

JW(Q)]I%,t: Z CJle( Ji C2) 1{11—127&0}1{31_32})

.717.72 =0

p . .
UURIATESEDS ngm'l( 306G = Loy L= 6 -
.715.7 .7

(1) (i2)
im0} L=} Gy — Linminr0) L (=i} G )
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p 4 .
= % Cu (MG~
R TS Yo 4)_1{11_137'50}1{11—]3}CJ g
1{11—14#0}1{31—34}C92 J3 _1{12—13¢0}1{12—33}CJ ja T
—Li,= 14760}1{32—34}C11 CJs _1{13—14760}1{%—34}(31 J2 +
T1i=io#0} L=} His=iaz0} L (o=} +
T =is0y L{ji=ja} Hin=iaz0} L o=} +

+1{i1=i4¢0}1{j1=j4}1{iz=i3¢0}1{j2=j3}) -

5.5 About the structure of functions K(ti,...,t), used in
applications

The systems of multiple stochastic integrals (9.27) — (9.30), (9.17), (9.21), are
included in the stochastic Taylor expansions (unified and classical), described in
chapter 9.

In the context of theorems 1-8, the systems (9.27), (9.28), (9.17) when k =
1, 2, 3,..., the systems (9.29), (9.30) when k£ = 1, 2, as well as stochastic
integrals of type (9.29) and (9.30) (l; = ... =1; = 0) when k = 3, 4 are to be of
some interest.

The functions K (t1,...,tx), included in the formulation of theorem 1, for the
family (5.1) look as follows:
t—t ). (=), <. <t
K(t,... .t ={ 4 Lo A 5.70
(b1 te) {O, otherwise ’ ( )

where t1,...,t; € [t,T].

In particular, for stochastic integrals [ gl plivie) - plivisia) - plinia) - plisi)

1,0 L2705 1007, 5 L0007, {017, > {107, 5
.756100;‘;), 12%1;:‘;), Iﬁszi), Iég;,i), 1, .. .,84 = 1,...,m the functions K (ti,...,t) of
type (5.70) correspondently look as follows:
Ki(t) =t —t1, Ka(t) = (t —t)? (5.71)
. 1,t1<t2 . 1,t1<t2<t3
Koo(ta, t2) = {O, otherwise ’ Kooo(ty, t2, ts) = {O, otherwise ’ (5.72)
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Kato {5 558 = {4 S0 o
Koooo(t1,t2) = {(1): f)1th<eri?ris<e b <l , (5.74)

Koo(ty,ta) = { (()t ;ttﬁgj;vf;: K (5.75)
Rttt = {1 S 570

Koa(t, t2) = {(()t ;ttﬁz;vit;: K (5.77)

where t1,...,t4 € [t,T].

It is obvious, that the most simple (with a finite number of members of sum)
expansion into the Fourier series using the full orthonormal system of functions
in the space Ly([t,T]) for the polynomial of finite degree will be its expansion
according to the system of Legendre polynomials. The polynomial functions are
included in functions (5.71) — (5.77) as their components, so, it is logical to ex-
pect, that the most simple expansions into multiple Fourier series for functions
(5.71) — (5.77) will be their expansions into multiple Fourier-Legendre series when
l% + ...+ l,% >0 Iflhi=...=0;,=0 (See functions Koo(tl,tg), Kooo(tl,tg,tg),
Koooo(t1, - - -, t4)), then we can expect, that in this case expansions of the men-
tioned functions into multiple Fourier series using trigonometric functions and
Legendre polynomials will be of the same complexity.

Note, that the given assumptions are confirmed completely (compare for-
mulas (5.4), (5.5), (5.7), (5.8) with formulas (5.42), (5.47), (5.46), (5.45) cor-
respondently). So usage of Legendre polynomials in the considered area is an
unquestionable step forward.

Electronic Journal. http://www.math.spbu.ru/diffjournal A.290



Chapter 6

Other methods of approximation of
multiple Stratonovich and Ito stochastic
Integrals

This chapter is devoted to other methods of approximations of multiple stochastic
integrals. For example, we examine Milstein method in comparison with method
of multiple Fourier series (theorem 1), combined method, which is hybrid of
method of multiple integral sums and method based on theorem 1, method of mul-
tiple integral sums. Also we make a comparison (by computational experiments)
between the effectiveness of different methods of mean-square approximations of
multiple stochastic integrals. We demonstrate, that system of Legendre polyno-
mials gives decreasing of computational costs in comparison with trigonometric
system of functions.

6.1 Milstein method of strong approximation of multiple
stochastic integrals

6.1.1 Introduction

G.N. Milstein proposed in [23] the method of expansion of stochastic integrals
based on expansion of Brownian bridge process into the trigonometric Fourier
series with random coefficients.

Let’s analyze the Brownian bridge process

t
f, — 1 fa, t€[0,A], A >0, 6.1)

where f; € ®™ — is a standard vector Wiener process with independent compo-

nents ft(i); 1=1,...,m.
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Let’s also analyze the componentwise expansion of process (6.1) into the
trigonometric Fourier series converging in the mean-square sense

2mrt . 27r'rt)

A + b; ysin A (6.2)

; t 1
ft(Z) - Z é) — 50/20 + Z (al rCOS——
(f

(f
r=0,1,...;i=1,....m
It is easy to demonstrate |23], that random variables a;,,b;, are Gaussian
ones and they satisfy the following relations:

M{ai,bi,} = M{ai,bir} =0, M{a;,a;ir} = M{bi,bix} =0
A

om2r2’

where

; 2
fg ) cos sts,

|>|w
l>|°a

s )\ . 27rs
Zf£>sm A ds;

l>|l\D

f
i

M {a;, ra;i,»} = M{b;, +bi,, } =0, M {a;{r} =M {62 } =
where ’i, il, 19 = 1,...,m; r 7’é k‘; 3 752'2.

According to (6.2) we have

A + b; ,sin A

1 2mrt 2mrt
f() fg)A—l— azo—|—2<a“«cos mr ' WT)

where the series converges in the mean-square sense.

6.1.2 Approximation of multiple stochastic integrals of 1st and 2nd
multiplicity

Using the relation (6.3), it is easy to get the following expansions 23], converging
in the mean-square sense:

1 2nrt . 27mrt

/dft = —fA —|—2azo—|— Z (a”cos A + b; ysin—— A ), (6.4)
*t *xT
J R
0 0

t A X1 27rt 2mrt
f() ) o {ir.—_ir< _1>} -
2AA+ a0+27rrzfr ajpsin—r bi, cos— : (6.5)
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[ [ dndf® =
00
F o T 2 & omrt
— Y _ @) 7. — ° (@)
_to/dft 0/0/ df;’dr 2AfA —l—tgjl{a”cos A +
2mrt A > 1 27rt 2mrt
blT T 5 - 1,7 I 1.7 - ]_ ,
+b; rsin } 27rr:zlr{a sin b;, (cos A )} (6.6)
*t *xT
[ [ s -
00
1 *t *xT t
= ngl | [ dndff )y ! 5000 / dfy) +
00
t o0
Kﬂ— rgl r (a’h, le r bil,ra/iz,r) +
1 X drrt
+ngl ah,?‘alz r Zl,rbzz,r) (1 — COS Z ) +

+
. Amrt
+ (ai, vbiy r + biy r0i, ) sin A +

) 27r7't 2mrt
a;, pSin—— + b;, , (cos N 1)) } +

.\ io: i o COS( (kA+r)t) . cos (27r(kA—r)t) "
il,T‘ 1:2,]6 J—
k=1r=1(rk) 2(k +r) 20k —r)  k2—1?

sin (W) sin (W)
2(k+r) + 2(k —r)

+

+a’i1,7’bi2,k |:

by b {COS () cos(=5)

2(k —r) 2(k +r) k? — r? +

s B S

+—b1:1,7‘a”1:2,k |: -

2 2(k+r) 2(k —r)

It is necessary to pay attention to the circumstance, that the double series in
(6.7) should be appreciated as a repeated, and not as a multiple (theorem 1), i.e
as a repeated limit of the sequence of double partial sums.
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It is connected with the fact, that iterated substitution of expansions of
Wiener processes into the multiple stochastic integral results in repeated taking
of operation of passage to the limit.

Note, that the multiple series is more preferable, than the repeated one when
it is presented approximately by the repeated partial sum, since the convergence of
such approximations is provided with any method of jointly convergence to infinity
of upper summation limits of repeated partial sum (for clearness we denote them
as pi1,...,px; see theorem 1). In particular, in the most simple case we may
assume, that p; = ... = pr = p — oo. At the same time the last condition in
the strict sense doesn’t guarantee convergence of repeated series with the same
partial sum as for considered multiple series.

Hereafter, we will see, that usage of G.N. Milstein method for approximation
of simple stochastic integrals of minimum 3rd multiplicity is connected with the
problem described before. Note, that in [24] nevertheless the following condition
is used not quite reasonable: p; = py = p3 = p — oo [24] (p. 202, 204).

Assume, that in relations (6.4)—(6.7) ¢ = A (at that double partial sums of
repeated series in (6.7) will become zero).

As a result we will get the following expansions converging in the mean-square
sense:

<A
/ dft(z) _ fX), (6.8)
0
AN 1
[ ] dtfdr = JA (6 +aio) (6.9)
0 0
VAN 1 .
drydf® = A (£ — aio) (6.10)
[l A (88 - aio)
*A 5T 1. ' ] | |
/ / dffVdfl) = §fgl)fg2) 5 (ai%ofgl) — ail,oféh)) +
0 0
0
A1 30 7 (@i, b — iy i) - (6.11)
r=1

Deriving (6.8)—(6.11) we used the relation

0
a; o0 = —2 Z @ ry (6.12)

r=1

which results from (6.2) when ¢t = A.
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The explanation, that the obtained expansions converge right to the corre-
spondent Stratonovich stochastic integrals is given in [24].

6.1.3 Comparison with method based on multiple Fourier series

Let’s compare expansions of some multiple Stratonovich stochastic integrals of
Ist and 2nd multiplicity (here we mean, that integration according to Wiener
processes in the multiple stochastic integrals is performed two times, maximum),
obtained by G.N. Milstein method and method, based on multiple Fourier series
according to trigonometric function.

We will introduce the following standard Gaussian random variables in our
analysis:

£ 2 2
&= ﬁa Piyr = E'/T"'ai,ra Miyr = K'/T'rbi,r; (6-13)
where:=1,...,m; r=1, 2,....
Due to (6.12) we get
> 1
a;o0 = — 2A ; Epi,r- (614)

Substituting the relations (6.13) and (6.14) into (6.8)(6.11), we get the fol-
lowing converging in the mean-square sense expansions:

*A
[ df? = VAg, (6.15)
0
AN o
1 s 2 © 1
[ [ dt@dr = SA> (@ _V2 > —pz-,r), (6.16)
00 2 T =17
[ [ dndf® = A (gl +-—=> —pi,r>, (6.17)
00 2 T =17
+A T A 1> 1
/ dfﬁlh)df;(_l’z) = — [&1&2 + — Z - (pil,rnig,r - 77@'1,Tpi2,7“+
00 2 Tp=1T

+V2 (pi, r&is — pil,rgiz))]' (6.18)

Considering notations taken by us previously for multiple stochastic integrals

we may write down
A
*

[ df =15 = Tk (6.19)

A0 T
0
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*A *xT
[ [ dtQdr = AL + L0 = TGN, (6.20)
0 0
*A *xT
| .
[ [ dndf? = -0 = JFN (6.21)
0 O
*A *T ..
[ [ dfdel) = i = JiR (6.22)
0 O

Substituting the expansions of integrals Igg, Ifii,z), [géi?’il), obtained before
using the method based on multiple Fourier series according to trigonometric sys-
tem of functions into representations (6.19)-(6.22), with accuracy up to notations
we get expansions (6.15)(6.18). It testifies, that at least for analyzed multi-
ple Stratonovich stochastic integrals and trigonometric system of functions, the
method of G.N. Milstein and the method based on multiple Fourier series give

the same result (it is an interesting fact, although it is rather expectable).

In the next section we will discuss usage of G.N. Milstein method for multiple
stochastic integrals of 3rd multiplicity.

6.1.4 About problems of Milstein method in relation to multiple
stochastic integrals of multiplicities above the second

We mentioned before, that technical peculiarities of the G.N. Milstein method may
result in repeated series (in contradiction to multiple series taken from theorem
1) taken from the product of standard Gaussian random values. In case of the
simplest stochastic integral of 2nd multiplicity, this problem was avoided as we
saw in the previous section. However, the situation is not the same for the simplest
stochastic integrals of 3rd multiplicity.

Let’s mention the expansion of multiple Stratonovich stochastic integral of
3rd multiplicity obtained in [24]| by the method of G.N. Milstein:

Ny 1 i, 0is 1 , 1 . »
J(l(::lz)f,é = EJ(I()ZA), J(o(li)zﬁ)o + azl,OJ(l(;)zﬁ)o + 27rb 1J((;))A,0J(1()Z3A),0_
AJ@ By A (La A:D
—AJq)aPiis T AJ(1)a0 o> — gy + A2 Dj i, (6.23)

where |
*(0291 *(1o *(9
J(O(ll)A3?0 = éj(l()A)O‘]( ()A)O _AJ b12+
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1 w(is 1 in 1
+ABiyi, — ZAa’is,OJ(l()A),O + oAb, J o+ ACh, + §A2Am~3,
T o0
Ai27;3 = Z Z]_ r (aiZ;rbi3)T - bi27ra7:3;r) 7
r=
1 X X r
Ci2i3 = _K 1:21 T=1%7él) rz _ l2 (raiz,rai3,l + lb’iz,rbig,l) )
1 * o0 1
Bi2i3 E r:zl (a’ig,'l‘a’i3,’r + biz,rbig,r) ) g ; 0,7
Di1i2i3 =
2A% lz Z (alz, (a’i3,l+7’bi1,’f' - ail,rbi3,l+r) +

+biy 1 (@i r iy ey + bil,rbi3,l+r)> +

oo [—
QA% 2 Z (alQ (allﬂ b7’37l r + alz3al Tbll; )_

_bi25l (ailarai&l =T bll; bl3al T))

o0 0
ZAg lZl Zl (aw (azs,r 1biy ail,rbi3,r—l)+
=1r=I+

+bi2,l (ail,’f'ai3,7‘—l + bil,T’big,T’—l)>;

we met all other notations in the previous section.

From the form of expansion (6.23) and expansion of integral J(o(n) 2) A We may

conclude, that they include repeated series. Hereafter in the course of approxima—
tion of examined stochastic integrals in [24] it is proposed to put upper limits of
summation by equal p, that is according to arguments given before is incorrectly.

We may avoid this and other problems (see introduction of this book) using
the method, based on theorem 1 (theorem 4).

If we propose, that the members of expansion (6.23) coincide with the mem-
bers of its analogue, obtained using theorem 1 and formulas of connection of Ito
and Stratonovich stochastic integrals (this, as we saw in the previous section, is
actual for the simplest stochastic integrals of first and second multiplicity), then
we may replace the repeated series in (6.23) by the multiple ones, as in theorem
1, as was made formally in [24]. However, it requires separate and rather complex
argumentation.
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6.2 Usage of multiple integral sums for approximation of
multiple Ito stochastic integrals

We noted in the introduction, that considering the modern state of question about
approximation of multiple stochastic integrals, the method analyzed further is
unlikely of any practical value. However, we will analyze it in order to get the
overall picture.

Note, that in several works (see, for example, [23]) it was proposed to use
various variants of integral sums for approximation of multiple stochastic integrals.
In this section we will analyze one of the simplest modifications of the method of
integral sums.

Let the functions v;(7); { = 1,...,k satisfy to Lipschitz conditions at the
interval [t, T] with constants C:

|¢l(7-1) — ¢l(T2)| S C1|T1 — 7-2‘ fOI‘ all T, 79 c [t, T] (624)

Then, according to lemma 1 with probability 1 the following equality is rea-

sonable
— jo—1 k

Jp* >]Tt—11m 2 2 () Aw

N—=oo ji=0 J1=01=1

Here the sense of formula (1.8) notations is kept.

We will represent the approximation of multiple Ito stochastic integral
J[¢®]r; in the following form

Y T () Awd. (6.25)

Relation (6.25) may be rewritten in the following form:

- J2—1 k
J[ ] Z Z H(ATJI) ,(pl(T]l) ’ (6'26)
7x=0 51=01=1
where ugi) o (Wﬁli — W(i))/(ATj)%' i=1,...,m— are independent when i # 0

and various j standard Gaussian random values: u( ) = (ATJ)

Assume, that

mi=t+jA; j=0,1,...,N; v =T, A > 0. (6.27)
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Then the formula (6.26) will be as follows:

— Jo—1 k

PR, = At Y S T+ A (6.28)
Je=0 J1=01=1
i) def /(i i .
where ug-) = (WEJB(J-H)A —WEJZ]-A)/\/A; i=1,....,m

Lemma 12. Assume, that functions 1;(7); 1 = 1,...k satisfy to Lipschitz
condition (6.24), and {Tj}j.vz_ol — is a partition of interval [t,T] of type (6.27).
Then, for sufficiently small value T — t there exists such constant Hj < oo,

that:
Hi(T —t)?

M{ (T Pz — TP < =

Proof. It is easy to see, that in case of sufficiently small value T' — ¢, there
exists such constant C}, that

M {(J[T,b(k)]T,t — J[qp(k)}%t)?} < OM {(J['Gb@)]T,t - J[¢(2)]7]Y7t)2} ;

J[pPry — TNy, = > sy,
]:
where
N—1 Tii#t
=Y / Yo(t2) /1/11 (t1 th dWéz)a
71=0 Tj Tjy
N N1 Tiitt (i )j1—1 Tjo+1 i),
S =X | (Walts) — a(r,)) dw’ > | i(tr)dwt,;
Nn=v 75 J2=V 75,
ji—1 T2+t (i)
Sy = zowzm) Wil X[ (halt) - () dw!
1 J2=VU 75,

Therefore, according to Minkowski inequality we have:

({0 T ))) < 35 ()"

Using moment features of stochastic integrals (see chapter 9) let’s estimate
values M {(SZN)2} 1 =1,2,3. To do it let’s examine four cases.

The case 1. 41, 19 # 0 :
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M{(sM)} < 5T 1) sup {v3(s)0i(2)}.
M{(s3)} < 4T -1 (02)2321[1% {is)},
M{(S8)°} < ST - t)z(Cl)Qszl[;g] {¥3(s)}.

The case 2. 411 #£0, 12 =0:

M{(SM)’} < 5(T 1) sup {u(s)¥i(s)},

s€[t,T]
M{(s)°} < S =02 (@) sup A},
M{(s5)’} < 5@ -2 (01)2821[;1;] {¥3(s)}.

The case 3. 19 #£0, i1 =0:

MA(SY)'} < (T = 1) sup {h(s)9i(s)}

5 se(t,T]
M {(55)2} < ST -1t) (CQ)ZSEE% {¥i(s)},
M{(s5)’} < 8T -1 (01)252‘[1% {¥3(s)}.

The case 4. 11 =19 =0 :

~(T — 1) sup {43(s)93(s)},

M{(st)’} < & .
M{(s2)’} < 5@ =" (C)° swp {ui(s)).
M{(s)°} < 5@ -0* @) sup {03(s)}-

According to obtained estimations and condition (6.24) we have
2 Hy(T —t)?
M{ (B Nre — T PR,) "} < HU(T — A = ’“(T)

where Hj, < co. The lemma is proven. O
It is easy to check, that the following relation is correct:

i inin )N\ 2 T —t)?
M {(I(gom) — (goT,t) ) } = ( 2N) ; (6.29)
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[(Zzll)N

where 41,79 = 1,...,m and Iy, — is the approximation of stochastic integral

1'012“ from the famlly (5.1), obtained according to the formula (6.28).

Note, that the method, based on multiple integral sums, converges in the
mean-square sense significantly slower, than the method based on the multiple

Fourier series (see. (6.29), (5.18), (5.49) and table 6.1, 6.4).

6.3 Comparison of effectiveness of Fourier-Legendre series,
trigonometric Fourier series and integral sums for ap-
proximation of stochastic integrals

In this section we will compare effectiveness of usage of polynomial and trigono-
metric functions in the course of approximation of multiple stochastic integrals.
In addition, we will compare effectiveness of usage of methods, based on multiple
Fourier series and multiple integral sums.

Let’s examine stochastic integrals Ié?t, 10((2)25, which may be met, for example,
while realizing the strong numerical procedure of order of accuracy 1.0 for Ito
stochastic differential equation [23|, [24], [44]. We will approximate them firstly
using the trigonometric system of functions (formulas (5.41), (5.43)), and then

using Legendre polynomials (formulas (5.3), (5.6)).

The number g = girig in the first case we will select from the condition
(T _ t)2 (7-(-2 Gtrig 1 )
~ | — - < 6.30
o2 \6 “=r2)=F (6.30)
and number ¢ = g,q1 in the second case we will be selected from the condition:

(T—t)*/1 %2 1
2 (5 a ; 42 — 1) =5 (63D

where ggig and gpol — are minimal natural numbers, satisfying to the conditions
(6.30) and (6.31) correspondently.

In table 6.1 the values gig, gpot When e = (T'— t)3, T—t=279,7=56,...,10

are given. The values T,

trigr 1pol correspond to the computer time, consumed on

200 independent numerical modelings of integrals [(gT?t, [éOT?t according to formulas
(5.41), (5.43) when ¢ = giyig and according to formulas (5.3), (5.6) when ¢ = gpo1.
At the same time, each fixed modeling according to formulas (5.41), (5.43) and
(5.3), (5.6) correspond to the same realization of the sequence of independent

standard Gaussian random variables.

Electronic Journal. http://www.math.spbu.ru/diffjournal A.301



Differential Equations and Control Processes, N 1, 2017

Table 6.1: Values girig, Gpot, Tirig> 1o,

trig» + pol-
T—t 275 2-6 27 278 279 210
Girig 3 4 7 14 27 53
Gpol 5 9 17 33 65 129
Tiigs sec 4 S 7 10 16 30
T, sec 3 4 7 13 23 45

pols

Note, that formula (5.43) was used here without a sum member

T 02 /& (€0¢s™ — ¢Vel)

T
which requires the certain computer time for its numerical modeling.

From the results given in table 6.1, it is clear, that when T —¢ > 277 the
polynomial system is a little bit better, than the trigonometric one according to
consumption of computer time. However, even when T — ¢t < 278 usage of the
trigonometric system provides an insignificant advantage.

This picture changes cardinally when analyzing combinations of more com-
plicated stochastic integrals.

Let’s analyze stochastic integrals

I8, I IE ) IGE; ey i = 1, m. (6.32)
which may be met, for example, while realizing the strong numerical procedure
of order of accuracy 1.5 for Ito stochastic differential equation [23], [24], [44].

Let’s present the numerical result, which provides a possibility to see, that
modeling the set of stochastic integrals (which is necessary for realization of strong
numerical method of order of accuracy 1.5 for Ito stochastic differential equations
23], [24], [44]) with using of the polynomial system of functions provides the
advantage in computer time in more than 2 times in comparison with the trigono-
metric system of functions, at least, in case of not very small T'— ¢ (note, that in
this section we will also analyze more general situation in which the polynomial
system of functions provides the advantage in three times in comparison with the
trigonometric one within the limits of the considered question).

At first, let’s examine the simplified set of stochastic integrals I(%gt, 10(33;1.

In case of polynomial system of functions we will be looking for numbers g, ¢,

in the approximations I(%th, 153?)2?1, defined according to formulas (5.6), (5.29),
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Table 6.2: Values ¢, q1, Ty, 17 (polynomial system)

Tt 0.08222  0.05020  0.02310  0.01956
q 19 51 235 328
TTy, sec 5 12 52 73
Tiy, sec 135 36 181 225

on the basis of following conditions:

= 3 . G N é 4@21— 1) = (=9’ (6:33)
(T — t)3<% — i’]éjzo %) < (T —t)*, (6.34)

where

J2i+1)(25 +1)(2k + 1)
8

Crji = (T — t)3/2ékji§

1 z Y
Ciji = [ Pu(2) [ Pily) [ Pi(x)dzdydsz;
-1 -1 -1
P,(z) — is a Legendre polynomial.
In case of trigonometric system of functions we will use formulas (5.43), (5.44)
when i3 = 3, 19 = 2, 41 = 1, and we will be looking for numbers g, ¢; from the
conditions:

(i2i1) _ rlizin)g 2 _ (T_t)2 7T_2_ d i
M {(IOOT,t 00T, ) } - 272 6 7; r2 <eg, (635)

39201 13%2%1)q,q1 2
w { (1) — gy} =

4 1 & 1
— T—tS{——— -
( ) 45 47T2r=1T2
55 & 1 1 ‘1215144—47“4—37*212} (6.36)
—c=— 2 € .
2wt rt Art T 7312(r2——l2)2 -
r#l

In table 6.2 we can see minimal values of numbers ¢, g, satisfying the condi-
tions (6.33), (6.34) for various values T'— ¢. In table 6.3 we can see the values of
the same numbers for conditions (6.35), (6.36) when ¢ = (T — t)*.

Electronic Journal. http://www.math.spbu.ru/diffjournal A.303



Differential Equations and Control Processes, N 1, 2017

Table 6.3: Values ¢, q1, Tiy, 11y (trigonometric system)

Tt 0.08222  0.05020  0.02310  0.01956
q 8 21 96 133

¢ 1 1 3 4

Ty, sec 12 24.5 105 148
Tr, sec 44 88 411 660

Let’s provide 100 independent numerical modelings for various values T' — ¢
of set of stochastic integrals I(%?t, 15333, defined using formulas (5.6), (5.29),
obtained using polynomial system of functions.

In table 6.2 we can see the values of computer time 77,, consumed for solving
of this task with various values T' — ¢.

Let’s repeat this numerical experiment for approximations (5.43), (5.44) when
13 = 3,13 = 2,73 = 1 which were obtained using trigonometric system of functions.
Its results are inserted in table 6.3.

Let’s note, that hereinafter in this section formulas (5.43) and (5.44) were
used without members

1 2 1) (i i1) (i
5 (T~ Y2 g (66068 — (et

™

and )
3 . -2 . i .2 _1
(T = (G vam (67676 - 69676) +
1 N i) (i
vV (1066
2 GG + e

correspondently.

It support numerical results specified in tables 6.2 and 6.3.

Comparing obtained results we come to the conclusion, that within the limits
of numerical experiment when modeling correspondent collection of stochastic
integrals, the polynomial system of functions gives the advantage in two times in

computer time in comparison with the trigonometric system of functions.

Let’s extract approximations Iééﬁf?f, defined by (5.30) in an explicit form

when ¢ = 1,2, 5,6, taking into account their practical importance (in theorem 4

the formulas given below correspond to approximations Ig&ﬁimq in case of any
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possible 21,129,253 = 1,...,m and p; = ps = p3 = ¢q; ¢ = 1,2,5,6 when replacing
their upper index (123) by index (4142¢3) and upper indexes (1), (2), (3) by indexes
(1), (i), (i3) correspondently):

3 1 1 1
183 = =0t (568" — 7756 &7 + gete) 7+

I 1 <1>> @, 1 . <2)> <3)]
+<<—4\/§C0 10C1 Co +20C0 GG

oo

123)2
I(gooT?t — (T - t)

(- Lo+ L) e

L 1 (1)) (2)
+<20g1 4\/E42 Gt
I Iy, 1 <1)) <2)} (3)
+ (——=¢ + + — +
(5 + e + i) &}

I 1 <1)> 2) (i m 1 (1)) 2)
(556" - 75d”) &+ (556" - ) P+
I e N (1)) <2>} 3)
+< 4\/ECO +7\/5C1 G p G+

I 1 (1)) 2) ( IO (1)) 2)
+{<12\/5C0 42C2 G+ 4\/ECO 14\/56 G+

I a),.@) -3
@),

(123)5 _ 7(123)2
Tooor, = Looor, +

e I wo, (1 o L ) @
T =) {5+ (gt + st &7+

V3 ., 1 oy, 1y 1 gy 1w e
Y R ) T Ll O S O T
( 20\/7€1 4\/£§2 180€3 12\/7(4 gﬁCS C3

L I o, 1 @ 1 (1)) 2)
=G+ —=G )+ — - —— +
( 21\/5CZ 12\ﬁ§3 3084 12\/ﬁ€5 G

5 I o, 1 (1)) (2)} (3)
+< 36y T oyt Taes® )S pot
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I ., 1 <_ L 1 <1)> )
+{20\/ﬁg3 < +140C4 G 12\/5C3 Jr14\/165C5 Gt
V3 a ) @

+ — +
(20ﬁ€0 505 220yt | O

1 (1) 8 (1)) (2)
+< 70t 220\/ﬁg3 91\/£C5 Gt
Vvh . 37T ) @) e
+ (= + +
( 42\/§C2 364\/@64 CE) Cl

I w1 (1)) 2)
+{<84\/542 154 C4 G+

1o 1y 5VB ) e
‘|‘( @) 55\/—@5 364 % )Cl

_ b (
(28\/_ G 132C2 286\/_ Gi )CQ

3 My 2 (2)
+<12\ﬁ€° 220\/_C1 2145€3 156ﬁ§5 )C:‘" *

B MY A2
(308CO 572\/5C2 >§4 i

1 (1) (1) ) (2)} (3)
+< 12\/ﬁC0 +364\/fC1 78ﬁ€3 18564C5 G Ca

1 o 1 (2 1 M\ @
+{<36ﬁC3 234C5 )CO +<21\/ﬁ@ 364\/?§C4 )Cl

4 (#dl L O D)+
144/165 468+/385 819\f

L 29 ) 2)
4 - —= "+ +
(9ﬁ§0 234\/385<2 156ﬁ GG

1« 8 1 n, 1
+(12\/—C° 91\/§Cl +156\/_C3 9282C5 )g

1 @) (3
<@C° a 819\/3C2 - 18564C4 >C5 }Q”

o 1 (1)) (2)
+ — G+ +
{ (20\/5 G = gp%s 36\/7_7C5 %

L 1 a 1 (1)) 2
+ S S e —— +
(10\/5 % 12\/105C2 55\/ﬁg4 2
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+< 1 v _ 1 1 ¢V 37 €(1)> c?
4350 124/5 1865 > 468y/385

L Iy, 2 (1)) 2)
+<180C° 372\/5€2 Topastt ) T

1) 23 o 4 1 <1)> 2)
— — G+
+< 12ﬁ<° + 220\/fHC1 21455 156\/777% G

5 ., 19v5 1 o) o).
p——2 Wy 2IVO )

L ).
_ +
+ {84\/5C4 CO

G +

L 1 (1)) @ 1 ).
+——C + S +
( 12\/105@’ 21\/165C5 G 132C4 G2
L I TG 29 (1)) (2)
+ (- + — S
( 4\/:%C0 3\/105Cl 372\/5<3 234\/385C5 G
1

I oy, 1 (1)> 2)
— + —C — +
+( 150+ gl = ot ) d

Vi 19V 1 <1)) (2)} (3)]
+<_42\/§C1 +468\/ﬁ<.3 - 819\/5C5 C5 CQ 3

123)6 123)5
I(()OOT?t = (gooT?t + (T —t)

N

H (13271/@@9) - %Cé”) (D

5 (1) 1 (1)) 2)
+(——i = +
<132\/273C3 30\/429C5 G
5 19 1
(o = e+ =) 7

462+/13 924+/65 5611/5
P2 w3 VI8 ) o
662731 396132 ' 84157

5 . 2V 1L o, 1 o) .o
Y N — Ly O TR
(132@40 231\/1—3C2 476\/13C4 9690 | ¢

I 4 o 1 (1) 1 <1)> 2)
) - ——— ' ———
<4\/143<° 15\/429Cl 510\/1001@’ 5814\/EC5 G
L I 1 <1>> <2>} 3)
+<660C0 +1122\/5C2 To380%4 ) %6 fo6 T
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L I w1 (1)) 2)
— +— +
+{< 22\/EC4 +4\/143C5 660C6 X

5 2 1 (2)) <1)} (3)
+ — +
(132\/EC4 4\/143C5 % <0

5 ) 5 ) 113 (1)) 2)
+4( - + - +
{< 44\/273C1 198\/EC3 3060\/1001C5 S

o 2) 5 @ 61 <2>> <1>} (3)
N PR VS —.—, T
(2132\/273Cl 396\/ﬁ<3 3060\/1001C5 Sy G
L °9 ) L 1 (1)) 2)
+<( = + — —
{< 22\/BC° 924\/675@ 23&/@44 193806 ) %6
) 19 @ 1 (2)) (1)} (3)
) - ——+——
(132\/EC° 924\/%C2 476\/EC4 S f G

5w, V3 o).
+{< 44\/2734‘” T oy )¢t

5 @ 4 (2)) (1)} (3)
S U — +
* (66\/273C3 15va9 )% [9
5 ) 99 1 (1)) 2)
- _i_i I
+{( 231\/1—3C2 924\/6_5C4 1122\/5C6 S
5 . 2V5 o)) .ol .®
+<462\/EC2 231\/EC4 G G+

Ly V3 13 )
44/143°° 7 10/14371  30604/1001 °

1 (1)) 2)
R +
2907\/BC5 %
L @, V143 (9 1 @)\ 0| -3
+ + +— .
(30\/42941 8415\/7C3 5814\/EC5 G (o

Let’s demonstrate, that in some situations the advantage of polynomial system
of functions in relation to the trigonometric one in terms of computer time for
modeling of collections of multiple stochastic integrals turns to be more impressive.

The fact is, that when solving practical tasks we often have to model several
stochastic integrals of the same type taken for various combinations of upper
indexes at each step of integration. In this case it is useful to reduce the total
number of modeled integrals using the following relations
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IR+ 1) = 18015 w. p. 1,

Iitons + oo, + Tooors + Iogore + Tovnne + ooows) = Iop TopiTor) w. p- 1,
where i1, 19, 13 — are different; 41,149,135 € {1,...,m}.
In accordance with mentioned, let’s analyze the following collection of stochas-
tic integrals:

) ) 12 13 23 123 132 213 231 312
I(g;),ta Il(;)’ta [((]OT?,Q I(%OT?ta I(SOT?H I(SOOT?,Q I(%OOT?N I(gOOT?ta I(gOOT?ta I(SOOT?ta (637)

where ¢t = 1, 2, 3.

Let’s make independently 100 models for various values T" — t of the set of
stochastic integrals (6.37) using formulas (5.3), (5.4), (5.6), (5.29). In table 6.2
we can see values of T%,, consumed for solution of this task with various values
T —t. Let’s repeat this numerical experiment using approximations (5.41)—(5.44).
Its results are inserted in table 6.3.

Comparing the obtained numerical results we can note, that in this case the
polynomial system of functions gives advantage in 3 times it terms of computer
time when modeling the collection of multiple stochastic integrals.

Note, that generally speaking the set (6.32) includes m3 +m? + 2m of various
multiple stochastic integrals. When m > 3 the number m3 4+ m? 4+ 2m may
turn out to be significantly bigger, than in case (6.37) (in (6.37) m = 3 and
the multiple stochastic integrals with two coincidental upper indexes from three
ones are not considered) and as the author suppose, the advantage of polynomial
system of functions will be even more essential. We may expect the same effect
when analyzing more complicate collections of multiple stochastic integrals than in
(6.32), which are necessary for building more accurate strong numerical methods
for Ito stochastic differential equations [23], [24], [44].

Apparently, the mentioned tendency is connected with the fact, that the poly-
nomial system of functions has a significant advantage over the trigonometric sys-
tem of functions for approximation of multiple stochastic integrals where not all
weight functions of type ¥(7) = (t — 7)5; 1 = 0, 1, 2,... identically equal to 1,
that corresponds to [ > 1 in the given representation. In order to understand
it is enough to compare formulas (5.4), (5.5), (5.7), (5.8), obtained using Legen-
dre polynomials with their analogues (5.42), (5.47), (5.46), (5.45), obtained using
trigonometric system of functions.

Finally, we will demonstrate, that according to computational costs on mod-
eling of collection of multiple stochastic integrals, the method based on multiple
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Table 6.4: Values ¢ and T

*m (method of integral sums).

T —t 95 96 97
q 16 32 64
T* . sec 26 93 391

sum?

Fourier series is signficiantly better, than the method based on multiple integral
sums.

Let’s examine approximations of multiple Ito stochastic integrals, obtained
using the method based on multiple integral sums:

1= VA" Zéj, (6.38)

IOOTt A Z {7 Z gz ) (639)

where _
) = (£ s — Fa) VA (i=1,2)

— are independent standard Gaussian random values; A = (T —t)/g; Iéﬁj;?f, 1323

— are approximations of integrals I(%Bt, Ié;?t.

Let’s choose number g, included in (6.38), (6.39) from the condition

@)  qeng\?| _ (T —1t)
M {(Ioom ~ IooT,tq) } = oy < (T -1t)°

Let’s make 200 independent numerical modelings of the collection of stochastic
integrals Iég;)t, [(g;)t using formulas (6.38), (6.39) when T —t = 277; j = 5,6,7.
In table 6.4 we can see the time T, which was necessary for performing of this

sum?
task.

Comparing tables 6.1 and 6.4 we come to conclusion, that the method, based
on multiple integral sums even when T — ¢ = 277 is more than 50 times worse in

terms of computer time for modeling the collection of stochastic integrals [(%Bt,

I(()ilr?t, than the method based on multiple Fourier series.

Not difficult to see, that this effect will be essentally bigger, if we consider
multiple stochastic integrals of multiplicity 3, 4, ... or choose value T'—t smaller.

Demonstrated numerical experiments provides a possibility to get sketchy idea
about "good" and "bad" numerical methods, but we can see rather well-defined
picture.
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6.4 Multiple stochastic integrals as solutions of systems of
linear stochastic differential equations

G.N. Milstein [23| proposed an approach to numerical modeling of multiple
stochastic integrals, based on their representation in the form of systems of linear
stochastic differential equations. Let’s analyze this approach using the following
collection of multiple Ito stochastic integrals as an example:

= fane, ag = ] [
t t
).

where 11,79 = 1,...,m; 0 <t < s < T} f(z 1 =1,...,m — are independent
standard Wiener processes.

£10) gf () (6.40)

Then we have the following representation:

5 0 0\ (I i (1 0),(f0)
d (Iéilh)) - (1 0) (I(gtlh) dfs + (0 0) d <f8(22)> . (641)
It is well-known [23], [24], that solution of the system (6.41) may be repre-
sented in the following integral form:

7l s (0 OY(gia_gi) 11 glin)
(ﬂ?f%é)) z/e<1 0)( ) (0 O)d<f9(z'2))a (6.42)

005 4 t 0
: . f o
where e — is a matrix exponent: e ¥ 5 A¥F/(k!); A — is a square matrix;
k=0
f
AV T ga unity matrix.

Numerical modeling of the right part of (6.42) is unlikely simpler task than the
jointly numerical modeling of the collection of stochastic integrals (6.40). We have
to perform numerical modeling of the collection (6.40) within the limits of this
approach by numerical integration of the system of linear stochastic differential
equations (6.41). This procedure may be realized using the Euler method [23], [24].
Note, that the expressions of more accurate numerical methods for the system
(6.41) 23], [24], [44] contain multiple stochastic integrals (6.40) and therefore
they useless in our situation.

Assume, that {;})_, — is a partition of the interval [t,s], for which 7; =
t+7A;7=0,1,...,N; 7v = s. Let’s write down the Euler method [23], [24] for
the system of linear stochastic differential equations (6.41):

(1) (i1) Aflin) .
YP+1 ) _ ( YP ) ( T, > (7» ) (7,122) _
1ie) | T iiz) | T i) Aetiy) | Y0 =0,yq =0, (6.43)
<yf;+a> yii ) © | g0 Age
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where y%l) def z(jl); y%liz) def yz(;m) are approximations of multiple stochastic
infoegrals Ié:)?t, Iéff;"”z, obtained using the numerical scheme (6.43); Af = £ .
£, i=1,...,m

Iterating the expression (6.43), we have
i1) = (i1) 1122 = z i )
= Y A, z_j g (QINIC (6.44)

where 2@: def .

The formulas (6.44) are the formulas for approximations of multiple stochastic
integrals (6.40), obtained using the method, based on multiple integral sums.

Consequently, the effectiveness of methods of approximation of multiple
stochastic integrals based on multiple integral sums and numerical integration
of systems of linear stochastic differential equations using the Euler method turns
out to be similar.

6.5 Combined method of approximation of multiple
stochastic integrals

In this section we build the "hybrid" of methods of approximation of multiple
stochastic integrals, based on multiple Fourier series (theorem 1) and multiple
integral sums (hereinafter referred to as the combined method). It appears, that
when storing the required relation of one method impact on the other, we may
achieve some advantages over the "clean" usage of the method, based on the
multiple Fourier series.

Namely, it is explored, that the combined method of approximation of multi-
ple stochastic integrals provides a possibility to diminish significantly the whole
number of coefficients of multiple Fourier series which are necessary for approxi-
mation of the considered multiple stochastic integral. However, in this connection
the computational costs for approximation of the mentioned stochastic integral
slightly increase.

6.5.1 Basic relations

Using the property of additivity of the Ito stochastic integral we may write:
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N-1 .
I = VA kgo & w.op 1, (6.45)
I(i1) _ & (I(il) _ A3/2k€(i1)) W 1 (6 46)
e k=0 Loy 0,k - P-4 ’
(i112) =] (i) ~(i1) = (i1i2)
IOOT,t = A CO,]C CO,Z + Z IOOTk+1’Tk Ww. p. 1, (647)
k=0 =0 k=0
i) _ A3/ k111
Lyoor, = A Z > Z Co +
k=0 1=0 ¢q=
/ iy 1112 Zzl3 7/17/213 1: 6 48
T kZOlZO 0T11T1+C0 Orp 107 +Z 007, 1,75, W b4 ( ) )

yeestg=1,....m; T —t = NA; . =t+ kA,
1 Tk+1

e LT aw

VA |

k=0,1,...,N —1; N < oo; the sum according to empty set is equals to zero.

In the formulas mentioned above we examined Ito stochastic integrals from
the family (5.1).

Substituting the relation

i1 A3/2 1 i1
I§2Tk1-1,7k = (g() \/ggﬁk)) w. p. ]-7

into (6.46), where Co(f}c), Y}f) — are independent standard Gaussian random values,
we get:

10— a5 ([ (), L )
lpy — — > 3 +k|Gr + ﬁﬁ,k w. p. 1. (6.49)

k=0

Let’s approximate, using the method of multiple Fourier series according to

the Legendre polynomials, the following multiple stochastic integrals [(()Z”“’)

Iézom) : [0(101023:?1,%: included in the right parts of (6.47), (6.48).

Tk+1'7k
As a result we get

—1k-1 .
I = A kZO X Cok Z 0. (6.50)
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—1k-11-1 .
»q1,5 3/2
aiNate  A312 'S S 5 (Bl ol
k=0 =0 q=0
4+ /A Zl kzl (C 2122 q C 1223 q1 ) + ! [(i1i2i3)(I2 (6 51)
—0 i=0 0,k 200, ;.7 0,0 2007, .7 =0 0007, ;.7 )

where approximations Iéolrf)q Iéébif:i)quk are obtained using the method of mul-

tiple Fourier series (theorem 1) according to Legendre polynomials.

In particular, when N = 2, the formulas (6.45), (6.49)-(6.51) will look as
follows :

152 = VA (¢ + ¢61) w1, (6.52)
If) = A2 (2 Co 2\/_( 4l )) " (6.53)
I = ( D 4+ 1021;1230 n 15:;12’3) : (6.54)

Iooay " = VA (G IR + G T ) +

7'2 71

[liaie  plikie (6.55)

TI,TO T2,T1

where A = (T'—t)/2; . =t + kA; k=0,1,2.
Note, that if N = 1, then (6.45), (6.49)-(6.51) transfer to the formulas for
numerical modeling of mentioned stochastic integrals using the method of multiple

Fourier series. So, we may claim, that the method of multiple Fourier series is a
particular case of combined method when N = 1.

Note, that later we will demonstrate, that modeling of multiple stochastic
integrals [éTz, I I(Tz, [ézolji), [ézoloz;?) using formulas (6.52) — (6.55) results in abrupt
decrease of the total number of Fourier coefficients, which are necessary for ap-

proximation of these integrals using the method, based on theorem 1.

At the same time, each right part of formulas (6.54), (6.55) include two ap-
proximations of multiple stochastic integrals of 2nd and 3rd multiplicity, and each
one of them must be obtained using the method based on theorem 1. Obviously
it results in increasing of calculation costs for approximation.
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6.5.2 Calculation of mean-square error

Let’s calculate mean-square errors of approximations, defined using the formulas
(6.50), (6.51). We have

2 N-—1 2
def 102 192 192 192
exa S M{(165) — ™)} = Soml (e s ) =

k=0
A2/1 4 1 (T—8%/1 & 1
=N— (- = - : .
2 (2 l_214l2—1> 2N <2 1221412—1>’ (6.56)

1920 182 341,42 2
€N,Q1,C_I2 déf M {(I(%HIT?) IéBgTZt3) ot ) } =
N—-1 k—1
-mi(z (VAL
k=0 =0

2
(i) [ plizis)  _ glizis)q (iviziz)  _ plirizis)ge _
+C0,l <[00Tk+1’7']g IOOTk—i—l’Tk) > + IOOOTk+1,Tk IOOOTk+1,Tk) > } pr—

C(gflgc) (I(zlh) . Iééliz)(h >+

TI+1:71 TI+1:71

Céfi;) < plii) i ) n

7'H-l T TI+1-71

-Em{(EE

=0

0l (15— T, ) )+ I, - T ) | =

Tk+1Tk Tk+1'7k Tk+1:Tk Tk+1Tk
Nz_l ( )Z I(WZ) [(i1i2)Q1 2 +
E—0 =0 00 TI+1571 007’1-1—17"1
i213) z213 Q1 (11i2i3) _
+AM{<< Oy 0074 44, Tk) Z <0 ) } k"h ) o
Nzl A Z M (l1l2) . I(hiz)fh 2 +
E—0 =0 Tl+1 Tl 00Tl+1’Tl

Y (i213)q 2 (119273)
213) 213)q1 192%3) | __
{( Orp 157 IOOTk-i—l’Tk) } + 5’9;(12 ) o

N1 - 2 o
o))

Tk—i—l Tk Tk+1:Tk
k=0
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N-1 AQ q1 1 ivinis
Z( 2(2 £4z2—1>+5’“q2 )_

N(N - 1) ]. gt ]- 11227/3 .
<§_21412—1> + Z Ok

131116111
=570y~ w) G- S o)t

N (i19213)
+ 2 Org s (6.57)
k=0
where
(t1283) (t14283) (i19203)q2 2
5k7q2 = M{ <IO Tk-‘rl Tk - ]OOOTk+1’Tk> };

i1 # i in (6.56) and not all indexes 1, 19,73 in (6.57) are the same (otherwise

there are exact relationships for modeling of integrals Io(éfi), ]0(%102';13))_

For definiteness, assume, that iy, 49,43 in (6.57) are different. Then

1 @ O
i1i213) A3 (_ . l]l) -
5k,q2 5 i,j,;zo A3 )’ (6.58)
where
20+ 1)(279+1)(2 1 _
Clji = V(2i+1)(25 + 1)(20 + )A3/2Clji7
8
1 Z
Ciji = [ P(2) [ Pi(y) [ P(w)dzdydz
1 1 1

P,(z) — is a Legendre polynomial.
Substituting (6.58) into (6.57) we get

1 1 1\/1 & 1
=T (53 (5 - )
Nae = 5T =8 (7~ 32 (5 1221 m_1)"

(T —t)3 (1 e (264 1)(25+1)(21+ 1) ~
N2 \6 2 64 Clji )
i,j,1=0

(6.59)

Note, that when N = 1 formulas (6.56), (6.59) pass into the corresponding

formulas intended for mean-square errors of approximations of the integrals I, (ini2)

OOT’t )
Ié&f;ff), obtained using the method of multiple Fourier series (theorem 1) according

to Legendre polynomials.
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Table 6.5: T'—t =0.1.

N q q g M
1 13 - 1 21
2 6 0 0

3 4 0 0 5

Table 6.6: T'—t¢ = 0.05.

N q ¢ g2 M

50 — 2 7
2 25 2 0 26
3 17 1 0 18

6.5.3 Numerical experiments

Let’s analyze modeling the integrals Ié;l,z, Ié&fi). To do it we may use relations
(6.45), (6.50). At that, the mean-square error of approximation of the integral

Iégii) is defined by the formula (6.56) using Legendre polynomials. Let’s calculate
the value ey, for various N and q :

e32 ~ 0.0167(T — t)?, €23 ~ 0.0179(T — t)?, (6.60)
16~ 0.0192(T — t)°. (6.61)

Note, that the combined method (formulas (6.60)) requires calculation of
significantly smaller number of Fourier coefficients, than the method of multiple

Fourier series (formula (6.61)).
Assume, that the mean-square error of approximation of the stochastic inte-
grals I(%szi), [é%;? is equals to (T — t)*.

In tables 6.5-6.7 we can see the values N, q, g1, g2, which satisty the system

Table 6.7: T'— ¢ = 0.02.

N q ¢ g2 M
1 312 - 6 655
2 156 4 2 183

104 6 0 105
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of inequalities:

{ ey < (T~ 1) (6.62)

ENq1,q2 < (T - t)4
and the total number M of Fourier coefficients, which are nesessary for approxima-
tion of the integrals I&l;i), Ié%lg;?) when T'— ¢t = 0.1,0.05,0.02 (numbers g, g1, g2
were taken in such a manner, that number M were the smallest one).

From tables 6.5-6.7 it is clear, that the combined method with small N (N =
2) provides a possibility to decrease significantly the total number of Fourier
coefficients, which are necessary for approximation of the integrals [ééljfi), Ié%loi;if)
in comparison with the method of multiple Fourier series (N = 1). However, as
we noted before, as a result the computation costs of approximation are increased.
The approximation accuracy of stochastic integrals for the combined method and

the method of multiple Fourier series was taken similar and equaled to (T — t)*.

6.6 Weak approximation of multiple Ito stochastic inte-
grals

In the previous chapters of the book and previous sections of this chapter we
analyzed in details the methods of so called strong or mean-square approxima-
tion of multiple stochastic integrals. For numerical integration of Ito stochastic
differential equations the so called weak [23] - [25] approximations of multiple Ito
stochastic integrals included in the Taylor-Ito expansions (see sect. 9.8, 9.9) are
also of some interest.

The weak approximations of set of multiple Ito stochastic stochastic integrals

Tk

J&'Zﬁ.ﬁiif)s,t = / .. / dw® . dwl) if k> 1
t

(J((;‘;"""ijl))s’t o 1, wi) = £0) wheni=1,...,mand w® = 7,4, =0if \; =0
and il = 1,...,m if)\l =1 (l = 1,...,k); ()\k,...,)\l) c Mk = {()\k,...,)\l) :
N=1,0;1=1,...,k}; f® (i=1,...,m) — are independent standard Wiener
processes) are formed or selected from the specific moment conditions 23] - [25]

and they are significantly simpler than their mean-square analogues.

However, the weak approximations are focused on numerical solution of other
problems [23] - [25] connected with the Ito stochastic differential equations, rather
than the mean-square approximations.

Electronic Journal. http://www.math.spbu.ru/diffjournal A.318



Differential Equations and Control Processes, N 1, 2017

We will state, that the set of weak approximations j((;\il)tl)) st of the multiple

Ito stochastic integrals J((;’Z;S 54 from the Taylor-Ito expansion (9.18) have the

order r, if [23], [24] for ¢ € [ty,T] and r € N there is a constant K € (0, 00) such,
that the condition

(9) - Z§y)) l chgg) B Zgg)) il
‘ {H J)\(g) )\(9) 1;[ /\(g g) )t.to |Fto} < K(t - tO) (663)
is satisfied for all (/\() ) € My,; ,z’%‘;) =0,1,....m; k;, <r; g =

1,...,L,1=1,2,.. 2fr—|—1
If we talk about the unified Taylor Ito expansion (9.24), then we will state,

that the set of weak approximations I [01-8) of the multiple Ito stochastic integrals
from the unified Taylor-Ito expansion (9 24)

to

L = (=)™ /(t—t)lldft . df
t

k
(il,...,ik:L...,m; (k,j,ll,...,lk) EAq:{(k,j,ll,...,lk)2k+j+p§1lp:

q; k,j,01,...,lx=0,1,...}) has the order r, if for ¢ € [ty,T] and r € N there is
a constant K € (0, c0) such, that the condition

Lo(t—to)lo 7. i) L (t—to)Pe oG i) }
M ~—T oI —1 IF 8 <
‘ {gl;[l jg' l(g) ll(‘fl])t o gl;[l ]g' l(g) llgf;)t 4 | to =
< K(t—to) (6.64)
is satisfied for all (kg,jg,lgg), cee l,(é)) € Ay, z‘ﬁg),...,i,ﬁi) =1,...,m; g4 < r;

g=1,....;1=1,2,...,2r+ 1.

The theory of weak approximations of multiple Ito stochastic stochastic inte-
grals is not so rich as the theory of mean-square approximations. On the one hand,
it is connected with the sufficiency for practical needs of already found approx-
imations [23] - [25], and on the other hand, it is connected with the complexity
of their formation owing to the necessity to satisfy the big number of moment
conditions.

Let’s analyze the basic results in this area.

In [24] (see also [23]) the authors found the weak approximations of set of

multiple Ito stochastic integrals J((/\ /\))tt with the orders r = 1,2 when m,n > 1

(we remind, that n — is a dimension of the Ito process X, which is the solution
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of the Ito stochastic differential equation, and m — is dimension of the Wiener
process, included in this equation) as well as the order r = 3 when m =1, n > 1.

Further we will consider these approximations as well as weak approximations
of set of the multiple Ito stochastic integrals Il(“ ““t)o of the order r = 4 when

=1,n>1.
In order to shorten the record let us assume, that

i)

’kg . def z,(ez) . i)
{ H J )\(9) )\g‘g))t0+A,t0|Ft0} { H J )\(9) )\gg))}7 (665)
where A € [0, T — to]; (/\,(gz) . ../\ﬁg)) EMpkg<rig=1,...,L

Let’s consider the sequence of exact values of mathematical expectations of
type (6.65), calculated in [23], [24] and necessary for formation of the sets of weak

approximations J/\’“ Z,\ll))t0+A ;, of the orders r = 1,2 when m,n > 1:

ML TG} = AL, (6.66)
MG T0) = M {0 = A1, (6.67)
M {J(%Q)J((ﬁg“)} — %A21{i12i3}1{h:i4}, (6.68)
(A2 when ¢; = ... =14
MGG = s T A T e R ()
| O otherwise
(3A? when ¢, = ... =14
MUY =1 80 el mambers 7
[ 0 otherwise
M LG Ton ) = éA?’l{il:iQ}, (6.71)
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i10) 7(i20 0i1) +(0is 1
M {J((IO))J((m))} M { g0 J(<01)>} T (6.72)

Oir) 7lis) 7(is) 7(ia)\ _ (10) 7(iz) 7(is) 7(ia)\ _
M {J«n) Juy Ty Jay } =M {J<10) Joy Joy J } =

'%A3 when i1 = ... =14
if among 1, ...,1%4 there are
— ) 1A3 ! AR , 6.73
2 two pairs of identical numbers ( )
. 0 otherwise
Oil iz i i4 1
M {J((Ol))J((l))J((ﬁ) )} _ 6A31 ivmio} L inmia} (6.74)
: N 1
M {IG) T8 I S = ST VERERS FERY (6.75)
(15A3 when 4; = ... =144

X if among 11, ..., % there is a pair
M {J((S) o J((;-(;)}:< .and a quz'md of 1d'ent1cal numbers o (6.76)

A3 if among %1, . .., ¢ there are three

pairs of identical numbers
. 0 otherwise
M {J((illl)z)J((i?il)4)J((;5ll)ﬁ)} —
1
= gA?’(l{iFu} (Lia=is) Lssmio) + Liimio) Liis=is}) +
1 {iy=iq) (1{i1=i3}1{i4=i5} + 1{i1=i4}1{i3=i5}) +

+1{i4=i6} (1{i1=i3}1{i2=i5} + 1{i2=i3}1{i1=i5}))7 (6'77)

N 1
M { T I G I = A =iy Lia=ia Lismio)

1 3
+64 (2 Lirmis) (L=} Liiamio) + Liamio) Limio)) +
+1iy=is} (1{2'1:2'5}1{2'4:%} + 1{i1=i6}1{i4=i5}) +
+14i,=iy) <1{i3=i5}1{i2=i6} + 1{i3=i6}1{i2=i5}) +
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+2- 1{i2=i4} (1{i1=i5}1{i3=i6} + 1{i3=i5}1{i1=i6}>)’ (6'78)

— (i1) (i6) (i3) (i6)
where 14 — is an indicator of set A.
The formulas (6.66)—(6.79) are obtained in [23], [24].

It is necessary to note, that in [24] in (6.78) there isn’t a summand of type
1.3
8 ir=ia} ia=ia} Lis=i}

We will demonstrate, that existence of this summand in the formula (6.78) is
obligatory.

Because of the following equality J((f‘g’)Jg‘)‘) = J((ﬁéﬁ) + J((Zﬁl‘r’ + Alyg— is
executed w.p.1, then

MG ) = M G
+M{TEP TG T + A gigM {TG T} (6.80)

Applying to the right part of (6.80) of the formulas (6.68), (6.77), we come to
(6.78).

It is necessary to note [23], [24], that
(y) (9))
{H J/\(g> /\<9>)} 0,
if the number of units, included in all multiindexes (A,(f) . )\gg)); ky <r,g=
1,...,1, is odd.
In addition |23], [24]

( (9) . (9))
‘M{ A(g) ,\<9>)H < KA™,

where v; = %514—01; d; — is number of units, and p; — number of zeros, included in
all multiindexes ()\,(fg) . )\gg)); kg <r,g=1,...,1; K € (0,00) — is a constant.
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In the case of n,m > 1 and r = 1 [23], [24]: j((g = AfO (i = 1,...,m),
where Af®: ¢ =1 ... m — are independent discrete random values, for which
P{Af0) = £/A} = 3.

It is not difficult to see, that approximation JA((Q = \/Zgé“ (t=1,...,m),

where Céi) — are independent standard Gaussian random values, also satisfies the
condition (6.63) when r = 1.

In case of n,m > 1 and r = 2 as the approximations f((lzi), f(i1i2), J0) - 70n)

(11) » ¥ (10) » “(01)
are taken the following ones [23], [24]:
(i, 2 30)  30i) 1 (i
7(i1%2 1 (i £ (i Q14
Ji = 5 (AFWAFE 4 y (), (6.82)

where Af® — are independent Gaussian random values, with zero mathematical
expectation and dispersion A or independent discrete random values, for which
the following conditions are executed:

P{AF) = £V3A} = é
2

V(i1i2) — are independent discrete random values, satisfying the conditions
. 1
P {V(le) — iA} =3 when 19 < 11;

Vi) — _A; v — _y i) when 4 < 4y
il,ig = 1,...,m.
Let’s look at the case r = 3 and m = 1,n > 1. In this situation in addi-

tion to formulas (6.66)—(6.80) we will need a range of formulas for mathematical
expectations of the kind (6.65) when m = 1.

According to [23], [24] we have

M{JyJa1y} = M{JonJain} = M{JapyJain} =0,

1
M{J(OH)J(H)} - M{J(IOI)J(II)} = M{J(H())J(H)} = 6A3’

|
M{Joon T} = M{Joi0 T} = M{Jaoo Ty} = A%,
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1
M{J(100)J(10)} = M{J (o) Jion) } = §A47 M{JauyJan}t =0,
I 2 |
M{J10T00)} = M{Tow0)on} = gAY M{(Ja)'} = A%,

1
M{J(loo)J(m)} = M{J(om)J(m)} — ﬂA‘l,
M{JaonyJon)} = M{Jo1nyJao)} = M{Jo1yJo1y} = 0,

M {Jow (Jw)"} = M {Jaoy (Jw)"} = M {Jao) (J) '} = éﬂg,

1
M {J(lll) (J(l))3} =A% M {J(111)J(11)J(1)} = §A3,

where
to+A Tk—1

f
Jowry & [ oo [ A df;
to to

fT(O) def T; fT( def fr — is standard scalar Wiener process; \; = 1 or A\; = 0;
l=1,...)k
In [23], [24] using the given moment relations the authors propose the following

weak approximations of multiple Ito stochastic integrals of the order r = 3 when
m=1,n>1:

Joy = Af, (6.83)
Jaoy = AF, Joy=A-Af - Af, (6.84)

n 1 n R “ 1 -
Ja) = 2 ((Af) ) » J01) = Jo10) = J00) = EAZ -Af,
Ja1o) = Jaony = Jony = —A ((Af) A)

Jany = —Af((Af) - 34),
where Af ~ N(0,A); Af ~ N(0,1A%); M{AFAf} = 1A2.

Finally, we will form the weak approximations of multiple Ito stochastic inte-
grals of the order r =4 when m =1, n > 1.

The truncated Taylor-Ito expansion (9.18) when » = 4 and m = 1 includes 26
various multiple Ito stochastic integrals. Formation of weak approximations for
these stochastic integrals, satisfying the condition (6.64) when r = 4, is extremely
difficult due to the necessity to analyze a big number of moment conditions.
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However, this problem may be simplified if we introduce the truncated unified
Taylor-Ito expansion, for example, of the kind (9.24) when r = 4 and m = 1,
since it includes only 15 various multiple Ito stochastic integrals:

Iy, I, Ino, Iooo, L2, 110, Lo1, I3, I11, I20, T2, 1100, L010, Z001, L0000,

where
def t0+A T2 l
Illlk é / (tO - Tk-)lk P /(to - Tl) ldle e dka, k Z 1;
tO t()

fr — is standard scalar Wiener process.

It is not difficult to note, that the condition (6.64) will be satisfied when r = 4
and 71 = ... = 14, if the following more strong condition is fulfilled:

l
‘M{H Lo o) — H [ l(g)|Ft0} < K(t—tp)° (6.85)
9=1 g

forall 17 ... I{Y) € A;ky < 459=1,...,5;1=1,2,...,9; where K € (0,00);
A ={0,1,00,000,2,10,01,3, 11,20, 02, 100,010,001, 0000} — is the set of mul-
tiindexes.

Let’ propose

= VA, Iy = %A ((¢0)? = 1), (6.86)
R > (6+ 75¢1) o= Al (0 - 30). (6.87)
" A2
Toooo = o7 ((o)* — 6(Co)> +3); (6.88)
here and further
def o8 def 2/3 152 A
C = df&C = 3 —tyo— = dfs;
g P e

fs — is scalar standard Wiener process.

It is not difficult to note, that (y,(; — are independent standard Gaussian
random values. In addition, the approximations (6.86)—(6.88) with probability
1 coincide with the multiple Ito stochastic integrals, corresponding to these ap-

proximations. This implies, that all products of the following kind: H I o) 19

.q
included in (6.85) and containing only the approximations IO, 100, 11, 1000, Too00

of the kind (6.86)—(6.88), convert the left part of (6.85) to zero, i.e. the condition
(6.85) is executed automatically.
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For forming the approximations il(]O; fom, f001, fl(), IA()l, ill; IAQ(), iog, fg, j3 it 1s
necessary to calculate the range of conditional mathematical expectations of the

l
kind: M { Hl L 0 \Fto} , where (lgg) . l](cg)) € A, which we denote to simplify
g=1 ‘1" trg 9

l
recording as follows: M { 1 L (g)} )
g1 U0 L
We have

M{I3} = M{I3(Iy)*} = M{I3} = 0, M{I3I} = —A{,

M{I5(I9)*} = M{L14} = M{Iz21500} = M{I21o000} = 0,
M{I5(Io0)*} = M{I(Ip)*} = M{IsIpgop} = O,

M{LsIo0(10)2} = M{LI1o} = M{Isp1} = M{L,I1I;} = M{L,} = 0,

A o Al
M{L1y} = 5 M{ly(Ip)’} = A, M{LxIpolo} = 3
A4
M{LI;} = - M{I,} = M{I,I} = M{I,Iop0} = M{I,(Ip)*} =0,
N Al
M{Z,Ioolo} = M{I, 11} = 0, M{I(lp)"} = 5 M{Z20l00} = 2

At At At
M{T1(10)*} = = M{Tuloo} =~ M{Toa(I0)"} = =,
4

M{ IpoIoo} = AI, M{L,} = M{L\Io} = M{I,(Io)*} = M{I, I} = O,

M{I\1} = M{I\Iooo0} = M{I\(Ip0)*} = M{I\(Ip)*} = 0,
M{I\JoooIo} = M{I\Ioo(1o)*} = M{I\I10} = O,
M{Iy 1} = M{I,[, Iy} = 0,

Al A4 A4
MiZi0Zooo} = = M{T100(10)"} = = MtLioloolo} = — 5
A4 A4 Al
M{Zo10looo} = T 19’ M{IOIO(IO)?’} =9 M{Zo10loolo} = — 1
At 3A* 3A4
M{ 001000} = — 3 7M{1001(10)3} = T M{Ioo1loolo} = TR

M{L,Io} = M{L,Ioo} = M{L,(Io)*} = M{I,Isols} = 0,
M{I,I;} = M{I,Ipo00} = M{I,(Ip)*} = M{I,(Io0)*Io} = O,
M{I,Ioo(16)*} = M{I,Iooo(16)*} = M{I,Io0000} = O,
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M{Z,Toooloo} = M{I,I100} = M{I,Ip10} =0,
M{I,Io01} = M{I,Is} = M{(1,)*Io} = M{I,Ipo]1} = O,
M{I10Io1lo} = M{L,} = M{I,I,(Iy)*} = 0,

A3 A3 A?
M{I10(1)*} = — 3 M{I10lp0} = 5 M{I10(100)*} = — 3
A4
M{110(10)4} = —2A4, M{IIOIOOOIO} = _?a
5A4
M{Toloo(o)*} = B
A4 A4 5A%
M{(I10)?} = =, M{I1olp1} = —, M{Io[1];} = —
{(110)"} 13 {li0l01} g {Lo111o} TR
2A3 A3 2A%
M{Io1(1o)*} = — 3 M{Ip1lp0} = — 3 M{Io1(100)*} = — 5
4 4 At
M{Io1(Lo)*} = —4A%, M{Ip1looolo} = — 3
5A* Al 3A*
M{Io11o0(10)*} = ——3 M{(01)*} = Ve M{lo111 1o} = 5

where 1 % 02,11,20; A € 100,010,001; p & 10,01 (these recordings should be
realized as sequences of digits, and not as numbers).

The mentioned relations are obtained using the standard properties of multiple
Ito stochastic integrals (see chapter 9) and following equalities resulting from the

Ito formula:
2

A
(Io)* = 24Ing00 + 12AIg 4+ 3A2, (Igo)* = 6Igo0 + 2ATo0 + o

2

Too(Io)* = 121g000 + 5010 + A, 11y = Iig + Ip1 — -

Too(Io)® = 60100000 + 27 A Tggo + 6A% I,
(I9)® = 120Ing000 + 60AIngo + 15A%1,

10A2
(Z00)*Io = 30Igp000 + 122 Tggo +

[07

1000(10)2 = 201 y0000 + TAIggo + AQIO, Tnooolo = 51no000 + Algoo,
A? 2
ToooLoo = 101n0000 + 3AInoo + — 1o Tools = oo + Loro + Tioo — —-Io,

(Io)* = 6100 + 3A1Ly, Iooly = 3Iooo + Al
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Liolo = Toio + Tioo + AL + Iy, Inooly = 41o000 + Algo, (In)? = 210 + A,

1
Inily = 21001 + Lo10 — 3 (I, + A%I)

w.p.1l.

Using the given before moment relations, we can form the approximations
T1oo, Zo10, Zoo1, Tr0, o1, Th1, Iao, Ioo, o, I:

o=~ (@ ~36), o= -0 (@ -30),  (659)
o =~ 5 (@~ 36) I = 2 (@) - 1), (6.90)
o= 2 (@2 - 1), 102_%( 1), (6.91)

Iip = A? <—1 ((¢0)*—1) - L\/—Coﬁ + # (O 1)>, (6.93)
o = 4%(=3 (@) - 1) - fcocl ~ f (@ - 1)), (6.94)

where (y, (1 — are the same random values, as in (6.86)—(6.88).

(
It is easy to check, that the approximations (6.86)—(6.88), (6.89)—(6.94) sat-
isfy the condition (6.85) when r = 4 and m = 1, n > 1, i.e. they are weak
approximations of the order » = 4 for the case m =1, n > 1.
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Chapter 7

Theorems about the integration order
replacement in the multiple stochastic
integrals

In this chapter we determined the class of multiple Ito stochastic integrals, for
which with the probability 1 the formulas of integration order replacement corre-
sponding to the rules of classical integral calculus are reasonable. We proved the
theorem about integration order replacement for the class of multiple Ito stochas-
tic integrals. We analyzed many examples of this theorem usage. These results are
generalized for the case of multiple stochastic integrals according to martingale.

7.1 The theorem of integration order replacement in mul-
tiple Ito stochastic integrals

Below we performed rather laborious work connected with the theorems about
integration order replacement in multiple Ito stochastic integrals. However, there
may appear a natural question about a practical usefulness of this theory, since
the significant part of its conclusions directly arise from the Ito formula.

It is not difficult to see, that for obtainment of various relations for multiple
stochastic integrals (see for example sect. 7.1.3) using the Ito formula, first of all
these relations should be guessed, then it is necessary to introduce corresponding
[to processes and afterwards to perform argumentation using the Ito formula. It
is clear, that this process requires intellectual expenses and it is not always trivial.

On the other hand, the technology of integration order replacement, intro-
duced in the present chapter is formally comply with the similar technology for
Riemann integrals, although it is related to other objects - Ito integrals, and it
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provides a possibility to perform transformations naturally (as with Riemann in-
tegrals) with multiple stochastic Ito integrals and to obtain various relations for
them.

So, in order to transform the specific class of Ito processes, which is multiple
[to stochastic integrals, it more naturally and easier to use theorems about the
integration order replacement, than the Ito formula.

Many examples of these theorems usage are presented in the proofs of various
theorems from previous chapters of the book and they illustrate the mentioned.

Assume, that (Q,F,P) — is a fixed probability space and f;; ¢t € [0,T] —
is standard Wiener process, defined at (2, F,P). Let’s analyze the collection of
o-algebras {F;, t € [0,T]}, defined at (Q, F,P) and connected with the process
f: in such a way, that:

1.F, CF; CF for s <t

2. Process f; is Fy-measurable for all ¢ € [0, T';

3. Process fizan — fa for all A > 0, t > 0 is independent with the events of
o-algebra Fa.

We will introduce the class So([0, T]) of functions £ : [0, 7] x Q — R, which
satisfy to the conditions:

1. &(r,w) € My([0,T1]) (see sect. 9.1);

2. £(1,w) def ; — is mean-square continuous at the interval [0, 7).

In chapter 9 (see sect. 9.1) we gave a definition of the Ito stochastic integral
and presented sufficient conditions for its existence, in particular, in the mean-
square meaning. According to section 9.1 the Ito stochastic integral exists in
the mean-square meaning, if the integrand & € My([0,7), i.e. probably is not
mean-square continuous at the interval [0, T]. In this chapter we will analyze the
theorems about integration order replacement for a special class of multiple Ito
stochastic integrals, at the same time, the condition of mean-square continuity of
the integrand in the "internal" stochastic integral will be significant.

Let’s introduce the following class of multiple stochastic integrals:

tr—1

T tg
Jo, 0 PNre = [va(tr) ... [ dulte) [ grdwlVaw? . dw?,
t t

t
where ¢, € Sy([t,T]); ¢i(7) (¢ = 1,...,k) — are continous functions at the
interval [t, T]; here and further w® = f,or w® = rif7 € [t,T];1=1,...,k+1;
k) def (Y1, .., ), W def 1. From now we will call the stochastic integrals

Electronic Journal. http://www.math.spbu.ru/diffjournal A.330



Differential Equations and Control Processes, N 1, 2017

J [, 1/)(’“)}” as multiple Ito stochastic integrals.

It is well known, that for multiple Riemann integral in case of specific condi-
tions the formula of integration order replacement is reasonable. In particular, if
the funcrtions f(z) and g(x) are continuous at the interval [a, b], then

b z b
/f /g Ydydz —/g /f )dzdy. (7.1)
a a a Y

If the Ito stochastic integral J[¢, ¥1]|r corresponds to the formula of integra-
tion order replacement, which is similar to (7.1), we would have

I, hlr = /¢T/¢1 Wdw?. (7.2)
If, in addition w{V, w® = £, (s € [t,T]) in (7.2), then the stochastic process

T
Nr = ¢T/¢1 (T)dwg)

doesn’t relate to the class My([t,T]), and, consequently, for the Ito stochastic
integral

T
[ nedw®
t

in the right part of (7.2) the conditions of its existence are not met.

At the same time, the formula, known as the Ito lemma, is reasonable:

/dfs/ds—/Ts—tde—l—/ — fr)ds w.p.1,
t t

and we may obtain it, for example, using the Ito formula, but it may be considered
as a result of integration order replacement. Actually, we may demonstrate, that

T

T s T T
[ f)ds = [ [dfrds = [ [ dsdf, wp.1.
t t t T

t

Then

T T 1 TT T T
/(s—t dfs+/ //dsdfT+//dsdfT:/dfs/ds w.p.1.
t t t t T t t
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The aim of this section is to install the strict mathematical meaning of the
formula (7.2), as well as its analogue, corresponding to multiple Ito stochastic
integral J[p,v®]r;, k > 2. At that, we will use the definition of Ito stochastic
integral which is more general than (9.1).

In the work [52] Ruslan L. Stratonovich introduced definition of so called com-
bined stochastic integral for the specific class of integrated processes. Taking this
definition as a foundation, let’s analyze the following construction of stochastic
integral:

T
Li.m. _z br, (Friin = fr) 0 & [ 61105, (7.3)
=0 t
where ¢, 0. € Sy([t,T]); here and further {7;}; — is the partition of interval
[¢t,T],forwhicht =7y < ... <7y =T, Ay = max |7j41—7j| > 0when N —

0<j<N-1
Q.

Further we will prove existence of integrals of the type (7.3) for ¢, € So([t, T1)
and 0, from a little bit narrower class of processes, than So([t, T']). In addition, the
integral of a kind (7.3) will be used for formulation and proving the theorem about
integration order replacement in multiple Ito stochastic integrals J[g, w(k)};p,t, k >
1.

Let’s analyze some properties of the stochastic integrals, defined by the for-
mula (7.3):

T
L. | ¢rdfrg(T) =
at the interval [t, T;

T T T
2. [ (g, + Biby) dfs0r = ] $rlfy 0, + B [ Vrdf;0, w.p.1;

&-9(7)df-, w.p.1, where g¢(7) — is a continuous function

T T T
3. ] 6.df, (aby + ;) = o ] 6,df 0 + B brdf by, wp.1
where o, 3 € RL.

At that, we will suppose, that stochastic processes ¢,, 6, and 1, are such,
that all integrals, included in the mentioned properties, exist.

7.1.1 Formulation and proof

Let’s define the stochastic integrals f[@b(k)};p,s, k > 1, of the kind

~

T
Iy® g, = [ gnte)duwty . / by (t)dw)
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in accordance with the definition (

7.3) by the following recurrence relation
. N-1 “
Ip™p, dé L.m. 2 (1) AwP ]
where k > 1; [[¢©]p, &
i1,

T [¢(k_1):|TTl+17
T,s — 1 [
Lk+1;01=0,1

(7.4)
T] C [t, T]; here and further Aw( D) =
N —1.

— ol —ul;

Then, we will define the multiple stochastic integral J[¢,

(k)}T,t) k Z 1:
T ~
(6, W1y = [ $edwDI[p®)]
t

as well as in accordance with the definition (7.3)

J¢, P, &

rs < Lim. T pn bl iy,
=00 =0
[to stochastic integrals

Let’s formulate the theorem about integration order replacement in multiple

Theorem 19. Assume, that ¢, € Sa([t,T]) and (1) Lk —
are continuous nonrandom functions at the interval [t,T]
stochastic integral J[¢,

. Then, the following
Iy eaists and J]g,$®]r; = b, o®]r, w.p.1

) (k) Tt
Proof. At first, let’s prove the theorem for &k = 1
We have

N-1 n
(6, ¢r)re € Lim. Y ¢hi(n)Aw) [ ¢rdw
N—oo -
1-1 Titt )
—Mgzwmez/@mP

3=0 Tj

J(o, ¢1]Ttd—ef11m Z d)TjAw /wl )dw(V) =

T]+1

N—-1 Ti41
= Lim. Z ¢T Aw ) Z / ¢1(s)dw(1) =
N—oo I=j+1 7

N—1 Tt W -1 @
=1 d - Aw
;g}§!"<>w 3 b0l

(7.6)
It is clear, that if the difference ey of prelimit expressions in the right part
f (7.5) and (7.6) is tending in the mean-square meaning to zero when N — oo

Y
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then the stochastic integral J[¢, Yr|ry exists and J[@, Y1)y = J[o, Y1y with
probability 1.

The difference ey can be presented in the form ey = éx + €n, where

N-1 . 11 Titt )
=3 wimAw) 5 [ (¢, - ¢n) du?
=0 j=0 7;
X N-1 T4l 0 -1 @
=% | @r(n) = ¥a(s)) du! Y o, Au).
=0 7 j=

We will demonstrate, that l.im.Exy = 0 when N — oo. In order to do it we
will analyze four cases:

1. w?) = f, Awg) =Af; 2. wg) =T, Aw%l) = Af;
3. wg) = fr, Afwg) =A7; 4. w® =71, Afw%l) = AT.

¥

For case 1, using standard moment properties for the Ito stochastic integral,
the mean-square continuity (and as a consequence the uniform mean-square con-
tinuity) of process ¢, on the closed segment [¢,T], we obtain

r N-1 k=1 it 2
M{en} = X vian S [ M{6, — o[} dr <
= J=V 75
N-1 k—1 T — +)2
<C% Y An. Y Ari < Czeu,
k=0 J=0 2

ie. M {|§N|2} is infinitely small when N — co. Here A1; < §;5 =0, 1,...,N—1
(0 > 0 is exists for all € > 0 and it doesn’t depend on 7); |1)1(7)| < C.

Let’s analyze case 2. Using the inequality of Minkowski, estimates (9.4) for
n = 1 and the uniform mean-square continuity of process ¢,, we have:

M {|&x "} = ng v () An{ (g /<¢ - ¢Tj)df)2} <
<X utman(E (mf (/<¢ ~oar) 1)) <

2 N = ? o (T —1)°
<C% )’ ATk<Z AT]-> < Cfe—r7r—,
k=0 i=0 3

ie. M {|§N|2} is infinitely small when N — co. Here A1; < §;5=0,1,...,N—1
(6 > 0 is exists for all € > 0 and it doesn’t depend on 7); |¢1(7)| < C.
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In case 3, using the inequality of Minkowski, standard moment properties for
the Ito stochastic integral and the uniform mean-square continuity of process ¢,
we find:

Ml < (E lmlan (m{(S /<¢ ~sar) ) -
-(x |¢1<m>|m(§ /M {16 — 6, ) d)) <

N-1 k-1 3\ 2 AT — )3
< 025(2 Afk<z ATJ) ) e G
k=0 =0 9
ie. M {|5N|2} is infinitely small when N — co. Here A1; < 4;57 =0, 1,...,N—1
(0 > 0 is exists for all € > 0 and it doesn’t depend on 7); |1)1(7)| < C.
Finally, for case 4, using the inequality of Minkowski, estimate (9.4) for
stochastic integral and the uniform mean-square continuity of process ¢, we ob-
tain:

M {len]’} < (Nz_lkf lwl(m\M(M{(?l(@ - quj)dT)z})%f <

k=0 j=0

N-1 k-1 2 (T —t)*
< 028< S AT Y AT]-> < C*et,
k=0  j=0 4
ie. M {|5N|2} is infinitely small when N — co. Here A7; < 4;5=0,1,...,N—1
(6 > 0 is exists for all € > 0 and it doesn’t depend on 7); |¢1(7)| < C.
Thus, we have proven, that l.im.éy = 0 when N — oo. Arguing similarly,

engaging the notion of uniform continuity of the function ;(7) on the closed
segment [t, T'], we can demonstrate, that l.i.m.éxy = 0 when N — oc.

Consequently l.i.m.ey = 0 when N — oco. The theorem is proven for the case
k=1.

Proving the theorem we used the fact, that if the stochastic process ¢; is
mean-square continuous at the interval [¢, 7], then it is uniformly mean-square
continuous at this interval, i.e. for all e > 0 3 §(¢) > 0 such, that for all ¢1,¢5 €
[t, T] and meeting the condition |[t; — t5| < & the inequality M{|¢;, — &4, >} < €
is fulfilled (here § doesn’t depend on ¢; and t3).

Actually, let’s the ¢; is mean-square continuous at the interval [¢,T], but
it is not uniformly mean-square continuous at this interval. Then for the some
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e > 0 and for all 6 > 0 3 #1,t2 € [t,T] and such, that |[t; — t2] < 4, but
M{|¢s, — ¢1,|*} > €. Consequently for § =6, = 2;n=1,2,..., 3 £ 4 ¢ ¢, T]

and such, that \tg") — tgn)| < %, but M{|gz5t§n) — ¢tgn)|2} > €.

The sequence tg"); n = 1,2,... is restricted, consequently, according to the

Bolzano-Weierstrass theorem we can highlight from it the convergent to a certain
number £ (it is simple to demonstrate, that # € [t, T]) the subsequence tgk"); n=
1,2,.... Similarly to it and in virtue of the inequality |t§n) — tgn)| < % we have
tgk") — t when n — oo.

According to the mean-square continuity of process ¢; at the moment ¢ and

the elementary inequality (a + b)? < 2(a® + b?) we obtain

0 < M{[¢ywm — dym|*} < 2 (M{lfﬁtym) — ¢} + M{|8, 0 — ¢E|2}) — 0

when n — oco. So, lim M{|¢,x. — ¢t(k")|2} = 0 when n — oo. It is impossible by
1 2

virtue of the fact, that M{|@,x. — @,am|*} > € > 0. The obtained contradiction
1 2

proves the required statement.

Let’s go to the proof of theorem 19 in case £ > 1. In order to do it we will
introduce the following notations

6 by
IRl ™ [t . [ Yt dulfS) . duf?

S

J[¢7 ¢(Sr+1)]9,s d:ef

0 t,- tr-{—l
C [ ytr) . [ grtern) [ Grdw® T DdwT . duwi?,
(r+1) n—1 Jg—1 Jetr—1—1lr+q
G[@Z’qT ]n,m = > > .. >x 1 I[@bl]n,ﬂ,n,a
Jqg=m jgr1=m Jgtr=m l=q

f f f
where {0 9 (g, ., dy); 0 E s Y E GO = (g, ).
To prove theorem 19 when k£ > 1 it is enough to show, that

J[QS) 'Lp(k)]T,t = %\71—{?0 S[d): d)(k)]N = JA[¢7 /‘p(k)]T,t Wp17 (77)

where .
Jr—1

S[6, 4%l = Gl 5 g Bt
=0

At first, let’s prove the right equality in (7.7).
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We hayve:
7 k def N=1 (k+1) 1 k
T, ¥y < Lim. Y ¢ AwH VI ®) (7.8)
N—=oo =0

On the basis of the inductive hypothesis we get, that

I[d’(k)]T,ml — ]A[qp(k)]T,ml w.p.1, (7.9)

where I[¢)®)]7, is defined in accordance with (7.4) and

T tp—1

Let’s note, that when k > 4 (for kK = 2, 3 the arguments are similar) due to
additivity of the Ito stochastic integral the following equalities are reasonable

N—1 T+l t1
IO, = X [ walt) [ oot I8 ), dw dwl) =
j1=l+1 Tj1 Ti4+1
N_1 T+t ji—1 Tiatt
-y [uw(y [+ | Voalta T4 ) =
J1:l+]_ le Jz—l+1 TJZ le
=...= G[¢ ]N,l-}—l + H[@D(k)]N’H_l w.p.1, (7.10)
where
N 1 T
A= Y | a(s) [ valnI 2, duP )+
Jl—l+1 Tjy Ti
2 1) Jra=1 Tt (k—r—1)
+ > G Vv D / /¢r+1 ¢r+2 Jr s X
r=2 Jr=l+1 7, Tjr
x dw! ) dw " +
(h-2) Je—2—1
+G v D I[¢k 1]T]k T (7.11)
Jr_1=l+1

Let’s put (7.10) into (7.9), and (7.9) into (7.8). Then w.p.1

T, p® Jre = Lim. z G AwED (Gl Wy + HYWng1) . (7.12)
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Since
N-1j1—1 Jr—1—1

N-1 — N-1
22 X G = X T oY @jy e (7.13)

J1=0 j2=0 Jr=0 Jk=0jJr—1=Jr+1 Ji=J2+1
where a;,.j, — are scalars, so

N-1 —1

N k
G[¢(k)}N,l+1 = Z S Z H I[lpl}leﬁ-l;le' (714)

jk=l—|—1 J1=J2+1 =1

Let’s put (7.14) into Z Gr Awy k“)G[@b(k)] ~i+1 and again use the formula
(7.13). Then

N-1
> ¢n AwE NGBy 0 = S, P (7.15)
=0

Let’s suppose, that the limit Li.m. S[#, »*)];y when N — oo exists (its exis-
tence will be proven further).

Then from (7.15) and (7.12) it follows, that for proving the right equality in
(7.7) we have to demonstrate, that w.p.1

N-1
Lim. z ¢ AW H[yp® )0 = 0. (7.16)

N—oo -

Analyzing the second moment of prelimit expression in the left part of (7.16),
considering (7.11), the independence ¢,,, Aw! k“ ) and H[¢p®]y 41, of standard
estimations of the second moments of stochastlc integrals and the Minkowski
inequality, we find, that (7.16) is reasonable. Thus, in the assumption of existence
of the limit Li.m. S[¢, )®)]5y when N — oo we obtained, that the right equality
n (7.7) is fulfilled.

Let’s demonstrate, that the left equality in (7.7) is also reasonable.

We have
T, ™y & 1im. z b (m) Aw® J[g, 8¢V, (7.17)

N—ooco -

Let’s use the same arguments to the integral J[¢, ¢§k_1)]n,t in (7.17), as for
the integral I[)®]r, .1, Which resulted to the relation (7.10), and we will put the

obtained for J|¢, wgk_l)]mt expression in (7.17).

Hereafter, using the Minkowski inequality and standard estimations of the
stochastic integral second moments it is easy to determine, that

T, oW, = Lim. R[3, H®Ny w.p.1, (7.18)
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where
(k—1) —L
R[¢, vy = ZO¢1(TJJ wl Glys ;0 lZ | ¢rduw.
J1 0 7
We will demonstrate, that
Lim. R[¢,vW]y = Lim. S[¢,v®]y w.p.1. (7.19)
N—oo N—oo
It is easy to see, that
R[¢,vW]x = Ulg, vV x + Vg, vW]w + S, ]y wop.1, (7.20)
where
k) 1) (k=1) Je—1
U[¢7d) ]N — Z 1ﬁl(’r,h) G[d)Q ],710 Z [[A¢]Tl+1,7'l7
Ji=
Je—1
Vg, ™My = 2 T[], G o 3 gnlufft
Ji=
and

Tj1+1

IAG ] m, = [ (1(73) — (7)) dw;

le

Ti+1

A0 = / (¢r — ¢r)dw kH
7
Hereafter, using the Minkowski inequality and standard estimations of the
stochastic integral second moments, as well as continuity of the function ¢ (7) and
belonging of the process ¢, to the class Sa([t, T']) we obtain, that 1i.m. V[¢, ™)y
= Lim. U[¢,v®]y = 0 when N — oo w.p.1. Then, considering (7.20), we get
(7.19). From (7.19) and (7.18) it follows, that the left equality in (7.7) is fulfilled.

At the same time, the limit Li.m. S[$, /¥)]y when N — oo exists because
it is equal to the integral J[@, g[)(k)]T,t which exists in conditions of the present
theorem. So, the chain of equalities (7.7) is proven. The theorem is proven O.

7.1.2 Corollaries and generalizations

Assume, that Dy = {(t1,...,tx) : t < t; < ... < tx < T} and the following
conditions are met:

Al é't - S2([t,T]);
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AIL ®(ty,...,tx—1) — is continuous non-random on the closed set Dy_; func-
tion.

Let’s define the following stochastic integrals:

)

T T T
‘][67 q)]gci)f = /ftdet(Zk) ca /deQ) / @(tl, to, ... ,tk_l)dwt(il) déf
t i3 to

l.im. Z ngAW i) / dwtlk 2 : /dwt /(b t17t2a .- -atk‘—l)dwgfl)

N—oo - T

when £ > 3 and

Jle 21:/§t2dwt /@ (tr)dwi) <

T
“ Lim, g & Aw ) ] / B(tr)dwy,”,
where wi) = £0) wheni=1,...,m; wO =7, 4;,...,4, =0, 1,...,m; £f0; i =
1,...,m — are independent and F -measurable for all 7 € [¢, T standard Wiener
processes.
Let’s denote
T te—1
J[e, @) = [ ] et te1)Edwi® . dwi™ | k> 2, (7.21)
t t

where the right part of (7.21) is the multiple Ito stochastic integral.
Let’s analyze one generalization of theorem 19.

Let’s introduce the following multiple stochastic integrals

T T
/dwtik ! .. ./dwgz)/@(tl,t% .. -,tk_l)dwgl) déf
t3 to

Lim. z Aw i /dwt““ 2) /dwt /<I> trta, oo tpet)dwl),

N—oo T

tr—2

T

J[@E = [ [ ®ty,... tse)dwit ) dwi) k> 2.

it 1
t t

It is easy to demonstrate similarly to the proof of theorem 19, that under the

condition AIT of this section the following stochastic integral J [@]gpk " Y exists and

J@)% Y = J@)E, " with probability 1.
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In its turn, using this fact we may similarly to the proof of theorem 19 to
prove the following theorem.

Theorem 20. Let the conditions Al All of this sectzon are met. Then, the
stochastic integral J[E, ] Tt erists and J[f, ]( T = = J[¢, ] 7 with probability 1
(k > 2).

Let’s analyze the following stochastic integrals:

T t

I= / df"”) / Oy (ty, t)dE™ | J = / / ®y(ty, t)dE M el

If we consider

T

[ ®1(ty, t)dfr”
as the integrand of I, and

ts _

/(I)2(t1,t2)dft(fl)

t

as the integrand of J, then, due to independence of these integrands we may
mistakenly think, that M{IJ} = 0. But it is not the fact. Actually, using the
integration order replacement in / w.p.1 we have

T t1 T t |
I = ‘t/t/él(tlatZ)dft( )dft = //@1 tZatl)dft( )dft(zzl)

So, using the standard properties of the Ito stochastic integral, we get
T t

M{IT} = 13-y | [ ®1(ta, ta)@a(ty, to)dtrdt.
t t

Let’s analyze the following statement.

Theorem 21. Let the conditions of theorem 19 are fulfilled and h(T) — is
the continuous nonrandom function at the interval [t, T]. Then

/ ¢rdwtVR(7)] = / ¢ h(T)dw* D [y ®]p - w.p.1, (7.22)

and the integrals in the left and right parts of (7.22) exist.

Proof. According to theorem 19 the multiple stochastic integral in the right
part of (7.22) exists. In addition

T T
/¢Th(7)dw£k+1)f[¢(k)lT,T = /¢wa$k+1)h(7)j[¢(k)lT,T_
t t
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N-1 )
—Lim. Y ¢, Ah(r) Aw I[P wp.d,

N—oxo j=0
where Ah(TJ) = h(Tj_H) - h(Tj).
Using the arguments which resulted to the right inequality in (7.7) we obtain

N-1 R
Lim. 3 énAh(m)Awy ™[O, =
Je—1
=Lim. G[y AN Z G AR(T) Aw ) wp.1. (7.23)
—00

Hereafter, using the Minkowski inequality and standard estimations of the
stochastic integral second moments and continuity of the function h(7) we find,
that the second moment of prelimit expression in the right part of (7.23) tends to
zero when n — oo. The theorem is proven O.

Let’s analyze one corollary of theorem 19.
Theorem 22. In the conditions of theorem 21

T
[ bt) [ grdutauft Vi, =
t

T
= [ prdw+? / h(t)dw V[ ® ), wpd, (7.24)
t

at that, the left and right parts of (7.24) exist.

Proof. Using theorem 19 two times, we get

/¢wa (k+2) /h dwtk+1)f[?/)(k)]T,tl _

T
= [ilty).. / k(t) / prdw®Vdw® . dw =

t
:f w1 / (tx dwtk : /¢1 (t1) dwt(l) w.p.1,
i

where

= h(r) [ fudwlH?.
t

The theorem is proven O.
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7.1.3 Integration order replacement for the concrete multiple Ito
stochastic integrals

As we mentioned before, the formulas, mentioned in this section, may be obtained
using the Ito formula. However, the method, based on theorem 19 is more simple
and familiar, since it coordinates with usual rules of integration order replacement
in the Riemann integrals.

Using the theorem 19 about the integration order replacement in multiple Ito
stochastic integrals it is easy to demonstrate, that the following equalities are
reasonable with probability 1:

T t

/ﬂ%@@_/ — t1)dfy,,

ta

T
cos(ty — T)/dftldtg = /sin(T — t1)dfy,,
¢

t

T

T
/sm iy — /dftldtg = /(COS(T —t1) — 1) dfs,,

t

(1 — eo‘(tl_T)) dfi,, a # 0,

ﬂ\ﬂ -
Q
L
K
3
\‘
=
&
[\
|
|

T to 1 T
/@—TW/%AQ:— /' T)*Hdf,,, o # —1,
t t O(-{— t

1
Jaoyrs + Joyrs = (T —t)Jayrs (the Ito lemma),

L T T
Jaooyrr = 5 /(T — t)%dfy,, Jo1yrr = /(tl —t)(T — t1)dfy,,
t

t
to

(T — 1) [ dfs,dfs,,

t

\H

Jaoyrs =

to

= [ [(t2 = tr)dfudf,
t

101

s*w\ﬂ“

T t5 t
Jaon)r, = /// (t2 — t1)dfy, df,dfy,,
tTttgt s
Jaonr: = //(t3 — t2)/dft1dft2dft37
t 1 t
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T ts to
Jaio0)r / — t3)//dft1dft2dft37
t it
L T £
J100)T,t = 3 /(T — t2)2/dft1dft2,
t t
L Tt
Jaoonrt = 5// ty — t1)*dfy, dft,,
i1
T £
Jaowo),t = /(T —19) /(t2 — t1)dfy, dfy,,
t t
T s
Joro)r,t = /(T ) /(tl — t)dfy, dfs,,
¢ t
T t,
Jo101)T // (ta — t1)(t1 — t)df:, dfs,,
i1
| T
Joo10)T,t = 2 /(T — t1)(t1 — t)*dfy,,
t
L T
Jo100)T,t = 5 /(T —t1)*(t1 — t)dfy,,
t

1 T
1000Tt—3_t/ —t) Sdfy,,

T
J(IO...O)T:t - )'/ - tl k= ldftu
Iney t
T to
Jarg gre = / /dftldft27
ey &

T st
J(lo 1..1)Tt — / : //(t2 - tl)dft1dft2 te dftk—v
ey t t ot
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tr1 to

T te—2
1 101)T / / (tk—1 — tr—2 / ---/dft1---dftk_gdftk_Qdftk_l;
t ot t

k 2 t

generalizations of the Ito lemma:

Jawoyr + Jaoyr: + Joyr: = (T —t) Janre,

T —t)?
Joonyr,: + Jowyr: + Jaooyr = %J ()T
Jawor: + Jaowyr + Joonr,s + Joorit
(T —t)?

+Jowonrs + Joonrt = 5

JanT,t

(T —t)°
3!
Janoyr: + Jaonre + Jaonre + Jouyry = (T — ) Jaiyre,

k
k—1
> '](0 010..0)Tt — (k — 1)!(T —t) J(l)T,ta

J000yr¢ + J(o100)7¢ + J(0010)7¢ + J(0001)T¢ = Jyre

=1 “~ <~ <~
-1 k-l k-1
Z ; (T _ t)k—m y
(ll - lk)TJt (1...1)T7t7
l1+"'+lk:m (k - m)! N~
1;€{0, 1}; i=1,..,k m

where

Tt Tt = / / dwi) ... dw;

l; 1Whenwt = fi, and [; Owhenwt(i):ti;izl,...,k;fTE%l—is
standard Wiener process.

7.2 Integration order replacement in multiple stochastic in-
tegrals according to martingale

In this section we will generalize the theorems about integration order replacement
in multiple Ito stochastic integrals for the case of multiple stochastic integrals
according to martingale.
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Assume, that (2, F,P) — is a fixed probability space and {F;,t € [0,t]} —
is a non-decreasing collection of o-algebras, defined at (€2, F,P). Assume, that
M, t € [0,T] is Fi-measurable for all ¢ € [0,T] martingale, which satisfies the
condition M{|M;|} < oo and for all ¢ € [0,T] there is a Fi-measurable and non-
negative with probability 1 stochastic process py, t € [0, T] such, that

M{(M, — M)’[F,} = M{/pTdﬂFt} w. p. 1,
t

where 0 <t < s <T.

Let’s analyze the class Hs(p,[0,7]) of stochastic processes ¢;, t €
[0, T], which are F;-measurable for all ¢ € [0,7] and satisfies the condition

M {(fgofptdt} < 00.

In chapter 9 we mentioned (see also [2]), that the stochastic integral according
to martingale ?{TdMT, where the stochastic process &, 7 € [t, T] belongs to the
class Hy(p, [0, tT]), obtained in accordance with definition (9.11), exists.

Let Hy(p,[0,T]) — is a class of mean-square continuous for all 7 € [0, 7] and
related to the class Hy(p, [0,T]) of stochastic processes &, T € [0,T].

Let

T tr—1 ty
Slg, ™ re = [Wa(ts) ... [ vn(te) [ e dMEVAMP . dMLD,  (7.25)
t t t
T tp—1
S ®re = [va(ts) ... [ wnlte)dMy .. dMy). (7.26)
t t

Here and further ¢, € Hy(p,[t,T]); ¢1(7),...,¥s(7) — are continuous non-
random functions at the interval [t,T]); MY = M, or M® = 7 if r € [t,T];
[=1,...,k+1; M, — is martingale.

Let’s define the following multiple stochastic integral S W(k)]T,s; t<s<T,
k > 1, of the form

A i k i 1
S W = [wn(te)dML .. [y (tr)dMD
ta

8

by the following recurrence relation:

N-1

S[p®]p, kfi;)m. lz () AMP SV (7.27)
=0
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where k > 1; S[y©]r, % 9. [5,T] C [t, T); here and further AM = MT(QI —

Mf(,i)§ i=1,...,k+1;1=0,1,...,N —1; {n}{¥, — is the partition of interval

[t,T] such, that t =1y < ... <7y =T, 0 JRBX | |Tj+1 — 7| = 0 when N — oo;

other notations included in (7.27), the same as in (7.25) and (7.26).
Further, let’s define the multiple stochastic integral S [0, w(k)}m, k > 1, of the
kind

T
S, 9 ®re = [ ¢udMIFD My,
t

by the equality
5 def i A
S[¢7 w(k)]T,t = %VII’H Z ¢T1AMT(zk+1)S[¢(k)}T,Tz+1a
—00 =0

where the sense of notations, included in (7.25)(7.27) is stored.

Let’s formulate the theorem about integration order replacement in the mul-
tiple stochastic integrals according to martingale, which is the generalization of
theorem 19.

Theorem 23. Let ¢, € Hy(p, [t,T]); (7)) (1 =1,...,k) — are continuous at
the interval [t, T nonrandom functions and |p;| < K < oo with probability 1 for
all 7 € [t,T)]. Then the stochastic integral S[¢, vy®)r, exists and S[¢, p®]r; =
S[p, ™)1, with probability 1.

The proof of theorem 23 is similar to the proof of theorem 19.

Let’s note, that we can propose another variant of the theorem 23 conditions.
Thus, it is not necessary to require the limitation of process p,, however in this case
it is necessary to require, for example, execution of the next additional conditions:

1. M{|p,|} < oo forall 7 € [t,T];
2. The process p; is independent with the processes ¢, and M,.

Let’s note, that it is well known the construction of stochastic integral accord-
ing to Wiener process from not F,-measurable stochastic process — the so-called
Stratonovich stochastic integral (see chapter 9).

The stochastic integral S [gzb,@b(k)];p,t is also the stochastic integral from not
F,-measurable stochastic process, however in conditions of the theorem 23
Slg, v W®r, = g[gb,@b(k)h,t with probability 1, and S[¢,¥®]r; — is a com-
mon multiple stochastic integral according to martingale. If, for example,
M,, 7 € [t,T] — is a Wiener process, then the question about connection of
stochastic integral S 2 @/)(k)]T,t and the Stratonovich stochastic integral is solv-
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ing as a standard question about connection of Stratonovich and Ito stochastic
integrals.

Let’s analyze several statements, which are the generalizations of theorems
formulated in the previous section.

Let the nonrandom function ®(t1,...,%x_1) is continuous at the closed set
Dy = {(t17"'7tk—1) i<t <... <11 < T}.

Let’s define the following stochastic integrals:

3¢, ®)%) :/gtdetk . /th2 /cbtl,tz,...,tk_l)th(}) &of

5

T T
Lim. anAM /th L [dM [ Bttty )dMED
t3 t2

N—oo - T

when £ > 3 and

3le, 817, = / ndMy; / B(t)dM Y

5

T
)i S EAMP [ ®(ty)dM;Y,
N—)OO 1=0 T

where the sense of notations, included in (7.25)—(7.27) is stored, and the stochastic
process &, T € [t,T] is related to the class Ha(p, [t,T7]).

In addition, let
T th—1
Sle, @) = [ ... [ @t te1)&dMy M), k> 2, (7.28)
t t

the right part of (7.28) is the multiple stochastic integral according to martingale.

Let’s introduce the following multiple stochastic integrals

Sle)y /th“f ! /th /<1> (t1, 1o, .. tpy)dM
N=E A (ir)

Lim, Y AMOD [ a2 [ M) [ @ty tg, ..., tp1)dM"
Lim. lgo nﬁ £ / £ / 1, to, k—1)dMy ",

T tp—2
S@ly;V=[... [ s, tea)dMIY L dM, k> 2.
t t
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It is easy to demonstrate similarly to the proof of theorem 23, that if the
function ®(ty,...,tx—1) is continuous at the closed set Dyp_y = {(t1,...,t5-1) :

t <t <...<tp_1 <TY}, then the stochastic integral S[® 17t 1) exists and with
probablhty 1 the following equality is reasonable S’[® ] D) = 8 [@]éﬂc N b,

In its turn, using this fact we may similarly to the proof of theorem 23 to
prove the following theorem.

Theorem 24. Let the nonrandom function ®(t1,...,tx_1) is continuous
at the~ closed set D1 = {(t1,...,tk—1) @ t < t; < ... < tgo1 < T},
& € Ha(p, [t,T]) and |p;| < K < oo with probabz'lz'ty 1 f0’r all 7 € [t, T]. Then,
the stochastic integral S[€, @ ]5,2 ezists and S[E, <I>]Tt S[¢, ]Tt with probability
1 (k>2).

Theorem 24 is a generalization of theorem 20 for the case of multiple stochastic
integrals according to martingale.

Let’s analyze two other statements.

Theorem 25. Let the conditions of theorem 23 are fulfilled and h(T) — is
the continuous nonrandom function at the interval [t, T]. Then

~

T
/ b dMFDR(T)S = [ bh(r)dMED P, w.p.1 (7.29)
t

and stochastic integrals in the left and right parts of (7.29) ewist.

Theorem 26. In conditions of theorem 25

/ h(t) / 8,AMFDaMF DS P, =

- / o dMFH2) / h(t)dMIFV [Py, wp 1, (7.30)

at that, the left and right parts of (7.30) exist.

The proofs of theorems 25 and 26 are similar to the proofs of theorems 21 and
22 correspondingly.
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Chapter 8

Some exact formulas for Ito and
Stratonovich stochastic integrals

8.1 Representation of multiple Ito stochastic integrals us-
ing Hermite polynomials

In the previous chapters of this book we analyzed the general theory of approx-
imation of multiple Ito and Stratonovich stochastic integrals. However, in some
particular cases we may get exact expressions for multiple Ito and Stratonovich
stochastic integrals in the form of polynomials of finite degrees from one stan-
dard Gaussian random variable. This and next sections will be devoted to this
question. The results described in them may be met, for example, in [29].

Let’s analyze the family of constructing polynomials H,(z,y); n =0, 1,...

of type:
H ( ) d" az—3a’y
x,Yy) = ——e€

a=0
It is well known, that polynomials H,(z,y) are connected with Hermite poly-

nomials hy,(z) by the formula Hy(z,y) (%)% hy, ( ) where hy(z) is Hermite
polynomial.

Using the recurrent formulas
dh,
E(Z) =2nh,_1(2); n=1, 2,...,
hn(2) = 2zhp—1(2) = 2(n — D)hp_2(2); n=2, 3,...,
it is easy to get the following recurrent relations for polynomials H,,(z,y) :

0H,
oz

(z,y) =nH,_1(z,y); n=1, 2,..., (8.1)
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0H, n nx

—a = —H, ) - 5 1n— ' Y); =1, 2,..., 2
oy &Y =5 Hn(@,y) =5 Hua(z,9); 0 (8-2)
H, _1
) = =" (e n=2, 5 (5.3)
It follows from (8.1) — (8.3), that
O0H, 10%H,
— =0, n=2 e A4
oy (@,9) + 555 (@y) =0 n=2,3, (8.4)

Using the Ito formula with probability 1 we have

t

Hofot) = (0,0) = [ 2125, s)dft

0
t (0H, 10°H,
+0/ (a—y(fs, S) + 5@(]{9, S)) dS, (85)

where f; € ®! — is a standard Wiener process.

According to (8.4) and H,,(0,0) =0; n =2, 3,... from (8.5) with probubilty

1 we get
t

Ho(fot) = [nHya(fs s)dfs n=2, 3,...
0

Hereafter, in accordance with induction it is easy to get the following relation
with probability 1:

t ta
n € 1
1 )d:fO/...O/dftl...dftn = Hy(fot)y n=1,2,... (8.6)

Let’s examine one of extensions [29] from formula (8.6):

t ta
n € 1
g /¢tn - --/¢t1dft1---dftn = EHn(dt, Ayn=1,2,..., (8.7)
0 0 '

where . .
5 [dfy; &Y [lds;
0 0

1y — is non-anticipating stochastic process, which satisfy the conditions of existing
of Ito stochastic integral in the mean-square sense (see sect. 9.1).
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It is easy to check, that first eight formulas from the family (8.7) look as
follows

w1 @ _ Lo
Jt = ﬂéh Jt - E (5t o At) ’
3 1 4 1
T = 5 (8 =308, T = 15 (8 - 6670+ 3A7),
1
)
JO) = 71 (07 — 10872, +156,A7)
1
JO — . (6% — 156/ A, + 4567 A7 — 15A3)
1
7
JO = = (67 — 21672 + 10583A2 — 1056,A)
1
J® _ " (68 — 2868 A + 2105 A7 — 42067 A% + 105A7)
with probability 1.
8.2 One formula for multiple Stratonovich stochastic inte-

grals of kth multiplicity

Let’s prove with probability 1 the following relation for multiple Stratonovich
integrals [24]

*t xt2

* 1 * f
™= A I déO/ 0/ df, ...dfy w.p. 1. (8.8)

At first, we will examine the case n = 2. Using theorem 12 we obtain:
1 t
=12+ [dtyw. p. 1. (8.9)
2%
From the relation (8.6) when n = 2 follows, that with probability 1

1 1 ¢
1P =Zr2_ 2 [q.. 8.10
t 2ft 20/ 1 ( )

Substituting (8.10) into (8.9), with probability 1 we have I;® = £2/(2!). So,
formula (8.8) is correct when n = 2.
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Assume that the formula (8. 8) is correct when n = k, i.e. with probability
1: It = fF/(k!), and exammef[* df - df I:(kﬂ).
From sect. 9.2 and mductlve hypotheses with probability 1 we get

14
) = / %-lf‘ﬁ;dr (8.11)

Let’s introduce a stochastic process & of type & = fF™1/((k + 1)!) and will
find its stochastic differential using the Ito formula:

dgt:l ﬁ+ﬂ% (8.12)

2 (k—1)!

Since &y = 0, then from (8.11) and (8.12) it follows, that Pl = Y ((k+
1)!) with probability 1. So, relation (8.8) is proven in accordance with induction.

It is easy to see, that formula (8.8) admits the following extension:

xm) 1
L():ﬁﬁpri, (8.13)

where J; ") 4 fwn)...g‘“w(mdftl...dftn; 6 = [ (s)dfs, ¥(s) = [0,] — R!

— is some continuously differentiated function.

O+

8.3 One formula for double Stratonovich stochastic inte-
grals

In this section we will prove the following lemma.

Lemma 11. Assume, that h(7),g(7),G(7) : [t,s] = R! — are continuous
functions at the interval [t, s],

/Q(T)dT = G(7) + C; C = const,
¢0 e Qs([t, s]) (see sect. 9.2) and

&0 = [audu+ [b,dfl); 1=1, 2,
t t

where £, £&) — are independent standard Wiener processes. Then

*T *S

s «0
[a(r)] no / Datatydr = [ (G(s) - GO)MO) [ €PatPde  (8.14)

t
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w.p.1, where i,7,1=1,2; f( f( ) — F,-measurable for all T € [t, s] independent

y T

standard Wiener processes.

Proof: In conditions of lemma we may use (9.7) when F(z,0) = zh(0),

*0
mo ' [ €Dt
t

because of ng € Qs([t, s]); zh(0) — is two times continuously differentiated func-
tion according to variable  and mentioned derivatives are restricted for all z € R!;
ngh(6) € Ma([t, s]). According to (9.7) and (9.8) we obtain:

*xT x0 T
[ no) [ Ddeat = [ n(o) /5 0 g 4 1{1 ]}/h )eDds,  (8.15)
t t t

/5 /f i) 4 1{1 z}/b du (8.16)

w.p.1, where 14 — is an indicator of the set A.

Let’s substitute (8.15), (8.16) in the left part of (8.14) and use theorem 19
two times:

S

o 1
EDdED) [ G(ORO)E + 110y / G(0)h(0)&; do+

S S

+- 1=y [ budu [ h(a)G(e)dfgf)) =

L]

0
=Gt) </ h(6) [ €0 dE0dE + Sl [ h()8) db+
t

t
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1 Foon [ ()
+5 L= / h(6) / by dudf, )—
g 1
h(o) [ EDdeDat + 2 1{1_3}/G (6)£)do+
t

+%1{z=@-} [ h(6)G(9) / bududfgj)) (8.17)
t t

w.p.1. Using (8.15), (8.16), formula, which differs from (8.15) by the change h(0)
on G(6)h(60), as well as (8.17), we get (8.14). The lemma is proven. O

8.4 Analytical formulas for calculation of stochastic inte-
grals

This section is devoted to receiving of two families of analytical formulas on the
basis of the Ito formula for calculation of stochastic integrals.

Assume, that (2, F,P) — is a fixed probability space. Let’s analyze the Ito
process 1, € R", defined for 7 € [0,7], T < oo, as the solution of the Ito
stochastic differential equation:

dn, = a(n,, 7)dt + X(n,, 7)df, no =n(0,w), (8.18)

where a(n, 7) : R" x[0,T] = R", X(n, 7) : R" x[0,T] — R"*™ — are nonrandom
functions; f;, € R™ — F,-measurable for all 7 € [0, T] standard vector Wiener
process with independent components; the random value 7y doesn’t depend on
difference f, — fy when 7 > 0.

In relation to functions a(n,7) and 3(n,7) we propose, that they satisfy
the standard conditions of existence and uniqueness (in the sense of stochastic
equivalency) of solution of the Ito stochastic differential equation (see sect. 9.4).

Otherwise, let’s use [24] exact solutions of specific Ito stochastic differential
equations of the kind (8.18) in order to demonstrate existence of their solutions.

Let Y C R"™ — a set, for which
P{n. €Y forall 7 €[0,7T]} =1,

and the function R(n, 7) : ®" x [0,7] — R! is continuous and has continuous
2

partial derivatives 2& (n, ), 6%) (n, 1), %(n, T);4,j=1,...,nforall (n,7) €
Y x [0,T7.
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Let’s write the Ito formula for the process R(7s, s) :
rOR :
o — (N, T) - dnT = R(ns,s) — R(m, t) — /LR(’UT,T)dT w.p.1, (8.19)
t

where s,t € [0,T]; s > t; © — is the scalar product ; L — is an operator of the
kind

Lo 7) = 52 )+ 5 3 5 5005001 G ), (820)

where g : Y x [0, T] — R! — is some function, for which the right part of (8.20)
exists.

Let the function R(n, ) satisfies the differential equation

LR(n,7) = p(7), (8.21)

where () — is some scalar nonrandom integrated at the interval [0, T'] function.
Then (8.19) has the form

S aR S
/ Gy (77 “dne = R(ns,5) — R(m,t) — [ p(7)dr w.p.1. (8.22)
t t

The relation (8.22) may be interpreted as the analytical formula for calculation
of integral in the left part of (8.22). Several formulas of the type (8.22) are well
known from the literature for specific functions a(n, 7), X(n,7), R(n,7), ©(7).
Let’s demonstrate some of them:

[~ 10 = —s =0+ 5 (= wpd fre R, (52
/sz - df, = —%(8 =)+ (&P~ |6]°) wpl, £ eR™,  (8:24)

t
jf]fﬁﬂ = o (7" = &™) wp.1, m>3, £ € ®", (8.25)
jﬁ;gﬂ = In|f,| — In[fy| w.p.1, f, € R*. (8.26)

The formula (8.23) may be found in [29], and formulas (8.24)—(8.26) may be
found in [50].
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Let’s note that for the Stratonovich stochastic integrals from stochastic pro-
cesses of special kind the analytical formulas of their calculation, corresponding
to the rules of classical integral calculus are reasonable.

Thus, let’s propose, that the function F(z) : R — R! satisfy the conditions
of validity of the formula (9.7).

Then according to (9.7) we obtain:

L d—F(fT)dT w.p.1, (8.27)

2tda:

/)|< F(fT)dfT = /SF(fT)dfT+
t t

where f, € ! — is standard Wiener process.

Using the Ito formula

G(f) -G = & [ Wpyar+ [Pl wot, (829

where dG(z)/dz = F(z). Combining (8.27) and (8.28), we get

*S

| F(£.)df, = G(f.) — G(f) wp1. (8.29)

The formula (8.29) may be found, for example, in [24].

The approach proposed further is based on solution of differential equation
(8.21) in case of several suppositions in relation to the functions R(n,7) and
Y(n, 7). Thus, let n € R, B(n,7) = 6(n)o(7), where 8(n) : R — R™, o(7) :
0, 7] — R

Then the differential equation (8.21) has the form

e 07) + 50H D) g 1.7) = ), (8:30)

where 3%(n) = Tgl (6 (17))2 :

Solution of the equation (8.30) may be found, for example, by the method of
additive (R(n, 7) = p(n) + ¥ (7)) or multiplicative (R(n,7) = p(n)y (7)) separa-
tion of variables.

8.4.1 Additive separation of variables

Let R(n,7) = p(n) + (1), n € RL. Then the equation (8.30) assumes the form

)+ 3 F W G = (o) (8:31)
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After separation of variables in the (8.31) when o(7) # 0 we find

350000 = (o)~ G0 g = A Comsan). (89

If 32(n) > 0, then from (8.32) we get two differential equations:
dy
W (1) = olr) = (1),

d?p

L) = 2/(5 ).

the solutions of which have a form

W) = o+ [ (o) — Mo?(w) du, (5.33
p(n) = po+ p1n + 2>\/g(u)du, (8.34)

where g(u) ¥ fdz/(,@%z)), P0, P1, Yo, Yo — are constants; 32(u) > 0 when u €
Yo

[y()a 77] .
Substitution of (8.33) and (8.34) in the function R(n,7) = p(n) + (1), n €
R, and R(n,7) — in (8.22) when X # 0 provides

/sg(nT)dnT = —%/802(7')037' + 7sg(u)du w.p.1. (8.35)

For the specific selection of function 5(z) the integral 1}3 g(u)du may be calcu-
it
lated exactly. Then the formula (8.35) for various 3(z) defines the whole family

of analytical expressions for calculation of the stochastic integral fg g(n;)dn;.
t

Let’s analyze the selection of functions 5(z) and the corresponding formulas
from the family (8.35). At that, in some cases, if the selected function B(z) is
such, that the function (7, 7) doesn’t satisfy the conditions 1 and 2 (see sect.
9.4) or such, that some restrictions are imposed on the scope of definition or scope
of values of the process 7,, so in this case for demonstration of existence of the
processes 7, satisfying the formula (8.35), we use the examples of Ito stochastic
differential equations and their exact solutions 7, [24]. Further, everywhere f; —
is a standard scalar Wiener process (fy = 0).
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1. 8%(n)=1:
/ I 773 771,?
t/annT = —it/O' (T)dT+ 5 — 5 Wpl

2. B%(n) = \Jy(n), y(n —fa772+b77—|—c,A:4ac—b2>0,a>0:
S

Arsh dn, = —=+/a [ o°(T)dT + F(ns) — F w.p.1, 8.36
t/ N [ o+ F(m) — F(m) (8.36)

1

2

where F(z) ¥ (z 4 b/(2a))Arsh((2az + b) /VA) — Vy(z)/Va.
3. 8%(n) =y(n), A=4ac—b*>0,a>0:

: 2an; + b 1 Py
arctg dn, = —=VA [ o*(1)dr + F(n,) — F(n,) w.p.1,
foree s =Y

where F(z) © (z + b/(2a))arctg((2az + b)/VA) — (VA/(4a))/(Iny(z)).
4. B*(n) = 1/\Jy(n), A=4dac—b*>0, a>0:

8

g 1
| Fa(n;)dn, = D) [ a*(T)dr + Fa(n,) — Fa(m) w.p.1,
t t

where Fi(z) € ((2az + b)/(4a))\/y(z) + (A/(8a+/a))Arsh((2az + b)/VA);
f’g(m)ldéf( (A/)(Saﬁ))F(a:) + 43/%(x)/(6a); function F(z) is the same, as in the
ormula (8.36).

5. B%(n) = 1/P,_1(n), where P,_1(n) > 0 — is a polynomial of the degree
n — 1 with real coefficients:

S 1 S
[ Qu(nr)dn, = —5/02(7)d7 + Hp1(ns) — Hpta(me) w.p.1,
t t

where P,_i(z) = dﬁ" (2); Hpv1(z) = J Qu(z)dz

Further, we will consider 9 and o as constants.

6. B%(n) = e

; 17 1
O/emdm =3 O/UZ(T)dT +3 (e —1) w.p.1,
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where, for example 7; = In (f; + €™) (solution of the equation dn; = —0.5e~ " dt+
e~ mdf;), 0 < |mo| < 00, 0(1) =1, s <min{t > 0: f, + ™ = 0}.

7.8%m) =n":

S d - 1 S
/ r_ 2 /02(T)dT + Inn, — Inng w.p.1, (8.37)
o o 2y

where, for example n; = noe(a_%UZ)Haft (solution of the equation dn; = amdt +

ondfi), 0 < mg < oo, o(T) = 0, a — is a constant.

8. f*(n)=n>0:

S
1
[ Innedn, = ~3 [ *(7)dr + nelnn, — 0, — nolnng + no w.p.1,
0 0

where, for example n; = ( fi + \/%)2 (solution of the equation dn; = dt+2,/m:df;),
0<m<o0,0(r)=2,s<min{t>0: f,+ /M =0}.

9. 8%n) =n*(n* — 1), |n| > 1:

7 1 1 77¢+1> 1 9
—— 4+ =Iln dn, = - [ o°(7)dT + F(ns) — F(no) w.p.1,
O/(UTMT_l 5/ 7'+ F(n) = Fm)

where F(z) & zArcthz + 0.5In(z? — 1) — Inz and, for example 7, = sec(o f; +

arcsecro) (solution of the equation dn; = 0.50%n;(2n? — 1)dt + ong/n? — 1df;)
or n; = cosec(o f; + arccosecng) (solution of the equation dn; = 0.50%n,(2n? —

1)dt — onp/n? — 1dfy), 1 < my < oo; for considered processes m; : s <
max {t > 0:m > 1}. In the 1st case o(7) = 0, and in the 2nd case o(7) = —0.

10. 8%(n) = cos’n :

7 ( sinn, 3
/ ( L 2tgn7> dir = =5 /UQ(T)dT + F(ns) — F(no) w.p-1,
0

cos3n;, )
where F(z) df 9-lcos™2z — 2lncosz and, for example n, = arctg(o fy +
tgno) (solution of the equation dn; = —o?sinmcos®ndt + ocosn.df;) or n; =
t
arctg(e~*(tgno + V2 [ e*df,)) (solution of the equation dn; = —(0.25sindn; +
0

sin2n;)dt + v/2cos’n.df;), cosny > 0. In the 1st the case o(7) = o, and in the
2nd case o(7) = /2.
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11. 82(n) = sin*n :
S

S
cosn); 37,
0/ <_ sin’n, B 2ctg777> dnr = _50/0 (7)d7 + F(ns) — F(no) w.p.1,

where F(x) © 9-1sin~2z — 2Insinz and, for example n;, = arcctg(o fy + ctgno)
(solution of the equation dn; = o2cosmsin®n,dt — osin®nidf;), sinny > 0, o(T) =
—0.

12. B2(n) = (1 —n?)*:

!(ﬁﬂi u(ny )d"T— /0 YT + (ns)—%u(no) w.p.1, (8.38)

where u(z) ¥ In|(1 + z)/(1 — z)| and, for example, ; = th(c f; + Arthn)
(solution of the equation dn; = —o?n,(1 — n2)dt + o (1 — n2)df:), |no| < 1 or n; =
cth(o f; + Arcthng) (solution of the equation dn; = o?n(1 —n?)dt — o (1 —n?)df;),
1 < |no| < oo. In the 1st case o(7) = o, and, in the 2nd case o(7) = —0.

13. B%(n) = |1 —n?| :

/su(nr)dnr = — /0'2(7')d7' + nsu(ns) + u1(ns) — nou(no) — wi(no), (8.39)

where u(z) ¥ In|(1 + 2)/(1 — 2)|; ui(z) & In|1 — 22| and, for example, 7 =
ch(o f; + Archng) (solution of the equation dn; = 0.50%ndt + oy/n? — 1dfy), n; =
cos (o f; + arccosng) (solution of the equation dn, = —0.502mdt — o\/1 — n2df;)
or n; = sin(of; + arcsinmg) (solution of the equation dnp; = —0.50%ndt +
oy/1 —nZdf;). For the 1st process m; : mp # 1 and s < min{t > 0:n = 1},
and for the 2nd and 3rd processes n; : 9 # +1 and s < min{t > 0:n = £+1}.
In the 1st and 3rd cases o(7) = o, and in the 2nd case: o(7) = —o.

8.4.2 Multiplicative separation of variables

Let R(n,7) = ¥(7)p(n), where 9(7) : [0,T] — R!; p(n) : R — R Then,
substituting R(n, 7) = ¥(7)p(n) in (8.30) and believing ¢(7) = 0 in it, we get

W o) + - o) =0, (5.40)
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Dividing the left and right parts of (8.40) on p(n)1(7)o?(7) in the assumption,
that ¢(7), o(1), p(n) # 0, we found

1 dy, . 15 dp
O O A W OF T

The equation (8.41) is equivalent to the differential equations

= A (constant). (8.41)

() = Ao?(ri(r), (8.42)
B0 55 + molo) =0, 5 =21 (5.43

The general solution of differential equation (8.42) has the form (1) =
Ppexp (z\fa2(u)du>, where 1y — is an arbitrary constant. It is easy to see, that
0

the partial solution of differential equation (8.30) is an integral }gp(u)du. That is
0
why the general solution of differential equation (8.30) has the following form

R(n, ) = $(r)o(n) + [ olu)du, (5.44)

where p(n) — is a solution of differential equation (8.43).

Substituting (8.44) when v # 0 in (8.22), within the frames of made suppo-
sitions we get the following formula:

/ (T nT Ydn; = ¥(s)p(ns) — ¥(8)p(n) w.p.1. (8.45)

Let’s analyze the examples of selection of B(n), u and p(n) [51], which may
be used in the formula (8.45). Hereinafter Cy, Cy, 0 — are constants.

L. g% (n) =
1.1. u <0, p(n) = C’le_\/m” + CheVIHn,
1.2. 4 > 0, p(n) = Cicos(\/un) + Cosin(/un).

2. Bm) = 4" + Dan’ +a = 3)7 a > 3, p = 1, p(n) =
(n* + 1)1/4 (Cycosu(n) + Casinu(n)), where u(n) = 0.5y/a — 1Arshn.

3. 82(n) = (a®n*+a)7Y, a >0, u=—1, p(n) = e /2 (Cy + C2F(n)), where
F(n) = }7 e~ dx.
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4.3 (n) = (P +1)".

41. p+1=0a?>0, p(n) = vVn?+ 1(Cicosu(n) + Casinu(n)) .
42. p+1=—a? <0, p(n) = vn? + 1(Cichu(n) + Cashu(n)).
Here we suppose u(n) = aarctgn.

4.3. p=—1, p(n) = vn? + 1 (C1 + Caarctgn) .

The process 7; in cases 4, has, for example, the form 7, = tg(t+ fi+
arctgno) (solution of the equation dn; = (1 + n)(1 + n?)dt+ (1 + n2)dfy), n =
tg (o f; + arctgng) (solution of the equation dn; = o?n;(1 + n?)dt + o (1 + n?)df:)
or n; = ctg (o f; + arctgng) (solution of the equation dn; = o?n;(1+n?)dt — o (1 +
n?)df;). Here we suppose, that the processes 7; in the 1st, 2nd and 3rd cases
are analyzed for ¢ € [0,¢*), where t* — is the first moment after zero, when the
mentioned processes have discontinuity of the second kind. For example, for the
1st case we may take np = 0, and t* = min{t > 0: t+ f, = +n/2+ 7k, k € Z}.
We also assume, that in this case the formula (8.45) is considered for ¢ = 0, i.e.
the integral in its left part is taken at the interval [0, s].

5. 6%(n) =n*—1>0, u=—6, p(n) =4(n* — 1)n — is a partial solution.
At that, for example n; = ch (o f; + Archng) (see (8.39)).

6. 8%(n) =1—n*>0, u=6, p(n) =4(n? — 1)n — is a partial solution,

At that, for example n; = cos (o f; + arccosng) or n; = sin (o f; + arcsinny)
(see (8.39)).

7. 8%(n) =n".
71 14 <0, p(n)=n (C’le\/mm + C’ge—\/m/”) :

7.2. 4> 0, p(n) =n (C’lcos(\/mU_l) + C’QSin(\/mn‘l)) .

At that, for example n; = no(1 — noof;)™! (solution of the equation dn; =
o’nidt + onZdf;); mo # 0, s <min{t > 0: 1 —mnyof; = 0}. It is supposed, that
in this case the formula (8.45) is considered for t = 0, i.e. the integral in its left
part is taken at the interval [0, s].

8. B%(n) = n*.

8.1.c¢2=0.25—p >0, p(n) = /17 (Cin°+ Con™°) .

8.2. ¢ =p—0.25> 0, p(n) = /1 (Cicos(clnn) + Cosin(clnn)).
8.3. u=0.25, p(n) = \/n(C1+ Cslnn).
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In examples 8, the process 1; may be, for example, the same as in the formula,
(8.37).

9. *(n) = —n’lnp > 0, 0 < n < 1, p = =1, p(n) = Cilnn+

. _ o (frtvTom)’ i

Con— lnnnf dy/Iny ) . At that, for example, n; = e (solution of the
equation dn, = —n; (2lnn, + 1) dt — 2m/—Inmdf;), where 0 < ny < 1.

10. B%(n) = n*/(2n* + 1), p(n) = C1(n* = n)en+ Ca(n* +m)e”7, p= —1.

2

11. B2(n) = (1> = 1)".

11.1. p—1=4a% > 0, p(n) = /In? — 1] (Cicos(aG(n)) + Cysin(aG(n))).

11.2. p—1=—-4a*> <0, p(n) = (n+1) (C’lu(n)a_% + C’gu(n)_a_%> :

11.3. p=1, p(n) = vn* = 1(Cr + C2G(n)) -

In examples 11 we suppose u(n) = |(n +1)/(n — 1)|, and in examples 11.1
and 11.3 — G(n) = lnu(n).

The process 7; in examples 11.1, 11.2 may be the same, as in the formula
(8.38), and in examples 11.3 n; = cth (o f; + Arcthng) (see (8.38)).
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Chapter 9

Stochastic integrals and stochastic
differential equations

9.1 Ito Stochastic integral

Assume, that (Q,F,P) — is a fixed probability space and f;; t € [0,T] — is
standard Wiener process, defined at (2, F,P). Let’s analyze the collection of o-
algebras {Fy, t € [0,T]}, defined at (2, F,P) and connected with the process f;
in such a way, that:

1.F, C F; CF for s < t;

2. Process f; is Fyi-measurable for all ¢ € [0, T7;

3. Process fiin — fa for all A > 0, £ > 0 is independent with the events of
o-algebra Fa.

Let’s analyze the class My([0,T]) of functions £ : [0,7] x Q — R!, which
satisfy the to conditions:

1. The function £(t,w) is a measurable in accordance with the collection of
variables (t,w);

2. The function £(t,w) is Fy-measurable for all ¢ € [0, 7] and £(7, w) indepen-

dent with increments fia — fa for A > 7, t > 0;
T
3. gM {(E(t,w))Q} dt < oo;
4. M{(&(t,w))*} < oo for all t € [0, T].

For any partition {Tj}j-vzo of the interval [0, T'] such, that, 0 =1y <7 < ... <
v = T, we will define the sequense of step functions €M) (¢, w) : €Mt w) =
§(T(N ,w) with probability 1 for ¢ € [T : J(ivl)) where 5 = 0, 1,...,N — 1;

J
N=1,2,..
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Let’s define Ito stochastic integral for & € Ms([0,7T]) as the following mean-
square limit

T
l.i.m. Z § ( (V) , W) (f(T](ivl),w) — f(T;N),w)) dof /frdfn (9.1)
0

N—oo

where ¢MV)(t, w) — is any step function, which converges to the function £(t,w)
in the following sense

N—o

lim M{\g w) —&(t,w)[ }dt =0, 9.2)

It is well known [2], that Ito stochastic integral exists, doesn’t depend on the
selecting sequence &€&V (t,w) and has the following properties:

1. M{zjﬁdﬁ} —0
W (1 &d)? = [Mi2yar,
3 (0, +Bu,) df, = a ] &, + B [ nedf, w. b. 1
4 MLTedf, [ndf. b = M d
M{Jed, it | = [M{&n,}dr

Also
/67' to t1 dfT dof /€TdfT7

where 1y, +1(7) = 1 for 7 € [to, t1] and Ly, 4, 1(7 ) = 0 otherwise.
Using feature 3 for &1y, 4(7) = &L 4,(7) + & L, 4(7), T # t1, we get

t1 t t
[&dfo+ [ &udfe = [ &dfsw. p. 1,
to t1 to

where 0 <t) <t <t <T.

Let’s define the stochastic integral for £ € M2([0,T7]) as the following mean-
square limit

Lim. :721 f(N) (TJ(N),UJ) (Tj(fl) — T ) dof /deT

where éN)(t, w) — is any step function from the class My ([0, T']), which converges
in the sense of relation (9.2) to the function &(¢,w).
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T
Let’s analyze the well-known features of the stochastic integral ({ & dr:
T T
1. M {g@df} = IM{&}dr;
T 2 T
2. M{(fdeT> } < T [M{&}dr;
0 0
T T T
3. ({(a& + Bn,) dT = a({deT —I—ﬁganT w. p. 1 Vo, B € RL.

The property of additivity may be analyzed also as for the Ito stochastic
integral.

Note, also, that [2]

M{ [ &df, 2"} <@t -ty men—1)" [M{l& ") dr,  (9.3)
M{ [ &dr 2n} < (t—to)™ " [M{l& "} dr, (9.4)

where (&))" € Ma([to, t]).

9.2 Stratonovich stochastic integral

Let’s examine the class Qo ([t, T]) of Ito processes n, € R!; 7 € [t, T such, that
e =m+ [ asds+ [ bdfs, (9.5)
t t

where f, € R! is F,-measurable for all s € [t, T] standard Wiener process and

L. al', b7 € My([t, T7]).

2. For all 5, 7 € [t, T|] and some positive constants C, v < oo: M{|b,—b,|*} <
Cls — 7|7.

Assume, that Co(R1, [t,T]) — is a space of functions F(z,7) : R! x [¢t,T] —
R, which continuously differentiated two times using variable z, and these deriva-
tives are bounded uniformly for z € R, 7 € [¢, T.

Let’s define the Stratonovich stochastic integral for the process F(n,, 7); 7 €
[t,T] (F(z,7) € Co(R1, [t,T])) as the following mean-square limit

T

N-1 /1
. 1 (N) . déf
fm S F (5 (g tng) o) (Fiy = Sm) & [ P, 09)
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where the sense of formula (9.1) notations is kept.

It is easy to demonstrate, that if n, € Qs([t, T]), F'(n,, 7) € Ma([t, T]), where
F(z,7) € Co(RY, [t, T]), then the following relation between Stratonovich and Ito
stochastic integrals is reasonable

T

T
[ Flne,7)dfr = [ F(ne,7)df +
t

t

1 7 OF
5 / o (I T)bedr wo p. 1 (9.7)

t

If the Wiener processes in (9.5) and (9.7) are independent, then with proba-

bility 1
*T

T
| FOu,7)df, = [ F(ne,7)df.
t

t
Also, if n® € Q4([t, T]); i = 1, 2, then

T
Oge) — [pdae) 4 1q,.
t/ nOdfl) = / Ot + 214 t/ bydr w. p.1, (9.8)

where the process ng) looks as follows

Here fT(j) € R =1, 2 — are independent standard Wiener processes; 14 — is
an indicator of the set A.

9.3 1Ito formula

Assume, that (Q,F,P) — is a fixed probability space, and f; € R is F4-
measurable for all ¢ € [0,7] vector Wiener process with independent compo-
nents ft(i); ¢t = 1,...,m. Assume, that the stochastic processes agi) and Béij),
i = 1,...,n; j = 1,...,m are such, that a, B ¢ M,([0,T]) for all
1=1,...,n;7=1,...,m.

Let’s analyze the vector Ito process x; € R",t € [0,T] of type

t t
X; = X4 + /aTdT -I-/BTdfT w. p. 1, (9.9)
S )

where 0 < s <t < T.
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Assume, that the function R(x,t) : R" x [0,T] — R! has continuous partial
derivatives

OR OR &R
ot’ ox()’ ox)9x()’

t,7=1,...,n.
Within the limits of examined assumptions for all s, ¢ such, that 0 < s <t <
T, the following Ito formula takes place with probability 1 [2]:

R(x4,t) = R(xs, )+

9.4 TIto stochastic differential equation

Assume, that (Q,F,P) — is a fixed probability space and f; € R™ — is F4-
measurable for all ¢ € [0, T] vector Wiener process with independent components
£®

s t=1,...,m.

Let’s analyze the following Ito stochastic differential equation:
¢ t
Xt = Xg + /a(xT, T)dT -I—/B(XT,T)dfT, xo = x(0,w), (9.10)
0 0

where the stochastic process x; € R" — is a solution of equation (9.10); a :
R* x [0, T] = R", B: R"x [0,T] — R™™; xo — is a vector initial condition; xg
and f; — fy — are independent when ¢ > 0.

The stochastic process x; € R" is called as a strong solution (hereinafter
referred to as solution) of Ito stochastic differential equation (9.10), if any com-
ponent of x; is Fy-measurable for all ¢ € [0, 7], integrals in right part of (9.10)
exist and the equality (9.10) is executed for all ¢ € [0, 7] with probability 1.

It is well known |2], that there is a unique (in the sense of stochastic equiva-
lence) continuous with probability 1 solution of [to stochastic differential equation,
if following 3 conditions are met:

Electronic Journal. http://www.math.spbu.ru/diffjournal A.369



Differential Equations and Control Processes, N 1, 2017

1. The functions a(x,t), Bx(x,t) : R" x [0,T7] — R"; k = 1,...,m are
measurable according to collection of variables (x,t) € R" x [0,T]; B(x,, ) is
k-th colomn of matrix B(x,, T);

2. For all x, y € R" there is such constant K < oo, that

ax,t) —aly, ) + 3 |Bilx.t) = Byly,0) < Klx -],
=1
a(x, )2 + 3 1Bulx, O < K2 (1+ [x)
k=1

3. The random value X is Fo-measurable and M {|xo|?} < oco.

9.5 Stochastic integral according to martingale

Assume, that (Q,F,P) — is a fixed probability space and {F;,t € [0,¢]} —
is a non-decreasing collection of o-algebras, defined at (2, F,P). Assume, that
M, t € [0,T] is Fi-measurable for all ¢ € [0, 7] martingale, which satisfies the
condition M{|M;|} < oo and for all ¢ € [0, T] there is a F;-measurable and non-
negative with probability 1 stochastic process p;, t € [0, T] such, that

MﬂM&J%ﬂE}:M“%AﬂE}WpJq
t

where 0 <t < s <T.

Let’s analyze the class Hs(p,[0,7]) of stochastic processes ¢;, t €
[0, T], which are Fi-measurable for all ¢ € [0,7] and satisfies the condition

T
M {({ gofptdt} < 0.

Let’s analyze the partition {7;};_ of the interval [0, T] for which

_ () (N) N Ay = ‘ (V) _ (N)‘_H)
O=7 "<7 "<...<7y , AN 05%%(—1 Tyl — T;
when N — oo.
Let’s define sequence of step functions <p§N) such, that: cp,gN) =@ m w. p. 1
J

when ¢ € [T;N),T}ivl));j:O, I,...,.N—-1;N=1, 2,....

Let’s define the stochastic integral according to martingale from the process
¢ € Hy(p,[0,T1]) as the following mean-square limit

N—-1 T
um.%¢%wmﬂ—M$Q@/%mh (9.11)
J= / 0

N—x
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(V)

where ¢, ' — is every sequence of step functions from the class Hs(p, [0,T]),
which converges to ¢; in the following sense

Lim. M{f (gpt — ¢§N))2 ptdt} = 0.
0

T
It is well known [2]|, that the stochastic integral [ ¢;dM; exists, it doesn’t
0

depend on the selection of sequence <p,§N) and satisfies to the following conditions

with probability 1:
T

T 2 T

T T T
3. bf(acpt + Bipy)dM; = Oébf prd M + 5g¢tht3

T T T
4. M{({ gOthtglpthAFo} = M{g‘{’t@[}t[’tdt‘FO}

9.6 Stochastic integral according to Poisson random mea-
sure

Let’s examine the Poisson random measure in the space [0,7] X Y (R" dof Y).
We will denote the values of this measure at the set Ax A (A C[0,T], ACY)as
v(A, A). Let’s assume, that M{v(A, A)} = |A|II(A), where |A| — is a Lebesgue
measure of A, [I(A) — is a measure on o-algebra B of Borel sets Y, and By — is
a subalgebra of B, consisting of sets A C B, which are satisfies to the condition

II(A) < oo.

Let’s analyze the martingale measure 7(A, A) = v(A, A) — |A|II(A).

Assume, that (2, F,P) — is a fixed probability space and {Fy, ¢ € [0,7]} is
a non-decreasing family of g-algebras F; C F.

Assume, that:

1. Random values v([0,t), A) — are Fi-measurable for all A C By;

2. The random values v([t,t + h), A), A C By, h > 0, doesn’t depend on
o-algebra F;.

Let’s define the class H;(I1, [0, 71) of random functions ¢ : [0,7] XY x Q —
R!, which for all t € [0,T], y € Y are Fy-measurable and satisfy to the following
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condition

[ [ M{le(t, y)[}T1(dy)dt < oo.

Let’s analyze the partition {7}, of the interval [0, T], which satisfies the
same conditions as in the definition of Ito stochastic integral.

For ¢(t,y) € Hy(I1,[0,T]) let’s define the stochastic integral according to
martingale Poisson measure as the following mean-square limit [2[:

//(pty (dt, dy) & 1Lim. //cp v(dt, dy), (9.12)

N—x

where o) (¢, y) — is any sequense of step functions from the class Ho(I1, [0, T])
such, that

lim / / M{Jg(t,y) — o™(t, y)[*HI(dy)dt — 0.

It is well known 2], that the stochastic integral (9.12) exists, it doesn’t depend
on selection of the sequence ™) (¢,y) and it satisfies with probability 1 to the
following conditions:

T
L M{T £ (e, y)idt, dy)[Fo = 0
T T

T
+ﬁ({‘f( pa(t, y)o(dt, dy);

T 2 T
3. M{[] 1 o(t,y)7(dt, dy)| [Fof = 1M {li(t, ) Fo} TLdy)dt,
where «, [ — are some constants; 1(t,y), p2(t,y), ¢(t,y) from the class
H2(H7 [07 T])

The stochastic integral

| elt,y)v(dt, dy)
Y

according to Poisson measure will be defined as follows

T
//cpty (dt,dy) = //apty dtdy-i—//gotyH(dy)dt,

0Y

where we propose, that the right part of the last relation exists.
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9.7 Moment estimations for stochastic integrals according
to Poisson measures

According to the Ito formula for the Ito process with jump component with prob-
ability 1 we get [2]:

"= [ [+ y) = (z)) v(dr,dy), (9.13)

where .
Zt::/ /7«T7y)V(dT7dy)'
0Y

We suppose, that the function v(7,y) satisfies to well-known conditions of right
part (9.13) existence.

Let’s analyze [2] the useful estimation of moments of the stochastic integral
according to Poisson measure:

() < max {(//(( F+1) - 1) H(dy)dr)j}, (9.14)

a,(t) = sup M{lz["}, be(7,y) = M{|7(7,¥)['}.

0<r<t
We suppose, that right part of (9.14) exists.

Since ¥(dt, dy) = v(dt,dy)—I1(dy)dt, then according to Minkowski inequality

where

M {12} < M {1z })™ + (M {27, (9.15)
where . .
ztdéf// T(dy)dr; 3 = //77'y (dr, dy).
0Y 0Y

The value M{|2,|?"} may be estimated using the inequality (9.4):

) < faad [ oty Jar

where we suppose, that

2r
}dT < 0.

O/tM{L[*Y(T, y)II(dy)
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9.8 Taylor-Ito and Taylor-Stratonovich expansions

Assume, that L. — is a set of functions R(x, s) : " x [0,7] — R, which for all
t € 10,7], x € R™ has continuous partial derivatives:

O t), 22 x,0),

ot ox®Y 7 ox(@ox()
and Gy — is a set of functions R(x,s) : " x [0, T] — R, which for all ¢ € [0, T7,
x € R" has continous derivatives:

ai}f)(x t); i=1,2,...,n

x,t); 4,7 =1,2,...,n

Let’s define at the sets L and Gg the following operators

OR noo OR
= (@) el
LR(x,t) 5 (x,t) + i:Zla (x,1) ) (x,t)+
PER N y O’R
= ) _
+3 XZ: 2:: ) (x,t) B (x, 1) (i )8X()(X t),

G R(x, 1) = g 9 (x, )%(X,t);izl,...,m

Let’s examine the stochastic process s = R(Xs,s), where R(x,s) : R" x
[0, T] — R or R" %[0, T] — R and x; — is a solution of Ito stochastic differential
equation (9.10).

Assume, that sufficient conditions for existence of solution of ITto stochastic
differential equation (9.10) fulfilled and R(x,t) € L; LR(xy,t), G((f)R(xt,t) €
My([0,T]);i=1,...,m

Then according to the Ito formula for all s,¢ € [0,T] such, that s > ¢ with
probability 1

S m S

R(x,,5) = R(xi,t) + [ LR(x,, 7)dr + Y. [ G{'R(x,, 7)df{". (9.16)

t i=1%

Stochastic Taylor formula (Taylor-Ito expansion) may be obtained by iterated
usage of the formula (9.16) for the stochastic process R(xs, s).

Let’s denote

Grk:{(/\k,...,)\l):r+1§2k—/\1—...—/\k§27‘;
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)\12101“ )\ZZO;ZZI,...,]C},
Eqk:{(/\ky---y/\l): 2k—)\1—...—/\k:q;
)\12101" )\ZZO;ZZL...,]C},

Mk:{(/\ky--- /\)')\12101“/\1:0;[:1,...,]{}}.

T = [aw® L awi) if k> 1, (9.17)
t

t
J((io'“i){))st « 1, () = f() when ¢ =1,...,m and w§0) =T

0---A1

Assume, that functions a(x,t) : " x [0,T] — R", B(x,t) : ®" x [0,7] —
Rm - R(x,t) : R x [0,T] — R have smooth partial derivatives of any fixed
order.

Then for all s, ¢ such that s > ¢t with probability 1 [24]:

R(xs,s) = R(x¢,t)+

r mAp mAg (i1) (ignrin)
+> X > oY Q. M B 1) - T st
k=1 ()\k ..... A1 )EMk 1=\ =Mk
Dy, (9.18)

where D;;1,, — is a remainder term in the integral form [24], the right part of
(9.18) exists in the mean-square sense and Ay = 1 or \; = 0; Q(;';) =Land =0
it =0, QW =6 andyy=1,...,mit y=1;1=1,...,N.

If we put in order the terms of Taylor-Ito expansion according to order of
vanishing in the mean-square sense when s — ¢, then with probability 1:

R(xs,5) = R(x¢,t)+

r mA1 mAg (i)
+ > > > oY QWL QN R, L) - At T
q,k:]. ()\k,...,)\l)EEqk 1=\ ip= )\k
FH,, (9.19)

where

m)q

M i) i) (igoin)
T+lst Z Z Z ttt Z Q)\l tte Q)\l R(Xt7 t) J()\k )\1)8 t—l_

(’\k7 ;/\I)EGrk 1=\ IE=Ak

+D7‘+13,t °
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Using standard relations between Stratonovich and Ito stochastic integrals
we may rewrite Taylor-Ito expansion using the terms of multiple Stratonovich
stochastic integrals [22], [24]. In this case stochastic Taylor formula is called as
Taylor-Stratonovich expansion.

Assume, that the functions a(x,t) : R"x[0,7] — R", B(x,t) : R"x[0,T] —
Rm-R(x,t) 1 RN x [0,T] — R have smooth partial derivatives of any fixed
order.

Then for all s, ¢ such that s > ¢ with probability 1 [22], [24]:

R(xs,8) = R(xy,t)+

r mA1 mAg (i) *(ifi)
+ Z Z Z D A D)\l R(Xt7 t) J()\k )\1)8 t+
k=1 (Ag,...,A1)EM 91=X\1 1=\
+D,,, (9.20)

where D,q,, is a remainder term in the integral form [22], [24], the right part
of (9.20) exists in the mean-square sense and also \; = 1 or \; = 0; Df\ll’) —
L— % TXn: G(()j)G(()j) and ¢ = 0 when \; = 0; D&i’) = G(()i’) and 7, = 1,...,m when

Al:1;l:1,...,N;
*8 *xT2

J(*A(Z’_“_'_'fj))s,t :/ / dw(®) . dwli) if k> 1, (9.21)
t

T1 Tk
t

J;ié?.-.-;\ill))s t = L () = f() when ¢ =1,...,m and W7(_0) =T.

If we put in order the terms of Taylor-Stratonovich expansion according to
order of vanishing in the mean-square sense when s — ¢, then with probability 1:

R(xs, 8) = R(xy,t)+

r mAi mAg

THS YD S ol ZD VDSV R(xe, 1) - TR
q,k=1 ()\k,---;)\l)eEqk i1=M1
+H, i, (9.22)
where
W D (i)
7'+]-st Z Z Z Z D : R(Xt7t) J()\kk )\11)8 t+

1()‘163 a/\l)EGrk /Ll—Al Zk Ak

-I_D’f'-i-].s’t'
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9.9 The unified Taylor-Ito and Taylor-Stratonovich expan-
sions

Let’s analyze the Ito stochastic differential equation (9.10) and propose, that the
conditions for the existence of its solution are met.

Assume, that functions a(x,t) : " x [0,T] — R", B(x,t) : ®" x [0,7] —
M- R(x,t) 1 N x [0,T] — R have smooth partial derivatives of any fixed
order.

By the iterated usage of the Ito formula for the process R(x¢,t), where x; —
is a solution of the equation (9.10), and special transformations, based on replace-
ment of integration order in the multiple Ito stochastic integrals [31], [32], [44]
in [42] - [44], [46], [49] the following unified Taylor-Ito and Taylor-Stratonovich
expansions were obtained (while obtaining the unified Taylor-Stratonovich ex-
pansions we also used standard relations between multiple Ito and Stratonovich
stochastic integrals):

Rxos) = Rix.)+ £ 5 (s =ty

(ka.j ll) 7lk) Aq '7!

X

x Y LG .G R(x, )15 4 Dy, (9.23)

|

(the first unified Taylor-Ito expansion),

(s —t)

,
R(sts) - (Xt7 ) Z Z ) X
q=1(k,j,l1,...,lk) EA, J:
x Y G GIWIIR(x, )" + Dy, (9.24)
i1yl =1
(the second unified Taylor-Ito expansion),
— 1)
R(sts) - (Xt7 )'I' Z Z (8 | ) X
(kaj ll7 >lk) Aq '7-
x Y G GIWDR(x, 0L + Di,, (9.25)

11,0yl =1

(the first unified Taylor-Stratonovich expansion),

Rxos) = RO} + 3 5 (5=t

(ka.j ll) 7lk) Aq ‘7!
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x Y LG . G R(x, )L 4 D, (9.26)

. . 'lks,t
’Ll,...,lk:].

(the second unified Taylor-Stratonovich expansion),

where t
S 2 )
L = [ =) [ (=) af . dfgY) (9.27)
t
to '
p) / (s =) ... [(s — t0)df) . dffY), (9.28)
t t
LU = [ (= te)". / t— )t e, (9.29)
t t
*S sto '
T = [ (s — i)' / (s — t1)df) . A, (9.30)
t
li,...,lp =0, 1,...; k=1, 2,...;%1,...,% = 1,...,m; these integrals when

k = 0 are set equal to 1;

k
Ay ={(k,5,b,....0) k+5+ > lL,=q k,j3,4,...., [ =0,1,...},

p=1
_ L...L whenj;=12,... L...L whenj=1,2,...
when 53 =0 . when 5 =0
) def 1 () M\ A st 7 7A0)
GI(})§5<GP_1L—LGP_1), Go é}—)(Gp_lL—L )

p=12..;i=1,....m; L =L— % 'gl)ng)Gg), C_?(()i) = G(()i); the operators L
and Gg); ¢ = 1,...,m are defined in previous section; D,,1,, — is a remainer
term in the integral form (see [42] - [44], [46], [49]).

In [42] - [44], [46], [49] the unified Taylor-Ito and Taylor-Stratonovich expan-
sions well-ordered according to the orders of vanishing in the mean-square sense
when ¢t — s were also examined.

In this case summation in the unified Taylor-Ito and Taylor-Stratonovich ex-
pansions is performed using the sets

D, =

{(k, 4, i, - k) sk +20+0L+...+ 1) =q; k3, 0,...,1,=0,1,...}
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instead of sets

k
Aq:{(k,],ll,,lk)k—F]—l—le:q, k,j,ll,...,lkzo,l,...}.
p=1

Note, that the truncated unified Taylor-Ito and Taylor-Stratonovich expan-
sions contain the less number of various multiple stochastic integrals (moreover,
their major part will have less multiplicity) in comparison with classic Taylor-Ito
and Taylor-Stratonovich expansions [22].

It is easy to note, that the stochastic integrals from the family (9.17) are
connected by the linear relations. The same may be noted for the family (9.21).

However, the stochastic integrals from the families (9.27)-(9.30) can’t be con-
nected by linear relations. Therefore we call the families (9.27)—(9.30) as stochastic
basises.

Let’s name the numbers ranky (r) and rankp(r) of various multiple stochastic
integrals which are included in the families (9.27)-(9.30) as the ranks of stochastic
bases, when summation in the stochastic expansions is performed using the sets
Ajg=1,...,rand Dy; ¢ =1,...,r correspondently; here » — is a fixed natural
number.

At the beginning, let’s analyze several examples.

Assume, that summation in the unified Taylor-Ito and Taylor-Stratonovich
expansions is performed using the sets

D, =
{(k, 4,y .- k) sk +20+ 0L+ ...+ 1) =q; k5, 0,...,,=0,1,...}.

It is easy to see, that the truncated unified Taylor-Ito expansion, where sum-
mation is performed using sets D, when r = 3 includes 4 (rankp(3) = 4) various
multiple stochastic integrals: [é:t), ég‘::), 1—1(2,1,5); 1—(%302?). The same truncated
classic Taylor-Ito expansion [24]| contains 5 various multiple stochastic integrals:

(i1) (i2ir)  7(i2) (in) (isizir)
Jser Jatystr J0)s0 Jon)ser J111)s:
_ _ 7\ : oopli) o pliain) (i) plisizia)

For r = 4 we have 7 (rankp(4) = 7) integrals: Iy,, Ioo,’, Ii,,, Iooo., ;

Iézfjj), 11%2:2), 1334332"1) against 9 stochastic integrals: J(%l’t, J((ﬁég),t, J((ff)))sjt,

T Tat5e Taotiner T(i00mer it Jtinies - Forr =5 (rankp(5) =12) we
get 12 integrals against 17 integrals and for » = 6 and r = 7 we have 20 against
29 and 33 against 50 correspondently.
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Table 9.1: Numbers ranky (7), nym(r), f(r) = nu(r)/ranka (r)
r 1 2 3 4 ) 6 7 8 9 10

ranka(r) 1 3 7 15 31 63 127 255 011 1023
nu(r) 1 4 11 26 o7 120 247 502 1013 2036
fr) 1 1.3333 1.5714 1.7333 1.8387 1.9048 1.9449 1.9686 1.9824 1.9902

We will get the same results when compare the unified Taylor-Stratonovich
expansions with their classical analogues [24].

Note, that summation according to sets D, is usually used while construct-
ing strong numerical methods (built according to the mean-square criterion of
convergence) for Ito stochastic differential equations [23], |24], [44].

Summation according to sets A, is usually used when building weak numeri-
cal methods (built in accordance with the weak criterion of convergence) for Ito
stochastic differential equations [23], [24].

For example, ranka(4) = 15, while the total number of various multiple
stochastic integrals, included in the classic Taylor-Ito expansions [24] when r = 4,
equals to 26.

It is easy to check, that ranky(r) = 2" — 1 [44].

Let’s denote the total number of various multiple stochastic integrals included
in the classic Taylor-Ito expansion (9.18) by ny(r), where summation is performed

using the set kG Mg.
=1
We can demonstrate [44], that ny(r) =2(2" — 1) — r.
It means, that lim n(r)/ranks(r) = 2.

In table 9.1 we can see numbers

ranka (r), na(r), f(r) = nm(r)/ranky(r)

for various values 7.

In [44] it was proven, that

r—1 T2;1+[%]
> E C/ whenr=1, 3, 5,...
rankp(r) = | =

_Cf when r =2, 4, 6,...

where [z] — is an integer part of number z; C]" — is a binomial coefficient.
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Table 9.2: Numbers rankp(r), ng(r), g(r) = ng(r)/rankp(r)

T 1 2 3 4 ) 6 7 8 9 10
rankp(r) 1 2 4 7 12 20 33 54 88 143
ng(r) 1 2 5 9 17 29 90 83 138 261
g(r) 1 1 1.2500 1.2857 1.4167 1.4500 1.5152 1.5370 1.5682 1.8252

Using ng(r) let’s denote the number of various multiple stochastic integrals
included in the classic Taylor-Ito expansion (9.19) [24] where summation is per-

formed using the set IQ Eg.
g:k=1

In [44] it is proven, that

ne(r) =3 > Clesisy, (9.31)

2

where [z] — is an integer part of number z; C]" — is a binomial coefficient.

In table 9.2 we can see numbers

rankp(r), ng(r), g(r) = ng(r)/rankp(r)

for various values 7.
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